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BOUNDEDNESS IN NONLINEAR FUNCTIONAL
DIFFERENTIAL EQUATIONS WITH APPLICATIONS

TO VOLTERRA INTEGRODIFFERENTIAL EQUATIONS

YOUSSEF N. RAFFOUL

ABSTRACT. Non-negative definite Lyapunov functions
are employed to obtain sufficient conditions that guarantee
boundedness of solutions of nonlinear functional differential
systems. The theory is illustrated with several examples.

1. Introduction. In this paper, we make use of non-negative defi-
nite Lyapunov functions and obtain sufficient conditions that guarantee
the boundedness of all solutions of the system of functional differential
equations

(1.1) x′(t) = G(t, x(s); 0 ≤ s ≤ t) def= G(t, x(·))

where x ∈ Rn, G : R+ × Rn → Rn is a given nonlinear continuous
function in t and x. For a vector x ∈ Rn we take ‖x‖ to be
the Euclidean norm of x. Let t0 ≥ 0, then for each continuous
function φ : [0, t0] → Rn, there is at least one continuous function
x(t) = x(t, t0, φ) on an interval [t0, I] satisfying (1.1) for t0 ≤ t ≤ I
and such that x(t, t0, φ) = φ(t) for 0 ≤ t0 ≤ I. It is assumed that at
t = t0, x′(t) is the right hand derivative of x(t). For conditions ensuring
existence, uniqueness and continuability of solutions of (1.1), we refer
the reader to [2] and [5].

In [10], the author studied the boundedness of solutions of the initial
value problem

x′(t) = G(t, x(t)); t ≥ 0
x(t0) = x0

by making use of non-negative definite Lyapunov functions.
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A stereotype of equation (1.1) is the Volterra integrodifferential
equation

(1.2) x′(t) = Ax(t) +
∫ t

0

B(t, s)f(x(s)) ds.

We are mainly interested in applying our results to Volterra integrod-
ifferential equations of the forms of (1.2) with f(x) = xn where n is
positive and rational. We emphasize that the results of [10] do not
apply to equations similar to (1.2). In [1] Burton et al. proved general
theorems using Lyapunov functionals of convolution types and obtained
conditions for boundedness of solutions and stability of the zero solu-
tion of (1.1). However, in this paper our conditions are different and
offer a new perspective at looking at the notion of boundedness. As
application, we will apply our obtained results to nonlinear Volterra
integrodifferential equations. At the end of the paper we will compare
our theorems to those obtained in [11] and show that our results are
different when it comes to applications. For more on the boundedness
and stability of solutions of (1.1), we refer the interested reader to [3,
4, 6 9, 12].

2. Boundedness of solutions. In this section we use non-
negative Lyapunov type functionals and establish sufficient conditions
to obtain boundedness results on all solutions x(t) of (1.1). From this
point forward, if a function is written without its argument, then the
argument is assumed to be t.

Definition 2.1. We say that solutions of system (1.1) are bounded,
if any solution x(t, t0, φ) of (1.1) satisfies

||x(t, t0, φ)|| ≤ C
(||φ||, t0), for all t ≥ t0,

where C : R+ ×R+ → R+ is a constant that depends on t0 and φ is a
given continuous and bounded initial function. We say that solutions
of system (1.1) are uniformly bounded if C is independent of t0.

If x(t) is any solution of system (1.1), then for a continuously differen-
tiable function

V : R+ × Rn −→ R+,
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we define the derivative V ′ of V by

V ′(t, x) =
∂V (t, x)

∂t
+

n∑
i=1

∂V (t, x)
∂xi

fi(t, x).

A continuous function W : [0,∞) → [0,∞) with W (0) = 0, W (s) > 0
if s > 0 and W strictly increasing is called a wedge. (In this paper
wedges are always defined by W or Wi where i is a positive integer).

Theorem 2.2. Let D be a set in Rn. Suppose there exists a
continuously differentiable Lyapunov functional V : R+ × D → R+

that satisfies

(2.1) λ1W1(|x|) ≤ V (t, x) ≤ λ2W2(|x|) + λ2

∫ t

0

ϕ1(t, s)W3(|x(s)|) ds

and

(2.2) V ′(t, x) ≤ −λ3W4(|x|) − λ3

∫ t

0

ϕ2(t, s)W5(|x(s)|) ds + L

for some positive constants λ1, λ2, λ3 and L, where ϕi(t, s) ≥ 0 is a
scalar function continuous for 0 ≤ s ≤ t < ∞, i = 1, 2, such that for
some constant γ ≥ 0 the inequality
(2.3)

W2(|x|)−W4(|x|)+
∫ t

0

(
ϕ1(t, s)W3(|x(s)|)−ϕ2(t, s)W5(|x(s)|)) ds ≤ γ

holds. Moreover, if
∫ t

0
φ1(t, s) ds ≤ B for some positive constant B,

then all solutions of (1.1) that stay in D are uniformly bounded.

