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APPROXIMATE SOLUTION OF MULTIVARIABLE
INTEGRAL EQUATIONS OF THE SECOND KIND

REKHA P. KULKARNI

ABSTRACT. For a multidimensional integral equation of
the second kind with a smooth kernel, using the orthogonal
projection onto a space of discontinuous piecewise polynomials
of degree r, Atkinson has established an order r + 1 conver-
gence for the Galerkin solution and an order 2r+2 convergence
for the iterated Galerkin solution. In a recent paper [15], a
new method based on projections has been shown to give a
4r + 4 convergence for one-dimensional second kind integral
equations. The size of the system of equations that must be
solved in implementing this method remains the same as for
the Galerkin method. In this paper, this method is extended
to multi-dimensional second kind equations and is shown to
have convergence of order 4r + 4. For interpolatory projec-
tions onto a space of piecewise polynomials, it is shown that
the order of convergence of the new method improves on the
previously established orders of convergence for the colloca-
tion and the iterated collocation methods. A two-grid norm
convergent method based on the new method is also defined.

1. Introduction. Over the years approximate solution of one di-
mensional Fredholm integral equations of the second kind has been ex-
tensively studied. (See [2, 5, 7, 8, 11, 14, 20].) The classical methods
are the Galerkin method based on a sequence of projections converg-
ing pointwise to the identity operator and the Nyström method based
on a numerical quadrature. The improvement of the Galerkin solution
by using an iteration technique was first proposed by Sloan in [18].
Chandler [7], in his Thesis, proved that if the kernel and the righthand
side are smooth, then, in the case of the orthogonal projection onto a
space of piecewise polynomials, the order of convergence in the iterated
Galerkin solution is twice that of the Galerkin solution. Chatelin and
Lebbar [9] proved similar results for the iterated collocation at Gauss
points. For situations where the righthand side of the operator equa-
tion is less smooth than the kernel of the integral operator, the higher
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order of convergence of the Kantorovich solution compared with that
for the Galerkin solution is discussed in Schock [17] and Sloan [19]. An
interpolation post-processing technique as an alternative to the itera-
tion technique for improving the collocation solution has been proposed
by Lin et al. [16]. In [12], Hu discusses interpolation post-processing
technique for Fredholm integro-differential equations.

Recently, in [15], the author has proposed a method based on pro-
jections for approximate solutions of compact operator equations. For
both the orthogonal projections and the interpolatory projections at
Gauss points with the range as a space of piecewise polynomials, it is
shown that, if the kernel and the righthand side of the second kind
one-dimensional integral equation are smooth, then the order of con-
vergence in the iterated version of the proposed method is twice that
of the iterated Galerkin solution and four times that of the Galerkin
solution.

In this paper, the results of [15] are extended to multi-dimensional
second kind equations. The results in this paper depend heavily
on Atkinson [2]. Even though, for the sake of simplicity, only two-
dimensional integral equations are considered here, the results extend
to the multi-dimensional integral equations. It is established that if
the kernel and the righthand side are sufficiently smooth, then for the
orthogonal projections onto a space of piecewise polynomials of degree
less than or equal to r, the orders of convergence of the new method
and its iterated version are respectively 3r + 3 and 4r + 4. This is
an improvement over the orders of convergence r + 1 and 2r + 2 in
the Galerkin and the iterated Galerkin methods, respectively, proved
in Atkinson [2]. In the case of the interpolatory projections, if r is
even, then the orders of convergence in the proposed method and
its iterated version are shown to be respectively 2r + 3 and 2r + 4.
These orders of convergence are to be compared with the orders of
convergence r+1 and r+2 in the collocation and the iterated collocation
methods, respectively. (See [2].) It is to be noted that the size of the
system of equations that needs to be solved remains the same as in
the collocation/Galerkin method. It is shown in Atkinson-Chandler
[3] that an appropriate choice of interpolation nodes in the case of
piecewise linear interpolation gives higher order of convergence for the
collocation and the iterated collocation methods. Similar improvement
is observed in the proposed method and its iterated version.
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Two-grid methods based on the Nyström method were introduced in
Brakhage [6] and subsequently generalized in Atkinson [1]. Two-grid
methods for collocation methods and degenerate kernel methods are
discussed in Atkinson [2]. In [13], Kelley has suggested a modification
to improve the Nyström iteration method. In [10] and [11], Hackbusch
has discussed multi-grid methods. In this paper, a two-grid norm
convergent method based on the new method is given. The performance
of this two-grid method is compared with Nyström iteration methods
1 and 2 by applying it to a univariate integral equation. It is seen that,
while the costs of the proposed two grid method and the Nyström
iteration methods 1 and 2 are comparable, the proposed two grid
method requires much less number of iterates.

