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AN ABSTRACT GRONWALL LEMMA AND
APPLICATIONS TO GLOBAL EXISTENCE RESULTS

FOR FUNCTIONAL DIFFERENTIAL AND
INTEGRAL EQUATIONS OF FRACTIONAL ORDER

HUSSEIN A.H. SALEM AND MARTIN VÄTH

1. Introduction. The aim of this paper is two-fold. On the one
hand, we prove an abstract generalization of a Gronwall lemma which
gives a priori estimates for various (functional) differential and integral
equations, of Volterra type, under a linear growth condition on the
nonlinearity. We believe that this result is of independent interest and
discuss it in a rather general setting. On the other hand, we apply
a simple special case of this abstract result to obtain the existence of
global solutions of the functional differential equation of fractional type

(1)

Dαx(t) = f
(
t, x(t−c1), . . . , x(t−cn), Dα1x(t−a1), . . . , Dαkx(t−ak),

Iβ1x(t − b1), . . . , Iβmx(t − bm)
)

under a linear growth condition on f . Here, aj , bj , cj ≥ 0, and α >
αj > 0 denote the, not necessarily integer, order of the corresponding
(either Riemann-Liouville or Caputo) differential operators while βj >
0 denote the, not necessarily integer, order of the (Abel) integral
operators. We also consider inclusion problems of the type (1).

For n = m = 0, i.e., if the righthand side depends only on (t, Dα1x(t−
a1), . . . , Dαkx(t− ak)), equation (1) has provoked some interest in the
literature [1, 2, 7, 9 12, 14, 25]. In comparison with the existence
results in these references, our assumptions are more natural. In
contrast to these references, we only require that f has a linear growth
and need not assume that this linear growth is sufficiently small. Of
course, we can do this only because we obtain the required a priori
estimate for the solution by means of our Gronwall lemma. We also
drop the requirement that f is real-valued and consider the general
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case of a vector-valued Carathéodory function f . In [1, 2, 11, 14], the
function f is assumed to be continuous while in [7] it is assumed that
f is a real-valued Carathéodory function and in [9, 10, 25] and [12]
the case of a Carathéodory function with a monotonicity condition,
respectively, a function of bounded variation, was studied.

The plan of the paper is as follows. In Section 2 we prove the abstract
Gronwall lemma which will be our main tool. After recalling some
properties of the fractional (Abel) integral operator in Section 3, we
prove our main existence result in Section 4. The particular case of
equation (1) is treated in Section 5. Finally, the multi-valued case is
discussed in Section 6.

2. The abstract Gronwall lemma. The Gronwall lemma can
be interpreted as a result which gives a priori bounds for the norm of
a solution of an implicit inequality under the assumption of a linear
growth estimate.

In order to obtain such a result for fractional differential equations,
we formulate the Gronwall lemma in an abstract form. We consider
the following setting.

Let XR be a (real) Banach lattice, and K: XR → XR be a positive
bounded linear operator. We recall that the spectral radius of K is
defined as the number

(2) r(K) := inf
n

n
√
‖Kn‖ = lim

n→∞
n
√
‖Kn‖ .

It is well known that this limit always exists and that r(K) < 1, or,
equivalently, ‖Kn‖ < 1 for some n, if and only if the Neumann series∑

Kn converges in operator norm; in this case the series converges to
the inverse of I − K (which is then an isomorphism onto XR).

Proposition 2.1. If K is linear and positive with r(K) < 1, then
we have for each b ∈ XR that

0 ≤ y ≤ Ky + b =⇒ ‖y‖ ≤ ‖(I − K)−1b‖.
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Proof. Since Kn is positive, a trivial induction shows that 0 ≤ y ≤
Ky + b implies 0 ≤ y ≤ Kny +

∑n−1
k=0 Kkb, and so

‖y‖ ≤ ‖Kny‖ +
∥∥∥∥

n−1∑
k=0

Kkb

∥∥∥∥ → 0 + ‖(I − K)−1b‖, n → ∞.

This result is particularly useful in view of the fact that a linear
θ-Volterra operator K, see below, has, if it is compact, in all interesting
situations spectral radius 0, see [30]. However, we intend to generalize
Proposition 2.1 to the nonlinear situation and for more general spaces
than Banach lattices, in particular for spaces of vector-valued functions.

Let X be a linear vector space, let I be a linearly ordered set with
a smallest element θ, and let Pi: X → X, i ∈ I, be a family of linear
projections with the property that PiPj = PjPi = Pi for i ≤ j, i.e., the
ranges of the projections Pi are nondecreasing and the null spaces are
nonincreasing with respect to the index i ∈ I; assume also that Pθ = 0.
According to [30], we call a, not necessarily linear, operator V : X → X
a θ-Volterra operator if PiV x depends only on Pix, i.e., if

PiV = PiV Pi, i ∈ I.

With the particular choice

(3) I := {θ, 1}, Pθ := 0 and P1 := id

each map V : X → X becomes a θ-Volterra operator, so the following
result is actually not a result restricted to a particular class of operators.
However, for the applications we have in mind the statement about the
uniformity in i ∈ I plays an important role.

Theorem 2.1 (Abstract Gronwall lemma). Let in the above situation
X be a normed space, and let V : X → X be a θ-Volterra operator, with
respect to a family (Pi)i∈I of projections. Let XR be a Banach lattice
with positive cone C, and assume that there is a map ]·[ : X → C such
that for some constant N < ∞ the estimate

‖x‖ ≤ N‖ ]x[ ‖, x ∈ X
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holds. Assume in addition that there is a map A: C → XR with

]PiV x[ ≤ A ]x[ , x ∈ X, i ∈ I.

1. If the implication

(4) 0 ≤ y ≤ Ay =⇒ ‖y‖ ≤ M

holds, then we have the a priori estimate

(5) ]Pix[ ≤ ]PiV x[ =⇒ ‖Pix‖ ≤ NM, x ∈ X

uniformly for all i ∈ I.

2. If Ax = Kx + b where b ∈ XR and K: XR → XR is positive and
linear with r(K) < 1, then (4) and (5) hold with M := ‖(I − K)−1b‖.

Proof. If
]Pix[ ≤ ]PiV x[ = ]PiV Pix[ ≤ A ]Pix[ ,

then (4) implies ‖ ]Pix[ ‖ ≤ M , which gives the estimate ‖Pix‖ ≤ NM .
The second claim follows from the first and Proposition 2.1.

Let us first observe that the Gronwall lemma is indeed a special case
of this result.

Let XR be an ideal space of measurable functions x: [0, T ] → R, i.e.,
a Banach space of measurable functions with the property that for each
x ∈ XR and each measurable y: [0, T ] → R with |y(s)| ≤ |x(s)| almost
everywhere we have y ∈ XR and ‖y‖ ≤ ‖x‖.