Proof. Let M = λ3/λ2. For any initial time t0 ≥ 0, let x(t) be any
solution of (1.1) with x(t) = φ(t), for 0 ≤ t ≤ t0. Then,

d

dt

(
V (t, x(t))eM(t−t0)

)
=

[
V ′(t, x(t)) + MV (t, x(t))

]
eM(t−t0).
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For x(t) ∈ Rn, using (2.2) we get

(2.4)
d

dt

(
V (t, x(t))eM(t−t0)

)

≤
[
− λ3W4(|x|) − λ3

∫ t

0

ϕ2(t, s)W5(|x(s)|) ds + L

+ Mλ2W2(|x|) + Mλ2

∫ t

0

ϕ1(t, s)W3(|x(s)|) ds

]
eM(t−t0)

= λ3

[
W2(|x|) − W4(|x|)

+
∫ t

0

(
ϕ1(t, s)W3(|x(s)|) − ϕ2(t, s)W5(|x(s)|)) ds + L

]
eM(t−t0)

≤ (
λ3γ + L

)
eM(t−t0)

=: KeM(t−t0).

Integrating (2.4) from t0 to t we obtain,

V (t, x(t))eM(t−t0) ≤ V (t0, φ) +
K

M
eM(t−t0) − K

M

≤ λ2V (t0, φ) +
K

M
eM(t−t0).

Consequently,

V (t, x(t)) ≤ λ2V (t0, φ)e−M(t−t0) +
K

M
.

From condition (2.1) we have λ1W1(|x|) ≤ V (t, x(t)), which implies
that

|x| ≤ W−1
1

[{
1
λ1

} (
λ2W2(|φ|) + λ2W3(|φ|)

∫ t0

0

ϕ1(t0, s) ds +
K

M

)]
;

for all t ≥ t0. This completes the proof.

Example 2.3. Consider the scalar nonlinear Volterra integrodiffer-
ential equation

(2.5)
x′ = σ(t)x(t) +

∫ t

0

B(t, s)x2/3(s) ds t ≥ 0,

x(t) = φ(t) for 0 ≤ t ≤ t0.
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If

2σ(t) +
∫ t

0

|B(t, s)| ds +
∫ ∞

t

|B(u, t)| du ≤ −1,

∫ t

0

∫ ∞

t

|B(u, s)| du ds,

∫ t

0

|B(t, s)| ds < ∞,

and |B(t, s)|
3

≥
∫ ∞

t

|B(u, s)| du,

then all solutions of (2.5) are uniformly bounded.

To see this we let

V (t, x) = x2 +
∫ t

0

∫ ∞

t

|B(u, s)| du x2(s) ds.

Then along solutions of (2.5) we have

V ′(t, x) = 2xx′ +
∫ ∞

t

|B(u, t)|x2(t) du −
∫ t

0

|B(t, s)|x2(s) ds

≤ 2σ(t)x2 + 2
∫ t

0

|B(t, s)| |x(t)|x2/3(s) ds

+
∫ ∞

t

|B(u, t)|x2(t) du −
∫ t

0

|B(t, s)|x2(s) ds.

Using the fact that ab ≤ a2/2+ b2/2, the above inequality simplifies to

(2.6)
V ′(t, x) ≤ 2σ(t)x2 +

∫ t

0

|B(t, s)|(x2(t) + x4/3(s)) ds

+
∫ ∞

t

|B(u, t)|x2(t) du −
∫ t

0

|B(t, s)|x2(s) ds.

To further simplify (2.6) we make use of Young’s inequality, which says
for any two nonnegative real numbers w and z, we have

wz ≤ we

e
+

zf

f
, with 1/e + 1/f = 1.
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Thus, for e = 3/2 and f = 3, we get∫ t

0

|B(t, s)|x4/3(s)ds =
∫ t

0

|B(t, s)|1/3|B(t, s)|2/3x4/3(s) ds

≤
∫ t

0

( |B(t, s)|
3

+
2
3
|B(t, s)|x2(s)

)
ds.