The outline of the paper is as follows. In Section 2 notation is set
and a new approximation method is defined. The orders of convergence
for the proposed method, both for the interpolatory projection and the
orthogonal projection, are derived in Section 3. In this section a discrete
version of the proposed method is also discussed. In Section 4, a two-
grid method is defined along with its implementation and assessment
of computational cost. Section 5 is devoted to the numerical results.

2. Method, notation and definitions. Consider the integral
equation

(2.1) λ ρ(x, y) −
∫

R

k(x, y, ξ, η) ρ(ξ, η) dξ dη = ψ(x, y), (x, y) ∈ R,

where R is a polygonal region in R2.

The integral operator

K ρ(x, y) =
∫

R

k(x, y, ξ, η) ρ(ξ, η) dξ dη

is assumed to be compact from L∞(R) into C(R). The equation (2.1)
is written as

(2.2) (λ−K) ρ = ψ.

Let Tn = {∆1, . . . ,∆n} be a triangulation of R. It is assumed
that the triangles ∆j and ∆k intersect only at vertices or along all
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of a common edge. The vertices of the triangle ∆k are denoted by
{vk,1, vk,2, vk,3}.
Consider the unit simplex

σ = {(s, t) | s, t ≥ 0, s+ t ≤ 1}.

The map Tk : σ → ∆k defined by

(2.3) Tk(s, t) = (1 − s− t) vk,1 + t vk,2 + s vk,3

is affine, one-to-one and onto.

A piecewise polynomial interpolation is defined as follows.

Piecewise constant interpolation. For g ∈ C(R), let

(2.4)
(Png)(Tk(s, t)) = g

(
vk,1 + vk,2 + vk,3

3

)
,

(s, t) ∈ σ, k = 1, . . . , n.

It is shown in Atkinson et al. [4] that Pn can be extended to L∞(R)
and that Pn is a bounded projection on L∞(R), with ‖Pn‖ = 1.

Piecewise polynomial interpolation of degree r ≥ 1. Let

(2.5) (si, tj) =
(
i

r
,
j

r

)
, i, j ≥ 0, i+ j ≤ r.

These fr = [(r + 1)(r + 2)]/2 nodes in σ are sequentially ordered as
{d1, . . . , dfr

}. Let li(s, t) denote the Lagrange polynomial of degree r
such that

li(dj) = δij , i, j = 1, . . . , fr.

For g ∈ C(R), let

(2.6)
(Png)(Tk(s, t)) =

fr∑
j=1

g(Tk(dj)) lj(s, t),

(s, t) ∈ σ, k = 1, . . . , n.
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Then Png is a continuous function on R and satisfies the interpolation
conditions:

(Png)(Tk(dj)) = g(Tk(dj)), j = 1, . . . , fr, k = 1, . . . , n.

Also, Pn defines a bounded projection on C(R) and

‖Pn‖ = max
(s,t)∈σ

fr∑
j=1

| lj(s, t) | .

The following notation is used throughout the paper.

For g ∈ Cr+1(R), let

‖g‖r+1,∞ = max
i,j≥0

i+j=r+1

max
(x,y)∈R

∣∣∣∣∂r+1g(x, y)
∂xi∂yj

∣∣∣∣ .

For fixed integers p, q ≥ 0, assume that k(., ., ξ, η) ∈ Cp(R), for
all (ξ, η) ∈ R and k(x, y, ., .) ∈ Cq(R), for all (x, y) ∈ R, with the
derivatives uniformly bounded with respect to both (x, y) and (ξ, η) in
R. Let

‖k‖p,q,∞

= max

⎧⎪⎨
⎪⎩ max

i,j≥0
i+j=p

max
(x,y)∈R
(ξ,η)∈R

∣∣∣∣∂pk(x, y, ξ, η)
∂xi∂yj

∣∣∣∣ , max
i,j≥0
i+j=q

max
(x,y)∈R
(ξ,η)∈R

∣∣∣∣∂qk(x, y, ξ, η)
∂ξi∂ηj

∣∣∣∣
⎫⎪⎬
⎪⎭ .