Let (Y, | · |) be a Banach space, and let XY be the space of all
measurable functions x: [0, T ] → Y with |x| ∈ XR, endowed with the
norm ‖x‖ := ‖|x|‖. Then XY is an ideal space (in particular complete,
see [26]).

For example, if XR is the Lebesgue-space XR = Lp([0, T ]), 1 ≤ p ≤
∞, then XY is the Lebesgue-Bochner space XY = Lp([0, T ], Y ) with
the usual norm.

Let f : [0, T ]× [0, T ]× Y → Y satisfy the Carathéodory condition, i.e.

1. f(·, ·, y) is measurable for each y ∈ Y , and
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2. f(t, s, ·) is continuous for almost all (t, s) ∈ [0, T ]2.

Let us assume that we have the linear growth condition

|f(t, s, y)| ≤ k(t, s)|y| + b(t, s)

where k, b are nonnegative and measurable and

Ky(t) :=
∫ t

0

k(t, s)y(s) ds

maps XR into itself, and the function B(t) :=
∫ t

0
b(t, s) ds belongs to

XR.

Then, with I := [0, T ], and

(6) Pix(t) :=
{

x(t) if t < i,
0 if t ≥ i,

the integral operator

V x(t) =
∫ t

0

f(t, s, x(s)) ds + c(t)

defines a nonlinear θ-Volterra operator V : XY → XY for each c ∈ XY .
Putting ]x[ (t) := |x(t)|, we obtain the following result.

Corollary 2.1 (Gronwall lemma for Volterra-Urysohn equations). If
in the above situation K is compact or r(K) < 1, then I − K is an
isomorphism and for each i ∈ [0, T ] the following holds: Each function
x ∈ XY which solves the implicit inequality

|x(t)| ≤
∣∣∣∣
∫ t

0

f(t, s, x(s)) ds + c(t)
∣∣∣∣

for almost all t ∈ [0, i] is subject to the a priori estimate

‖Pix‖ ≤ ‖(I − K)−1(B + |c|)‖.

Proof. If the linear Volterra operator K is compact, then r(K) = 0,
see [27]. Hence, r(K) < 1 in both cases. It is no loss of generality
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to assume that for s > t the values f(t, s, y), k(t, s) and b(t, s) vanish.
Then |PiV x(t)| ≤ K|x|(t)+B(t)+|c(t)| for almost all t ∈ [0, T ]. Hence,
the result follows from Theorem 2.1.

If we assume that k can be chosen independent of t, which is possible
if f is sufficiently regular, Corollary 2.1 takes a more familiar form. In
fact, in this case we can calculate (I − K)−1 explicitly:

Lemma 2.1. Let the ideal space XR contain the constant functions,
and let k be a (real or complex-valued) measurable function such that
k · x is integrable for each x ∈ XY . Then the operator

Kx(t) :=
∫ t

0

k(s)x(s) ds

is a bounded linear endomorphism of XY with spectral radius 0, and
the formulas

(7) Knx(t) =
1

(n−1)!

∫ t

0

(∫ t

s

k(σ) dσ

)n−1

k(s)x(s) ds, n=1, 2, . . . ,

and

(8) (I − K)−1x(t) = x(t) +
∫ t

0

e

∫ t

s
k(σ) dσ

k(s)x(s) ds

hold.

Proof. By [26, Theorem 3.4.3], the function k belongs to the associate
space of X, i.e., the functional f(x) :=

∫ T

0
|k(s)|x(s) ds is bounded on

XY . Hence, ‖Kx‖L∞([0,T ],Y ) ≤ ‖f‖‖x‖XY
, and since L∞([0, T ], Y )

is by our assumption continuously embedded into XY , it follows that
K: XY → XY is bounded. Formula (7) is proved by induction. For the
induction step, observe that by Fubini-Tonelli

Kn+1x(t)

=
1

(n − 1)!

∫ T

0

χ[0,t](τ )k(τ )
∫ τ

0

(∫ τ

s

k(σ) dσ

)n−1

k(s)x(s) ds dτ

=
∫ t

0

{∫ t

s

1
(n − 1)!

k(τ )
(∫ τ

s

k(σ) dσ

)n−1

dτ

}
k(s)x(s) ds.
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The expression in curly braces is absolutely continuous with respect
to t, and its derivative is (a.e.) the same as that of the absolutely
continuous function

kn,s(t) :=
1
n!

(∫ t

s

k(σ) dσ

)n

.

Since the values for t = s coincide, we conclude that

Kn+1x(t) =
∫ t

0

kn,s(t)k(s)x(s) ds =
∫ t

0

1
n!

(∫ t

s

k(σ) dσ

)n

k(s)x(s) ds,

and the induction step is complete. Hence, (7) is proved. From (7), we
obtain by a straightforward estimate that ‖Kn‖ ≤ 1/(n − 1)!‖k‖n−1

L1
‖f‖

which implies that the spectral radius of K is 0. Finally, using the
Neumann series, we obtain (8) from (7) by interchanging the order of
summation and integration. The latter is justified by Lebesgue’s domi-
nated convergence theorem and Levi’s monotone convergence theorem,
see, e.g., [31, Theorem 1.18].

As a consequence, Corollary 2.1 takes for XR = L∞ a form which
contains the usual Gronwall lemma as an obvious special case. The
only reason why the following proof requires some reasoning concerning
Lebesgue points is that we do not restrict our attention to the usual
situation that x is continuous.

Corollary 2.2 (Gronwall lemma for nonsingular Volterra-Urysohn
equations). If f : [0,∞) × [0,∞) × Y → Y satisfies a Carathéodory
condition and |f(t, s, y)| ≤ k(s)|y|+b(t, s) with nonnegative measurable
k and b, then each bounded measurable function x which solves the
implicit inequality

|x(t)| ≤
∣∣∣∣
∫ t

0

f(t, s, x(s)) ds + c(t)
∣∣∣∣

for almost all t ∈ [0, T ] is for almost all t ∈ [0, T ] subject to the explicit
a priori estimate

|x(t)| ≤ ess sup
s∈[0,t]

(B(s) + |c(s)|) +
∫ t

0

e

∫ t

s
k(σ) dσ

k(s)(B(s) + |c(s)|) ds

with B(s) :=
∫ s

0
b(s, σ) dσ.
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Proof. Apply Corollary 2.1 with XY := L∞([0, T ], Y ). Then Kx(t) =∫ t

0
k(s)x(s) ds, and so Lemma 2.1 implies

(I − K)−1y(t) = y(t) +
∫ t

0

e

∫ t

s
k(σ) dσ

k(s)y(s) ds.

We obtain that

‖x‖ ≤ ‖B + |c|‖ +
∫ a

0

e

∫ a

s
k(σ) dσ

k(s)(B(s) + |c(s)|) ds.

Hence, if a is a Lebesgue point of |x|, we obtain the required estimate
for t = a. Since almost all points of |x| are Lebesgue points, see, e.g.,
[24] or [31, Theorem 7.3], the claim follows.