By substituting the above inequality into (2.6), we arrive at

V ′(t, x) ≤
(

2σ(t) +
∫ t

0

|B(t, s)| ds +
∫ ∞

t

|B(u, t)| du

)
x2(t)

−
∫ t

0

(
|B(t, s)| − 2

3
|B(t, s)|

)
x2(s) ds + L

≤ −x2(t) −
∫ t

0

|B(t, s)|
3

x2(s) ds + L,

where L = (1/3)
∫ t

0
|B(t, s)| ds. By taking W1 = W2 = W4 = x2(t),

W3 = W5 = x2(s), λ1 = λ2 = λ3 = 1 and ϕ1(t, s) =
∫ ∞

t
|B(u, s)| du,

ϕ2(t, s) = (|B(t, s)|)/3, we see that all the conditions of Theorem 2.2
are satisfied. Hence all solutions of (2.5) are uniformly bounded.

Note that B(t, s) = e−k(t−s), k = 3, will satisfy all requirements of
Example 2.3. Also, we assert that Example 2.3 can be easily generalized
to handle nonlinear Volterra equations of the form

x′ = σ(t)x(t) +
∫ t

0

B(t, s)f(s, x(s)) ds,

where |f(t, x(t))| ≤ x2/3(t) + M , for some positive constant M . Con-
dition (2.3) did not come into play, which was due to the fact that
r = q = 2. In the next example, we consider a nonlinear system in
which condition (2.3) naturally comes into play.

Example 2.4. Let D = {x ∈ R : ||x|| ≥ 1}. Let φ(t) be a
given bounded continuous initial function such that ||φ(t)|| = 1, for
0 ≤ t ≤ t0. Consider the scalar nonlinear Volterra integrodifferential
equation

(2.7)
x′ = σ(t)x3(t) +

∫ t

0

B(t, s)x1/3(s) ds, t ≥ 0,

x(t) = φ(t) for 0 ≤ t ≤ t0.



BOUNDED SOLUTIONS 381

If

2σ(t) +
1
2

∫ t

0

|B(t, s)|1/2 ds +
∫ ∞

t

|B(u, t)| du ≤ −1,

∫ t

0

∫ ∞

t

|B(u, s)| du ds,

∫ t

0

(|B(t, s)| + |B(t, s)|3/2
)
ds < ∞,

and
5|B(t, s)|

6
≥

∫ ∞

t

|B(u, s)| du,

then all solutions of (2.7) that are in the set D are uniformly bounded.

To see this, we consider the Lyapunov functional V (t, x) : R+×D →
R+,

V (t, x) = x2 +
∫ t

0

∫ ∞

t

|B(u, s)| du x4(s) ds.

Then along solutions of (2.7) we have

V ′(t, x) = 2xx′ +
∫ ∞

t

|B(u, t)|x4(t) du −
∫ t

0

|B(t, s)|x4(s) ds

≤ 2σ(t)x4 + 2
∫ t

0

|B(t, s)| |x(t)||x(s)|1/3 ds

+
∫ ∞

t

|B(u, t)|x4(t) du −
∫ t

0

|B(t, s)|x4(s) ds.

By noting that 2|x(t)||x(s)|1/3 ≤ x2(t)+x2/3(s) we have from the above
inequality that

V ′(t, x) ≤ 2σ(t)x4 +
∫ t

0

|B(t, s)| (x2(t) + |x(s)|2/3) ds

+
∫ ∞

t

|B(u, t)|x4(t) du −
∫ t

0

|B(t, s)|x4(s) ds.

Next we note that∫ t

0

|B(t, s)| x2(t) dt =
∫ t

0

|B(t, s)|1/2|B(t, s)|1/2 x2(t) ds

≤
∫ t

0

|B(t, s)|1/2

[ |B(t, s)|
2

+
x4(t)

2

]
ds.
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Also, using Young’s inequality with e = 6 and f = 6/5, we get

x(s)2/3|B(t, s)| = x(s)2/3|B(t, s)|1/6|B(t, s)|5/6

≤ x4(s)|B(t, s)|
6

+
5
6
|B(t, s)|.

V ′(t, x) ≤
(

2σ(t) +
1
2

∫ t

0

|B(t, s)|1/2 ds +
∫ ∞

t

|B(u, t)| du

)
x4(t)

−
∫ t

0

(
|B(t, s)| − |B(t, s)|

6

)
x4(s) ds + L

≤ −x4(t) −
∫ t

0

5|B(t, s)|
6

x4(s) ds + L,

where

L =
5
6

∫ t

0

|B(t, s)| ds +
1
2

∫ t

0

|B(t, s)|3/2 ds.