If k(., ., ξ, η) ∈ Cr+1(R) and

∂r+1k(x, y, ., .)
∂xi∂yj

∈ C1(R)

for i+ j = r + 1 and for all (x, y) ∈ R,
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with the derivatives uniformly bounded with respect to both (x, y) and
(ξ, η), then let

‖k‖r+2,∞

= max

⎧⎪⎨
⎪⎩ max

i,j≥0
i+j=r+1

max
(x,y)∈R
(ξ,η)∈R

∣∣∣∣∂r+2k(x, y, ξ, η)
∂xi ∂yj ∂ξ

∣∣∣∣ ,

max
i,j≥0

i+j=r+1

max
(x,y)∈R
(ξ,η)∈R

∣∣∣∣∂r+2k(x, y, ξ, η)
∂xi ∂yj ∂η

∣∣∣∣
⎫⎪⎬
⎪⎭ .

The following result is proved in Atkinson [2, Theorem 5.1.2, p. 167].

Theorem 2.1. Let R be a polygonal region in R2, r ≥ 0 be an
integer and Pn be an interpolatory projection defined by (2.4) or (2.6).

(a) For all g ∈ C(R), the interpolant Png converges uniformly to g
on R.

(b) Let δn = max{diameter (∆k) | k = 1, . . . , n}. If g ∈ Cr+1(R),
then

(2.7) ‖g − Png‖∞ ≤ c ‖g‖r+1,∞ (δn)r+1

with c, a generic constant, independent of n and g.

The following form of refinement of triangles in Tn is referred to as
symmetric triangulations by Atkinson [2, p. 173].

Each triangle ∆ ∈ Tn is divided into four congruent triangles by join-
ing the midpoints of the three sides of ∆. Then the new triangulation
T4n has four times the triangles in Tn and δ4n = (1/2)δn.

The following result is valid for symmetric triangulations and is quoted
for future reference.

Theorem 2.2 [2, p. 180]. If r is even, k(x, y, ., .) ∈ C1(R) for all
(x, y) ∈ R, with the derivatives uniformly bounded with respect to both
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(x, y) and (ξ, η) and if g ∈ Cr+1(R), then

(2.8) ‖K(I − Pn)g‖∞ ≤ c ‖k‖0,1,∞ ‖g‖r+1,∞ (δn)r+2.

A superconvergent piecewise linear interpolation. In Atkinson-
Chandler [3] the following choice of interpolation nodes in the case
of piecewise linear interpolation nodes is shown to exhibit superconver-
gence.

Let

(2.9) d1 =
(

1
6
,

1
6

)
, d2 =

(
1
6
,

2
3

)
, d3 =

(
2
3
,

1
6

)

be three nodes in σ and Pn is defined as in the case of piecewise
polynomial interpolation with r = 1. The range of Pn is not contained
in C(R), but following Atkinson et al. [4], Pn can be extended to L∞(R)
and

‖Pn‖ =
7
3
.

The following result, which is valid for symmetric triangulations, follows
easily from Atkinson-Chandler [3, Corollary 3.4].

Theorem 2.3 (Atkinson-Chandler [3]). If k(x, y, ., .) ∈ C2(R) for all
(x, y) ∈ R, with the first and the second derivatives uniformly bounded
with respect to both (x, y) and (ξ, η) and if g ∈ C4(R), then

(2.10)
‖K(I − Pn)g‖∞ ≤ c (‖k‖0,0,∞ + ‖k‖0,1,∞ + ‖k‖0,2,∞)

· max(‖g‖2,∞, ‖g‖3,∞, ‖g‖4,∞) (δn)4.

Method. In the collocation method, (2.2) is approximated by

(2.11) (λ− PnKPn) ρn = Pnψ,

while in the iterated collocation method, it is approximated by

(2.12) (λ−KPn) ρ̃n = ψ.
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We propose to approximate (2.2) by

(2.13) (λ− (PnKPn + PnK(I − Pn) + (I − Pn)KPn)) ρM
n = ψ.

Let

(2.14) KM
n = PnKPn + PnK(I − Pn) + (I − Pn)KPn

denote the associated finite rank operator.

An iterated solution is defined by

(2.15) ρ̃M
n =

K ρM
n + ψ

λ
.

The approximating operator in the collocation method is KC
n =

PnKPn, while in the iterated collocation method it is KS
n = KPn.

Thus

K −KM
n = (I − Pn)K(I − Pn),

K −KC
n = (I − Pn)K + PnK(I − Pn)

and

K −KS
n = K(I − Pn).

The extra factor of (I − Pn) in K −KM
n as compared to K −KC

n and
K−KS

n is likely to make the solution obtained by the proposed method
converge faster.