3. A mapping property of the fractional integral operator.
It is a well-known consequence of an inequality of Young that the linear
fractional integral operator

Iα
0 y(s) :=

1
Γ(α)

∫ t

0

(t − s)α−1y(s) ds,

with α > 0 and Γ denoting Euler’s gamma-function, sends Lq([0, T ])
continuously into Lp([0, T ]) if p, q ∈ [1,∞] satisfy q > 1/(α + (1/p)),
see, e.g., [13] (a deep result from interpolation theory implies that even
q = 1/(α + (1/p)) is allowed if 1 < p < ∞, but we will not make use
of this fact. This stronger result was first proved by other methods
in [15]). Since Iα

0 is positive, and thus a regular integral operator, it
is clear by a straightforward estimate that this acting property carries
over to the vector-valued case, i.e., Iα

0 : Lq([0, T ], Y ) → Lp([0, T ], Y )
(boundedly) for each Banach space Y . The following lemma is folklore
in case Y = R, but to see that the equicontinuity also holds in the
vector-valued case, we provide a proof.

Lemma 3.1. The map Iα
0 : Lq([0, T ]) → Lp([0, T ]) is compact for

p, q ∈ [1,∞] if q > 1/(α + (1/p)) and either q > 1 or p < ∞. In
particular, Iα

0 : Lp([0, T ]) → Lp([0, T ]) is compact for each p ∈ [1,∞].

Moreover, if q > max{1, (1/α)} then Iα
0 sends bounded subsets of

Lq([0, T ], Y ) into bounded equicontinuous subsets of C([0, T ], Y ) (if we
define Iα

0 x(0) := 0).
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Proof. Assume first q > 1 and p < ∞. Then the assumptions hold
also if we replace q by q0 ∈ (1, q) and p by p0 ∈ (p,∞). By the above
remarks, Iα

0 : Lq0([0, T ]) → Lp0([0, T ]). Since Iα
0 is a positive, and thus

regular, integral operator, it follows that Iα
0 : Lq([0, T ]) → Lp([0, T ]) is

compact, see, e.g., [18].

Let now q > max{(1/α), 1}. Then we have by Hölder’s inequality
with 1/q+1/q′ = 1 in view of q′(α−1) > −1 that for each 0 ≤ t < τ ≤ T
(in view of 1 ≤ q′ < ∞) that

|Iα
0 x(τ ) − Iα

0 x(t)|Γ(α)

≤
∫ τ

t

(τ−s)α−1|x(s)| ds +
∫ t

0

|(τ−s)α−1 − (t−s)α−1||x(s)| ds

≤
(∫ τ

t

(τ−s)(α−1)q′
ds

)1/q′

‖x‖q

+
(∫ t

0

|(τ−s)α−1 − (t−s)α−1|q′
ds

)1/q′

‖x‖q

≤
((

(τ−t)1+(α−1)q′

1 + (α − 1)q′

)1/q′

+
(∫ t

0

|(τ−s)(α−1)q′ − (t−s)(α−1)q′ | ds

)1/q′

‖x‖q

≤ C(α, q)
(
|τ−t|α−(1/q)

+ |(τ−t)1+(α−1)q′− τ1+(α−1)q′
+ t1+(α−1)q′ |1/q′)‖x‖q

with some finite constant C(α, q), depending only on α and q, from
which the equicontinuity of the image of bounded sets under Iα

0 is
obvious; in view of Iα

0 x(0) = 0 also the boundedness follows. Note that
in case 0 < α < 1 the above estimate implies

|Iα
0 x(τ ) − Iα

0 x(t)|Γ(α) ≤ 2C(α, q)|τ − t|α−(1/q)‖x‖q,

and so Iα
0 is bounded from Lq([0, T ], Y ) into the Hölder space

C
α−1/q
0 ([0, T ], Y ), a result which is of course well known in case Y =R.

By the Arzelà-Ascoli theorem, it follows that for q > max{(1/α), 1}
the map Iα

0 : Lq([0, T ]) → C([0, T ]) is compact, and so also Iα
0 : Lq([0, T ])

→ Lp([0, T ]) is compact.
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Let now q = 1. Then our assumption states p < ∞ and α+(1/p) > 1.
By Schauder’s theorem, it suffices to prove that the adjoint operator
(Iα

0 )∗: Lp′([0, T ]) → L∞([0, T ]) ((1/p) + (1/p′) = 1) is compact. A
routine calculation of the adjoint of Iα

0 (which is a regular integral
operator, see, e.g., [18]), shows that this adjoint has, up to the
composition with transformations x �→ x(T − ·), the same form as
Iα
0 , and the latter is compact as we have seen before, because p′ >

max{(1/α), 1}.

Corollary 3.1. If p < ∞, then, in the operator norm of linear
endomorphisms of Lp([0, T ]),

(9) ‖PDn
Iα
0 ‖ ↓ 0, Dn ↓ ∅

where PDx(t) := χD(t)x(t). Moreover, if 1 < p < ∞ also

(10) ‖Iα
0 PDn

‖ ↓ 0, Dn ↓ ∅.

Proof. Since Iα
0 is a compact positive integral operator, the claim

follows from [6] (in the case 1 < p < ∞ this is also contained in [20]).

Unfortunately, (10) does not hold in case p = 1. Indeed, the norm
of Iα

0 PDn
is the norm of the adjoint operator P ∗

Dn
(Iα

0 )∗ = PDn
(Iα

0 )∗

(in the space of linear endomorphisms of L∞([0, T ])), and the latter
can tend to zero for every sequence Dn ↓ ∅ only if (Iα

0 )∗ = 0 which
evidently is not the case.

4. Gronwall lemma and global existence for Volterra-
Urysohn functional equations of fractional type. In a Banach
space Y , we consider now the nonlinear functional Volterra-Urysohn
operator

V x(t) :=
1

Γ(α)

∫ t

0

(t − s)α−1f(t, s, (V1x)(s), . . . , (VNx)(s)) ds + c(t)

t ∈ [0, T ].
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Here, f : [0, T ] × [0, T ] × Y1 × · · · × YN → Y (with Banach spaces
Y1, . . . , YN ) is a function satisfying the Carathéodory condition, c ∈
Lp([0, T ], Y ) with 1 ≤ p ≤ ∞, and Vk: Lp([0, T ], Y ) → Lp([0, T ], Yk),
k = 1, . . . , N . We assume that all Vk are continuous and bounded,
i.e., map bounded sets onto bounded sets, and that there are linear
positive operators Kk: Lp([0, T ]) → Lp([0, T ]) which satisfy the Volterra
property

(11) x|[0,t] = y|[0,t] a.e. =⇒ Kkx|[0,t] = Kky|[0,t] a.e.

and majorize Vk in the sense that

(12) |Vkx(t)| ≤ Kk|x|(t) for almost all t ∈ [0, T ]

for each x ∈ Lp([0, T ], Y ). Moreover, we assume that α > 0 and that
f satisfies the linear growth condition

(13) |f(t, s, y1, . . . , yn)| ≤ C(|y1| + · · · + |yn|) + b(t, s)

with C ∈ [0,∞) and a, necessarily nonnegative, measurable b with the
property that the function

(14) B(t) :=
∫ t

0

(t − s)α−1b(t, s) ds

belongs to Lp([0, T ]).