By taking W1 = W2 = x2(t), W3 = W4 = W5 = x4(s), λ1 = λ2 =
λ3 = 1 and ϕ1(t, s) =

∫ ∞
t

|B(u, s)| du ϕ2(t, s) = (5|B(t, s)|)/6, we see
that conditions (2.1) and (2.2) of Theorem 2.2 are satisfied. It is left
to show that condition (2.3) holds. Since

5|B(t, s)|
6

≥
∫ ∞

t

|B(u, s)| du,

we have, for x ∈ D that

W2(|x|) − W4(|x|) +
∫ t

0

(
ϕ1(t, s)W3(|x(s)|) − ϕ2(t, s)W5(|x(s)|)) ds

= x2(t) − x4(t) +
∫ t

0

(∫ ∞

t

|B(u, s)| du − 5|B(t, s)|
6

)
x4(s) ds

≤ x2(1 − x2) ≤ 0.

Thus, condition (2.3) is satisfied for γ = 0. An application of Theo-
rem 2.2 yields

|x(t)| ≤
[
|φ2(t0)| + W3(|φ|)

∫ t0

0

ϕ1(t0, s) ds +
K

M

]1/2

≤
[
1 +

∫ t0

0

∫ ∞

t0

|B(u, s)| du +
K

M

]1/2

; for all t ≥ t0.
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Hence, every solution x with x(t) ∈ D satisfies

1 ≤ |x(t)| ≤
[
1 +

∫ t0

0

∫ ∞

t0

|B(u, s)| du +
K

M

]1/2

; for t ≥ 0.

Note that B(t, s) = e−k(t−s), k = 6/5 will satisfy all requirements of
Example 2.4.

In the next theorem we show that solutions are bounded.

Theorem 2.5. Let D be a set in Rn. Suppose there exists a
continuously differentiable Lyapunov function V : R+ × D → R+ that
satisfies

(2.8)

λ1(t)W1(|x|) ≤ V (t, x) ≤ λ2(t)W2(|x|) + λ2(t)
∫ t

0

ϕ1(t, s)W3(|x(s)|) ds

and

(2.9) V ′(t, x) ≤ −λ3(t)W4(|x|) − λ3(t)
∫ t

0

ϕ2(t, s)W5(|x(s)|) ds + L

for some positive continuous functions λ1(t), λ2(t), λ3(t) and positive
constant L, where λ1(t) is nondecreasing and ϕi(t, s) ≥ 0 is a scalar
function continuous for 0 ≤ s ≤ t < ∞, i = 1, 2, such that for some
constant γ ≥ 0 the inequality

(2.10)

W2(|x|)−W4(|x|) +
∫ t

0

(
ϕ1(t, s)W3(|x(s)|) − ϕ2(t, s)W5(|x(s)|)) ds

≤ γ

holds. Moreover, if
∫ t

0
φ1(t, s) ds ≤ B and λ3(t) ≤ N for some positive

constants B and N , then all solutions of (1.1) that stay in D are
bounded.

Proof. Let

M = inf
t∈R+

λ3(t)
λ2(t)

.



384 Y.N. RAFFOUL

For any initial time t0, let x(t) be any solution of (1.1) with x(t0) =
φ(t0). By calculating

d

dt

(
V (t, x(t))eM(t−t0)

)

and then by a similar argument as in Theorem 2.2 we obtain

(2.11) V (t, x(t)) ≤ λ2(t0)V (t0, φ) +
K

M
e−M(t−t0) +

K

M
.

where K = Nγ + L. Consequently,

V (t, x(t)) ≤ λ2(t0)V (t0, φ)e−M(t−t0) +
K

M
.

Since λ1(t) is nondecreasing we have for t ≥ t0 ≥ 0

W1(|x|) ≤ 1
λ1(t)

(
λ2(t0)V (t0, φ)e−M(t−t0) +

K

M

)

≤ 1
λ1(t0)

(
λ2(t0)V (t0, φ)e−M(t−t0) +

K

M

)
.

Hence,

||x|| ≤ W−1
1

[
1

λ1(t0)

(
λ2(t0)V (t0, φ)e−M(t−t0) +

K

M

)]
.

This completes the proof.

The proof of the next theorem can be found in [10].

Theorem 2.6. Suppose there exists a continuously differentiable
Lyapunov functional V : R+ × Rn → R+ that satisfies

(2.12) λ1||x||p ≤ V (t, x), V (t, x) �= 0 if x �= 0

and

(2.13) V ′(t, x) ≤ −λ2(t)V q(t, x)
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for some positive constants λ1, p, q > 1 where λ2(t) is a positive
continuous function such that

(2.14) c1 = inf
t≥t0≥0

λ2(t) > 0.