Note that by our above assumptions and the remarks at the beginning
of Section 3, the operator V sends Lp([0, T ], Y ) into itself.

Theorem 4.1 (Gronwall lemma for Volterra-Urysohn functional
equations of fractional type). Let 1 ≤ p ≤ ∞. There is a constant M <
∞ depending only on the above data such that each x ∈ Lp([0, T ], Y )
which satisfies

(15) |x(t)| ≤ |V x(t)|

for almost all t ∈ [0, T ] is subject to the norm estimate ‖x‖Lp([0,T ]) <
M .
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Moreover, if all Vk, and thus also V , satisfy also the Volterra-property
(11), then each x ∈ Lp([0, T ], Y ) which satisfies (15) only for almost all
t ∈ [0, i] with i ∈ [0, T ] must satisfy the norm estimate ‖x‖Lp([0,i]) < M .

Proof. Putting K0 := K1 + · · ·+ Kn, we have, since Kk are positive,
that

|V x(t)| ≤ 1
Γ(α)

∫ t

0

(t − s)α−1(CK0|x|(s) + b(s)) ds + |c(t)|.

Hence, putting
Ax = CIα

0 K0x + B + |c|,
we have the required estimate |V x(t)| ≤ A|x|(t). The claim thus follows
from Theorem 2.1 (with either the trivial family of projections (3) or
the canonical projections (6)) if we can prove that the spectral radius
of K := CIα

0 K0 in Lp([0, T ]) is less than 1. We show that actually
r(K) = 0.

Assume first that p < ∞. Since K is clearly a linear compact θ-
Volterra operator with respect to the canonical projections Pix :=
χ[0,i) · x, then [29, Theorem 2] implies that r(K) = 0 if K is partially
additive, which is trivially satisfied by the linearity, and the range of
K is regular in the sense that for each i ∈ [0, T ) and each function x in
the range we have

(16) inf
j>i

‖Pi,jx‖ = 0

where Pi,j := Pj −Pi. Condition (16) means that infj>i ‖χ[i,j)x‖p = 0
which holds for each x ∈ Lp([0, T ]) by Lebesgue’s dominated conver-
gence theorem (in the case p < ∞).

Assume now that p = ∞ or at least p > max{1, (1/α)}. In this
case, Lemma 3.1 implies that the range of K is contained in the space
C0([0, T ]) of continuous functions vanishing at 0, and so we have in
view of the Gel’fand formula (2)

r(K) = inf
n

sup
y=Kx
‖x‖p≤1

n+1
√
‖Kny‖ ≤ inf

n
sup

y∈C0([0,T ])
‖y‖≤‖K‖

n+1
√
‖Kny‖ .
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Hence, it suffices to prove that K has spectral radius 0 in the space
C0([0, T ]). In this space, we consider the canonical projections

Pix(t) :=
{

x(t) if t ≤ i,
x(i) if t ≥ i,

and it is clear that (16) holds for these projections. Since K is compact
by Lemma 3.1 and the Arzelà-Ascoli theorem, the same argument as
above shows that the spectral radius of K in C0([0, T ]) vanishes, as
required.

One could try to obtain a global existence result by Theorem 4.1
analogously as one does for ordinary differential equations: One could
first prove that each solution on some interval [0, i), i = 0 not excluded,
can be extended to a solution on a slightly larger interval [0, i + εi).
Then one could look for a maximal solution and apply the a priori
bound of Theorem 4.1, see, e.g., [30, Proposition 6.7] for an abstract
formulation of the principle and [30, Section 7.1] for an example.
However, we proceed in a different way, making use of the Leray-
Schauder principle, see e.g., [8]:

Theorem 4.2 (Leray-Schauder). Let Ω be an open subset of a
Banach space X with 0 ∈ Ω, and V : Ω → X continuous with compact
V (Ω). If λV has for no λ ∈ [0, 1] a fixed point on ∂Ω, then V has a
fixed point in Ω.

To apply the Leray-Schauder principle, we only need the following
special case of Theorem 4.1.

Corollary 4.1. With R := M as in Theorem 4.1 the following holds:
If there is a solution x ∈ Lp([0, T ], Y ) of the equation λx = V x with
‖x‖p ≥ R and a scalar λ, then |λ| < 1.

In order to employ Corollary 4.1, we need a result on complete
continuity of the involved operators. For the extremal cases p = 1
and p = ∞, we get such a result if we require in addition that f is
actually independent of t and that we consider functions with values in
a finite-dimensional space:
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Lemma 4.1. Assume, in addition to our general hypotheses,
(13) (14), that the Carathéodory function f is independent of t and
that the space Y has finite dimension. Then the Volterra-Hammerstein
operator

A(x1, . . . , xN )(t) :=
1

Γ(α)

∫ t

0

(t − s)α−1f(s, x1(s), . . . , xN (s)) ds

is continuous and compact from Lp([0, T ], Y1×· · ·×YN ) into Lp([0, T ],
Y ) for 1 ≤ p < ∞. The same holds for p = ∞ if the family {f(s, ·) :
s ∈ [0, T ]} is equicontinuous on bounded subsets of Y1 × · · · × Yn.

Proof. Clearly, A is the composition of the superposition operator

F (x1, . . . , xN )(s) := f(s, x1(s), . . . , xN (s))

and the partial integral operator Iα
0 . The growth condition (13) implies

that F acts from X := Lp([0, T ], Y1 × · · · × YN ) into Z := Lp([0, T ], Y )
and is bounded. Moreover, if p < ∞, then, since f is a Carathéodory
function, X is an ideal space and Z is a regular ideal space, F : X → Z
is automatically continuous, see [26, Theorem 5.2.1]. If p = ∞, the
continuity of F is obtained by a straightforward calculation from the
equicontinuity assumption. Since Iα

0 is compact in Lp([0, T ], Y ) by
Lemma 3.1 (because Y has finite dimension, one can consider the
coordinates separately), the claim follows.

If Y has infinite dimension or f depends also on t, we can treat only
the case 1 < p < ∞, and we have to require the following additional
assumptions:

(A) f is a strict Carathéodory function in the sense of [30], i.e.,
the function g(t, s) := f(t, s, ·, . . . , ·) is measurable as a function from
[0, T ]× [0, T ] into the space C(Y1×· · ·×Yn, Y ) of continuous functions,
endowed with the topology of uniform convergence on bounded sets.

(B) For almost all (t, s) ∈ [0, T ] × [0, T ] the map g(t, s) is compact,
i.e., for each bounded Mk ⊆ Yk the image g(t, s)(M1 × · · · × Mn) is a
precompact subset of Y .

These are no additional assumptions, i.e., they are automatically sat-
isfied for a Carathéodory f , if the spaces Y1, . . . , Yn have finite dimen-
sion, see [5]. In general, we have only:
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Proposition 4.1. The Carathéodory function f is a strict Cara-
théodory function if and only if there is a set S ⊆ [0, T ] × [0, T ] of full
measure such that for the function g above the image g(S) is separable
in C(Y1 × · · · × Yn, Y ).

Proof. In view of [30, Proposition 8.8] this is an immediate conse-
quence of [30, Theorem 8.5].

Unfortunately, if one of the spaces Yk has infinite dimension, then the
space C(Y1 × · · · × Yn, Y ) is never separable (for Y �= {0} of course)
even if Y = R, see [28]. Nevertheless the assumption that f be a strict
Carathéodory function is not so severe for applications as one might
guess from this observation at a first glance: For many applications,
compact operators like g(t, s), for fixed t, s, come from Urysohn integral
operators as, e.g., when Y1 = · · · = Yn is an ideal space (over some
measure space S) and also Y is an ideal space and

g(t, s)(x)(τ ) =
∫

S

ht,s(τ, σ, x(σ)) dσ.

In this situation, if (t, s, τ, σ, u) �→ ht,s(τ, σ, u) is a strict Carathéodory
function also f is a strict Carathéodory function under very mild growth
conditions; for more details, we refer to [30, Section 10].

Lemma 4.2. Let conditions (A) and (B) hold, in addition to our
general hypotheses (13) (14). If 1 < p < ∞, then the Volterra-Urysohn
operator

A(x1, . . . , xN )(t) :=
1

Γ(α)

∫ t

0

(t − s)α−1f(t, s, x1(s), . . . , xN (s)) ds

is continuous and compact from Lp([0, T ], Y1 × · · · × YN ) into
Lp([0, T ], Y ).
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Proof. Endowing Y1 × · · · × YN with the sum-norm |(y1, . . . , yk)| :=
|y1|+ · · ·+ |yn| and putting PDx(t) := χD(t)x(t), we have the estimate

∫
Dn∩[0,t]

|(t−s)α−1f(t, s, x1(s), . . . , xN (s))| ds

≤ Γ(α)(Iα
0 PDn

)(C|(x1, . . . , xN )|)(t) +
∫

Dn∩[0,t]

(t−s)α−1b(t, s) ds.

As Dn ↓ ∅, the norm, in Lp([0, T ]), of the righthand side converges
to 0 by (10) uniformly for x = (x1, . . . , xN ) on bounded subsets of
Lp([0, T ], Y1 × · · · × YN ). Similarly, (9) implies that

χDn
(t)

∫ t

0

|(t − s)α−1f(t, s, x1(s), . . . , xN (s))| ds

converges in norm to 0 as Dn ↓ ∅, uniformly for x = (x1, . . . , xN )
on bounded subsets of Lp([0, T ], Y1 × · · · × YN ). Also, we obtain
immediately from (13) that

∫ t

0

sup
|(y1,... ,yN )|≤n

|(t − s)α−1f(t, s, y1, . . . , yN )| ds < ∞

for each n ∈ N and almost all t. In view of [30, Proposition 9.13], in
particular the formula (9.11) in the subsequent remarks, it follows that
A is uniformly regular in the sense of [30, Definition 9.2]. Hence, the
claim follows from [30, Theorem 9.10] (the assumption (9.8) in that
theorem is satisfied with rn ≡ 0 by [30, Proposition 9.11]).

Lemma 4.3. Let conditions (A) and (B) hold, in addition to our
general hypotheses, (11) (14). If 1 < p < ∞, then the Volterra-
Urysohn functional equation
(17)

x(t) =
1

Γ(α)

∫ t

0

(t − s)α−1f(t, s, (V1x)(s), . . . , (VNx)(s)) ds + c(t)

for almost all t ∈ [0, T ]

has a global solution x ∈ Lp([0, T ], Y ) for each c ∈ Lp([0, T ], Y ).
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If f is not a strict Carathéodory function but independent of t, and if
Y has finite dimension, then an analogous result holds for 1 ≤ p < ∞
and also for p = ∞ if the family {f(s, ·) : s ∈ [0, T ]} is equicontinuous.

Proof. Up to the constant function c, the operator V on the righthand
side is the composition of the continuous operator L: Lp([0, T ], Y ) →
Lp([0, T ], Y1 × · · · × YN ) defined by

(18) Lx(t) := (V1x(t), . . . , Vnx(t))

and the continuous compact operator A from Lemma 4.2, respectively
from Lemma 4.1. Hence, V : Lp([0, T ], Y ) → Lp([0, T ], Y ) is continuous
and compact, and its fixed points are precisely the solutions x ∈
Lp([0, T ], Y ) of (17).

To see that V has a fixed point, we apply the Leray-Schauder principle
(Theorem 4.2) with X := Lp([0, T ], Y ) and Ω := {x ∈ X : ‖x‖ < R}
with R as in Corollary 4.1. We have to verify that the equation x = λV x
has no solution with ‖x‖p = R and 0 < λ < 1. But this follows
immediately from Corollary 4.1. Hence, the Leray-Schauder principle
implies that V has a fixed point in Ω which is a required solution.

The assumption p < ∞ can be dropped if the operators Vk are
“sufficiently well behaved” for at least some finite p > 1. This is our
main existence result.

Theorem 4.3 (Global existence for Volterra-Urysohn functional
equations of fractional type). Let 1 < p ≤ ∞ and Y1, . . . , YN and
Y be Banach spaces. The Volterra-Urysohn equation

(19)
x(t) =

1
Γ(α)

∫ t

0

(t−s)α−1f(t, s, (V1x)(s), . . . , (VNx)(s)) ds+c(t)

for almost all t ∈ [0, T ]

has a (global) solution x ∈ Lp([0, T ], Y ) under the following assump-
tions:

1. c ∈ Lp([0, T ], Y ).

2. f is a strict Carathéodory function, i.e., (A) holds, and
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3. f(t, s, ·, . . . , ·): Y1×· · ·×YN is a compact map for almost all (t, s).

4. f satisfies the linear growth estimate (13) with C ∈ [0,∞) and a
measurable function b such that the function (14) belongs to Lp([0, T ]).

5. Vk: Lp([0, T ], Y ) → Lp([0, T ], Yk) are linear and bounded for
k = 1, . . . , N .

6. There is some q ≤ p with 1 < q < ∞ such that also
Vk: Lq([0, T ], Y ) → Lq([0, T ], Yk) are linear and dominated in the sense
(12) by positive linear operators Kk: Lq([0, T ]) → Lq([0, T ]) which sat-
isfy the Volterra-property (11).

If Y has finite dimension and f is independent of t, then it suffices
that f is a Carathéodory function, not necessarily a strict Carathéodory
function, and also the choices q = 1 or even p = 1 are admissible. If
additionally the family {f(s, ·) : s ∈ [0, T ]} is equicontinuous, then also
the choice q = p = ∞ is admissible.