Then all solutions x(t) of (1.1) satisfy

||x|| ≤ 1/λ1
1/p{[

V 1−q(t0, φ) + c1(q − 1)(t − t0)
]−1/(q−1)}1/p

.

As an application of the previous theorem, we furnish the following
example.

Example 2.7. To illustrate the application of Theorem 2.6, we
consider the following two-dimensional system of nonlinear Volterra
integrodifferential equations

y′
1 = y2 − y1 |y1| − y1 y2

2

∫ t

0

|B(t, s)| f(y1(s), y2(s)) ds

y′
2 = −y1 − y2 |y2| + y2

1 y2

∫ t

0

C(t, s)g(y1(s), y2(s)) ds

(y1(t), y2(t)) = (ϕ1(t), ϕ2(t)),

for some given initial continuous and bounded functions ϕ1(t), ϕ2(t),
0 ≤ t ≤ t0. The scalar functions |B(t, s)| , C(t, s) are continuous in
t and s and |B(t, s)| ≥ |C(t, s)|. Also, the scalars f(y1(s), y2(s)) and
g(y1(s), y2(s)) are continuous in y1 and y2. We assume that

f(y1(s), y2(s)) ≥ 0,

|g(y1(s), y2(s))| ≤ f(y1(s), y2(s)), for all y1, y2 ∈ R.
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Let us take V (y1, y2) = (y2
1 + y2

2)/2. Then

V ′(y1, y2) = −y2
1 |y1| − y2

2 |y2| − y2
1y2

2

( ∫ t

0

|B(t, s)|f(y1(s), y2(s)) ds

−
∫ t

0

C(t, s)g(y1(s), y2(s)) ds

)

≤ −(|y1|3 + |y2|3)

+ y2
1y2

2

∫ t

0

(|C(t, s)| − |B(t, s)|)f(y1(s), y2(s)) ds

≤ −2
[ |y1|3

2
+

|y2|3
2

]

= −2
[
(|y1|2)3/2

2
+

(|y2|2)3/2

2

]

≤ −2(|y1|2 + |y2|2)3/2 2−3/2

= −2V 3/2 (y1, y2)

where we have used the inequality

(
a + b

2

)l

≤ al

2
+

bl

2
, a, b > 0, l > 1.

Hence, by Theorem 2.6 all solutions of the above two-dimensional
system are uniformly bounded.

3. Comparison. In [11] the author considered the scalar Volterra
integrodifferential equation

(3.1) x′(t) = Af(x(t)) +
∫ t

0

B(t, s)g(x(s)) ds + h(t),

where f, g and h are continuous in their respective arguments and
proved the following theorem.

Theorem 3.1 [11]. Assume xf(x) > 0 for all x �= 0. Suppose there
is a constant m > 0 such that

(3.2) g2(x) ≤ m2f2(x) for all x ∈ R.
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If

A(t) + k

∫ t

0

|B(t, s) ds +
1
2

∫ ∞

t

|B(u, t)| du ≤ −ρ, t ≥ 0

for some positive constant ρ and k such that m2 < 2k,

∫ x

0

f(x) dx −→ ∞ as |x| → ∞,

and
h(·) ∈ L2[0,∞),

then all solutions of (3.1) are bounded.

With Example 2.3 in mind we consider the scalar nonlinear Volterra
integrodifferential equation

(3.3)
x′ = σ(t)x(t) +

∫ t

0

B(t, s)x2/3(s) ds + h(t), t ≥ 0,

x(t) = φ(t) for 0 ≤ t ≤ t0,

where h is continuous in t. If

2σ(t) +
∫ t

0

|B(t, s)| ds +
∫ ∞

t

|B(u, t)| du ≤ −2,

there exists a positive constant R such that |h(t) ≤ R, for all t ∈ R,

∫ t

0

∫ ∞

t

|B(u, s)| du ds,

∫ t

0

|B(t, s)| ds < ∞,

and |B(t, s)|
3

≥
∫ ∞

t

|B(u, s)| du

then all solutions of (2.5) are uniformly bounded.

The proof follows along the lines of the proof of Example 2.3 by
considering the same V . On the other hand, Theorem 3 of [11] cannot
be applied to (3.3) since condition (3.2) cannot hold for a positive
constant m and for all x ∈ R. Moreover, we have only required that
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h be uniformly bounded, while in [11] it was required that h be an
L2[0,∞) function.
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