Proof. Observe first that a variant of the Riesz-Thorin interpolation
theorem for Lebesgue-Bochner spaces implies that, for each r ∈ [q, p]
the operator Vk is also bounded from Lr([0, T ], Y ) into Lr([0, T ], Yk)
(this follows, e.g., from slight variations of the proofs in [17, Chap-
ter IV]). Hence, the estimate

|V x(t)| ≤ (C · Iα
0 |(V1x, . . . , VNx)|)(t) + B(t) + |c(t)|

shows that V maps Lr([0, T ], Y ) into Lρ([0, T ], Y ) whenever q ≤
r ≤ ρ ≤ p and 1/ρ > (1/r) − α (because, as remarked earlier,
Iα
0 : Lr([0, T ]) → Lρ([0, T ])).

In particular, each solution of x = V x in Lr([0, T ], Y ) automatically
belongs to Lρ([0, T ], Y ) if q ≤ r ≤ ρ ≤ p and 1/ρ > (1/r) − α. A
trivial induction by n thus shows that each solution of x = V x in
Lq([0, T ], Y ) automatically belongs to Lr([0, T ], Y ) if r ∈ [q, p] and
1/r > (1/p) − nα. Hence, the solution automatically belongs to
Lp([0, T ], Y ). Since Lemma 4.3 implies the existence of a solution in
Lq([0, T ], Y ), the claim follows.

Remark 4.1. The proof shows that Theorem 4.3 remains valid
for nonlinear operators Vk, provided one assumes in addition that
Vk: Lr([0, T ], Y ) → Lr([0, T ], Yk) is continuous and bounded for each
r ∈ [q, p].
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5. Application to functional differential equations of frac-
tional order. We recall that the fractional integral operator of order
α > 0 with lefthand point a is defined by

Iα
a x(t) :=

1
Γ(α)

∫ t

a

(t − s)α−1x(s) ds.

Using the known relations between the Beta- and Gamma-function,
a well-known calculation with the Fubini-Tonelli theorem shows that
Iα+β
a x = Iα

a Iβ
a x for each x ∈ L1([a, b]) and each α, β > 0. In particular,

In
a is the nth iterate of the usual integral operator, and so Iα

a may
indeed be considered as a corresponding fractional integral. We define
the corresponding (Riemann-Liouville) differential operator

(20) Dn+α
a := Dn+1I1−α

a

when n ∈ N0 := {0, 1, 2, . . . } and α ∈ [0, 1). Here, D denotes the usual
differential operator. This is an appropriate definition of a fractional
derivative by the following observation.

Lemma 5.1. For 0 < α ≤ β we have

D0
ax = x a.e., x ∈ L1([a, b], Y ),

and for each x ∈ L1([a, b], Y ) we have

(21) Dβ
a Iα

a x = Dβ−α
a x, a.e.,

and either both sides of (21) are defined or none. In particular, when
α = β, (21) means that the operator Dα

a Iα
a is defined on L1([a, b], Y )

and that Dα
a is the left-inverse of Iα

a . For an integer α = β = n and
x ∈ In

a (L1([a, b], Y )), we have Dn
ax = Dnx.

Proof. The first claim, i.e., DI1
ax = x, follows from the fact that

almost all points of x ∈ L1([a, b], Y ) are Lebesgue points, see, e.g., [31,
Corollary 7.1]. Let β = n + γ and β − α = m + δ with n, m ∈ N0 and
γ, δ ∈ [0, 1). Then we have in view of DI1

ax = x that

Dβ
a Iα

a x = Dn+1I1−γ
a Iα

a x = Dn+1I1+α−γ
a x = Dn+1I1+n−m−δ

a x

= Dm+1Dn−mIn−m
a I1−δ

a x = Dm+1I1−δ
a x = Dβ−α

a x.



430 H.A.H. SALEM AND M. VÄTH

We consider the functional differential equation of fractional type

(22) Dα
0 x(t) = f

(
t, x(t−c1), . . . , x(t−cn), Dα1

−A1
x(t−a1), . . . ,

Dαk

−Ak
x(t−ak), Iβ1

−B1
x(t−b1), . . . , Iβm

−Bm
x(t−bm)

)
for t ∈ [0, T ] when 0 < αj < α, β1, . . . , βm > 0, 0 ≤ aj ≤ Aj ,
0 ≤ bj ≤ Bj , and cj ≥ 0.

In order for problem (22) to make sense, we have to assume that the
initial values x[−A,0] := X0 are given where A := max{A1, . . . , Ak, B1,
. . . , Bm}.

Proposition 5.1. Assume that 0 < β < α and that x: [−A, T ] → Y
is a solution of the Volterra-Urysohn functional equation of fractional
type

(23) x = Iα−β
0 Gx

where Gx ∈ L1([0, T ], Y ) with

(24) Gx(s) := f
(
s, Iβ

0 x(s−c1), . . . , Iβ
0 x(s−cn), Dα1

−A1
Iβ
0 x(s−a1), . . . ,

Dαk

−Ak
Iβ
0 x(s−ak), Iβ1

−B1
Iβ
0 x(s−b1), . . . , Iβm

−Bm
Iβ
0 x(s−bm)

)
Then y := Iβ

0 x solves (22) almost everywhere on [0, T ].

Proof. We have y = Iβ
0 (Iα−β

0 Gx) = Iα
0 Gx which, in view of

Lemma 5.1, implies that Dα
0 y is defined almost everywhere and equal

to Gx which gives the claim.

Theorem 5.1. Let n, k, m ∈ N ∪ {0} and T ∈ (0,∞) and suppose

1. f : [0, T ] × Y n+k+m → Y is a strict Carathéodory function.

2. f(s, ·): Y n+k+m → Y is a compact map for almost all s ∈ [0, T ].

3. f satisfies the linear growth estimate

(25) |f(s, y1, . . . , yn+k+m)| ≤ C(|y1| + · · · + |yn|) + b(s)

with C ∈ [0,∞) and some b ∈ L1([0, T ], Y ).
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Let β := max{α1, . . . , αk} < α with αj > 0, β1, . . . , βm > 0, 0 ≤ aj ≤
Aj, 0 ≤ bj ≤ Bj, cj ≥ 0 and A := max{A1, . . . , Ak, B1, . . . , Bm}.

Then for each initial data X0: [−A, 0] → Y which is contained in
the range Iβ

0 (L1([−A, 0], Y )) there is a function y: [−A, T ] → Y with
y|[−A,0] = X0 which solves (22) almost everywhere.

Proof. Note first that by the remarks in Section 3 we have for any
b ∈ L1([0, T ], Y ) that the function (14) belongs to Lp([0, T ], Y ) for
1 ≤ p ≤ 1/(1 − α) (if α < 1, in case α ≥ 1 the function belongs even
to C([0, T ], Y )). In particular, the function belongs to Lp([0, T ], Y ) for
some p ∈ (1,∞).

Our assumption on the initial data implies in view of Lemma 5.1
that there exists a function Z0 ∈ L1([−A, 0], Y ) for which Dβ

0 Z0 = X0,
almost everywhere, where the lefthand side is defined. In order to apply
Proposition 5.1, we restrict our attention to functions x which satisfy
x|[−A,0] = Z0. With this additional requirement, we can rewrite the
arguments of f in (24) for s ≥ 0 as the sum of a fixed function hi,j

(depending on Z0 but not on x) and a linear operator of Volterra type
Vi,j which depends only on x|[0,T ]. More precisely, we substitute in (24)

x(s − cj) = h1,j(s) + V1,jx(s)

D
αj

−Aj
Iβ
0 x(s − aj) = h2,j(s) + V2,jx(s)

I
βj

−Bj
x(t − bj) = h3,j(s) + V3,jx(s)

where we put

h1,j(s) :=

{
Z0(s − cj) if s ≤ cj ,

0 if s > cj ,

V1,jx(s) :=

{
0 if s ≤ cj ,

x(s − cj) if s > cj ,

h2,j(s) :=

⎧⎨
⎩

D
αj

−Aj
Iβ
0 Z0(s − aj) if s ≤ aj ,

D
αj

−Aj
Iβ
0 Z0(0) if s > aj ,
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V2,jx(s) :=

{
0 if s≤aj ,

D
αj

0 Iβ
0 x(s−aj) if s>aj ,

=

{
0 if s≤ aj ,

I
β−αj

0 x(s−aj) if s> aj ,

h3,j(s) :=

⎧⎨
⎩

I
βj

−Bj
Iβ
0 Z0(s−bj) if s ≤ bj ,

I
βj

−Bj
Iβ
0 Z0(0) if s > bj ,

V3,jx(s) :=

{
0 if s ≤ bj ,

I
βj

0 Iβ
0 x(s−bj) if s > bj .

=

{
0 if s ≤ bj ,

I
βj+β
0 x(s−bj) if s > bj .

The crucial point is that the operators Vi,j are linear operators, of
Volterra type, and depend only on x|[0,T ]. Moreover, in view of β ≥ αj ,
all the operators Vi,j are bounded in Lp([0, T ], Y ). The function

f̃(s, u1, . . . , un, v1, . . . , vk, w1, . . . , wm)
:= f

(
s, h1,1(s) + u1, . . . , h1,n(s) + un, h2,1(s) + v1, . . . , h2,k(s)

+ vk, h3,1(s) + w1, . . . , h3,m(s) + wm

)
satisfies (25) (with b̃ := b+C

∑
i,j hi,j), and now it is evident that (24)

has the form (19) where all assumptions of Theorem 4.3 are satisfied
(with q = p and the Volterra operators Vi,j). Hence, Theorem 4.3
implies that we find a solution x ∈ Lp([0, T ], Y ) of the rewritten
equation. Putting y(t) := Iβ

0 x(t) for t > 0, the claim now follows
by Proposition 5.1.

Besides the fractional Riemann-Louville derivative (20) also the Ca-
puto derivative

(26)
dn+α

a x

dtn+α
:= DnI1−α

a Dx, n = 0, 1, . . . , 0 ≤ α < 1

is of interest for applications. The connection with the Riemann-
Liouville derivative is well-known and easy to see:

Proposition 5.2. If x: [a, b] → Y is absolutely continuous and the
derivative Dx exists almost everywhere with Dx ∈ L1([a, b], Y ), then

dα
a x

dtα
= Dn+α

a (x − xa), α > 0
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where xa denotes the constant function with value x(a) (and either both
sides exist or none if α > 1).

Proof. We note first that under our assumption on Dx the absolute
continuity of x is equivalent to the fundamental theorem of calculus,
see, e.g., [31, Theorem 7.6], i.e., equivalent to I1

aDx = x − xa. Hence,
in view of Lemma 5.1, we have for each α ∈ [0, 1) and each n = 0, 1, . . .
that

dn+α
a x

dtn+α
= Dn(Dα

a Iα
a )I1−α

a Dx = (DnDα
a )(Iα

a I1−α
a )Dx

= (Dn+1I1−α
a )Iα+1−α

a Dx = Dn+α
a (I1

aDx) = Dn+α
a (x−xa).

Remark 5.1. It is well known that, if Y has finite dimension, then
the absolute continuity of x already implies that Dx exists almost
everywhere and is integrable, see, e.g., [31, Theorem 7.5]. However,
in general, e.g., for Y = L1([a, b],R), there are Y -valued absolutely
continuous functions which are nowhere differentiable. The question of
whether absolute continuity of a Y -valued function implies the existence
of an integrable derivative is related to the geometry of Y .

The above definition (26) has the disadvantage that it completely
loses its meaning if x fails to be (almost everywhere) differentiable.
For this reason, we use the property of Proposition 5.2 to define the
Caputo derivative in general, i.e., we put

(27)
dα

ax

dtα
(t) := Dα

a x(t) − Dα
a xa(t) = Dα

a x(t) − (t − a)α

Γ(α + 1)
x(a).

Proposition 5.2 implies that, for absolutely continuous functions with
an integrable derivative, this definition coincides with the usual defini-
tion (26) of the Caputo derivative.

For more remarks concerning the connection of the Riemann-Liouville
and the Caputo derivative, we refer to [22, 23].

Theorem 5.2. Theorem 5.1 remains true if we replace in (22)
in some, or all, occurrences the Riemann-Liouville derivative by the
Caputo derivative (in the sense (27)).
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Proof. We insert (27) into all occurrences of the Caputo derivative,
in equation (22), using always the corresponding initial value X0 for
the second term in (27). Thus, we can rewrite the given initial
value problem into an equivalent problem where only the Riemann-
Liouville derivative occurs. This new problem can also be written in
the form (22) with a slightly modified function f (similar as in the
proof of Theorem 5.1). This modified function evidently satisfies all
requirements of Theorem 5.1, and so the existence of a solution follows
from Theorem 5.1.

6. The multi-valued case. In this section, we extend some results
of the previous sections to the case of inclusions. For the corresponding
Gronwall lemma we need no hypothesis concerning the continuity or
measurability of the involved multi-valued maps. Concerning existence
results, we consider only lower semi-continuous maps. As usual in
this case, the philosophy is to apply an appropriate selection theorem.
However, under our assumptions, it is not clear whether one can find
corresponding Carathéodory selections so that the existence results of
this section do not immediately follow from our previous results.

Let us first discuss the results of Section 4 in the multi-valued setting.
We consider the inclusion

(28) x(t) ∈ 1
Γ(α)

∫ t

0

(t−s)α−1F (t, s, (V1x)(s), . . . , (VNx)(s)) ds+c(t),

where Vk: Lp([0, T ], Y ) � Lp([0, T ], Yk), k = 1, . . . , N , and F : Y1 ×
· · · × YN � Y are multi-valued (with nonempty values) and c ∈
Lp([0, T ], Y ). Here, the righthand side is understood as the set

Vx(t) :=
⋃{∫ t

0

(t − s)α−1F (t, s, y1(s), . . . , yN (s)) ds + c(t)

: yk ∈ Vkx for k = 1, . . . , N

}
,

where, as usual, the integral of a multi-valued function is understood
as the family of integrals of all measurable selections of the integrand.

We understand the hypotheses (12) and (13) correspondingly for each
value of the set Vkx, respectively of the set F (t, s, y1, . . . , yn), at the
lefthand side.
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Theorem 6.1 (Multi-valued a priori estimate). With the above
interpretation of the formulae, Theorem 4.1 continues to hold with the
above operator V where we replace (15) by the hypothesis that there is
a measurable selection y of Vx such that

(29) |x(t)| ≤ |y(t)| for almost all t ∈ [0, T ].

Proof. As in the proof of Theorem 4.1, one obtains for each mea-
surable selection y of Vx the estimate |y(t)| ≤ A|x|(t) with Ax :=
Kx + B + |c| where K is a linear positive operator in Lp([0, T ]) with
spectral radius 0. Choosing here y corresponding to x with (29), we
obtain with z(t) := |x(t)| and the usual order in XR := Lp([0, T ])
that 0 ≤ z ≤ Kz + b̃ with b̃ := B + |c|. Proposition 2.1 implies
‖x‖ = ‖z‖ ≤ ‖(I − K)−1b̃‖.

For the rest of this section, we assume that F is independent of t. Re-
call that F is called a lower Carathéodory function if F (·, u1, . . . , uN ) is
measurable and F (s, ·, . . . , ·) is lower semi-continuous. Unfortunately,
even if N = 1, this does not imply that for each measurable function
y1, . . . , yN the multi-valued map G(s) := F (s, y1(s), . . . , yN (s)) ad-
mits a measurable selection, see [3, Example 7.2]. Therefore we have
to require slightly more.

We restrict our attention to the case that Y has finite dimension.
In this case, the above multi-valued function G is measurable if and
only if its graph is measurable or, equivalently, if {s : G(s) ⊆ M} is
measurable for each open set M ⊆ Y or, equivalently, for each closed
set M ⊆ Y , see [16]. According to [3], we call F sup-measurable if the
above function G is measurable for each choice of measurable functions
y1, . . . , yN . If we require in addition that the values of F , i.e., of G,
are closed sets, then the Kuratowski-Ryll-Nardzewski selection theorem
[19] implies that G has a measurable selection.

Now we are in a position to formulate a multi-valued version of
Theorem 4.3.
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Theorem 6.2 (Global existence for lower semi-continuous Volterra-
Urysohn functional inclusions of fractional type). Let Y1, . . . , YN and
Y be finite-dimensional spaces, 1 ≤ p < ∞, and let F be independent
of t. Suppose in addition:

1. c ∈ Lp([0, T ], Y ).

2. F assumes only nonempty closed convex values and is a lower
Carathéodory function which is sup-measurable and satisfies the linear
growth estimate

(30) sup{|y| : y ∈ F (s, y1, . . . , yn)} ≤ C(|y1| + · · · + |yn|) + b(s)

with C ∈ [0,∞) and b ∈ Lp([0, T ]).

3. Vk: Lp([0, T ], Y ) � Lp([0, T ], Yk) are lower semi-continuous for
k = 1, . . . , N with nonempty closed convex values and dominated in
the sense that

|y(t)| ≤ Kk|x|(t), for almost all t ∈ [0, T ]

for each y ∈ Vkx where Kk: Lp([0, T ]) → Lp([0, T ]) are positive linear
operators satisfying the Volterra-property (11).

Then the inclusion (28) has a solution in Lp([0, T ]).

Proof. Put Z := Lp([0, T ], Y1 × · · · × YN ) and X := Lp([0, T ], Y ),
and define L: X � Z by the formula (18). By Michael’s selection
theorem [21], each Vk has a continuous selection, and so also L has
a continuous selection L0: X → Z. As explained above, F induces a
nonlinear superposition operator F : Z � X with nonempty values, i.e.,
the value Fz consists of all measurable selections of s �→ F (s, z(s))).
In view of (30), F assumes only compact values, and F sends order-
bounded sets into order-bounded sets. Since in addition X is regular
and F is sup-measurable and lower Carathéodory, it follows from [4]
that F is lower semi-continuous. Clearly, Fz is closed and convex for
each z ∈ Z. Applying Michael’s selection theorem once more, we find
a continuous selection F0: Z → X of F . We do not know whether
F0 is a superposition operator induced by a Carathéodory selection
of F . However, since V = Iα

0 FL, the operator V0 := Iα
0 F0L0 is a

continuous and compact selection of V . Choosing the constant M as
in Theorem 6.1, we apply the Leray-Schauder theorem (Theorem 4.2)
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with the operator V0 and Ω := {x ∈ X : ‖x‖ < M}. For each x ∈ X
and each λ ∈ [0, 1] with x = λV0x we have with y := V0x ∈ Vy that
(29) holds, and so x ∈ Ω. Hence, the Leray-Schauder theorem implies
that x = V0x has a solution which thus satisfies x ∈ Vx.

As a consequence of this theorem, we obtain the following “lower
semi-continuous” variant of Theorems 5.1 and 5.2 for functional differ-
ential inclusions of fractional type. Since the argument is only a slight
variation of the arguments used in Section 5, we skip the proof.

Theorem 6.3. Let Y be a finite-dimensional space, n, k, m ∈
N ∪ {0} and T ∈ (0,∞). Suppose that F : [0, T ] × Y n+k+m � Y is
a lower Carathéodory and sup-measurable function which assumes only
nonempty closed convex values and satisfies the linear growth estimate
(30) with C ∈ [0,∞) and b ∈ L1([0, T ]).

Let β := max{α1, . . . , αk} < α with αj > 0, β1, . . . , βm > 0, 0 ≤
aj ≤ Aj, 0 ≤ bj ≤ Bj, cj ≥ 0, and A := max{A1, . . . , Ak, B1, . . . , Bm}.

Then for each initial data X0: [−A, 0] → Y which is contained in
the range Iβ

0 (L1([−A, 0], Y )), there is a function x: [−A, T ] → Y with
x|[−A,0] = X0 which satisfies

(31)

Dα
0 x(t)∈F

(
t, x(t−c1), . . . , x(t−cn), Dα1

−A1
x(t−a1), . . . , Dαk

−Ak
x(t−ak),

Iβ1
−B1

x(t−b1), . . . , I
βm

−Bm
x(t−bm)

)
almost everywhere. An analogous result holds if we replace in (31)
in some, or all, occurrences the Riemann-Liouville derivative by the
Caputo derivative in the sense (27).
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