As the dimension of the range of Pn is nfr, the operators KC
n and

KS
n have rank ≤ nfr, while the rank of KM

n is ≤ 2nfr. However it
is shown below that the size of the system of equations that needs to
be solved in the proposed method remains nfr as in the case of the
collocation/iterated collocation method.

Applying Pn and I − Pn to (2.13) we obtain

(2.16) λPn ρ
M
n − (PnKPn + PnK(I − Pn)) ρM

n = Pnψ

and

(2.17) λ(I − Pn) ρM
n − (I − Pn)KPn ρ

M
n = (I − Pn)ψ.
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Substituting

(2.18) (I − Pn) ρM
n =

(I − Pn)KPn ρ
M
n + (I − Pn)ψ
λ

in (2.16), we get

(2.19) λPn ρ
M
n −

(
PnKPn +

PnK(I − Pn)KPn

λ

)
Pn ρ

M
n

= Pnψ +
PnK(I − Pn)ψ

λ
.

Let
vk,j = Tk(dj), j = 1, . . . , fr, k = 1, . . . , n

be the interpolation nodes, collectively referred to as

{v1, v2, . . . , vnfr
}.

Let wM
n = Pn ρ

M
n . Then

wM
n (vk,j) = ρM

n (vk,j), j = 1, . . . , fr, k = 1, . . . , n

and

wM
n (x, y) =

fr∑
j=1

wM
n (vk,j) lj(s, t), (x, y) = Tk(s, t) ∈ ∆k,

k = 1, . . . , n.

The equation (2.19) is then equivalent to the following system of
equations of size nfr.

(2.20) λwM
n (vi) − (KwM

n )(vi) −
(K2wM

n )(vi) − (KPnKw
M
n )(vi)

λ

= ψ(vi) +
(Kψ)(vi) − (KPnψ)(vi)

λ
, i = 1, . . . , nfr.
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Note that

(KwM
n )(vi) = 2

n∑
k=1

Area (∆k)
fr∑

j=1

wM
n (vk,j)

·
∫

σ

k(vi, Tk(s, t)) lj(s, t) dσ,

(K2wM
n )(vi) = 2

n∑
k=1

Area (∆k)
fr∑

j=1

wM
n (vk,j)

·
∫

σ

k(vi, Tk(s, t)) (K lj(s, t)) dσ,

(KPnKw
M
n )(vi) = 2

n∑
k=1

Area (∆k)
fr∑

j=1

(KwM
n )(vk,j)

·
∫

σ

k(vi, Tk(s, t)) lj(s, t) dσ,

(Kψ)(vi) = 2
n∑

k=1

Area (∆k)
∫

σ

k(vi, Tk(s, t))ψ(Tk(s, t)) dσ

and

(KPnψ)(vi) = 2
n∑

k=1

Area (∆k)
fr∑

j=1

ψ(vk,j)

·
∫

σ

k(vi, Tk(s, t)) lj(s, t) dσ.

We obtain wM
n (vk,j) by solving the system of equations (2.20) and since

by (2.18)

ρM
n = wM

n +
KwM

n − PnKw
M
n + (I − Pn)ψ
λ

,

we have

ρM
n (Tk(s, t)) =

fr∑
j=1

wM
n (vk,j) lj(s, t) +

1
λ

( fr∑
j=1

wM
n (vk,j) (K lj)(s, t)

−
fr∑

j=1

(
(KwM

n )(vk,j) + ψ(vk,j)
)
lj(s, t) + ψ(Tk(s, t))

)
,

k = 1, . . . , n.
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On the other hand, since

ρ̃M
n =

K ρM
n + ψ

λ
,

we have

ρ̃M
n (Tk(s, t))

=
fr∑

j=1

wM
n (vk,j) (Klj)(s, t) +

1
λ

( fr∑
j=1

wM
n (vk,j) (K2 lj)(s, t)

−
fr∑

j=1

(
(KwM

n )(vk,j) + ψ(vk,j)
)
(Klj)(s, t)

+ (Kψ)(Tk(s, t)) + Ψ(Tk(s, t))
)
, k = 1, . . . , n.

It is seen in the next section that the solution obtained by using
the new method has a higher order of convergence as compared to the
solutions obtained by using collocation/iterated collocation methods.

3. Error estimates.

3.1 Interpolatory projection. The order of convergence for ρM
n is

obtained in the following theorem.

Theorem 3.1. Let R be a polygonal region in R2, and let Tn be a se-
quence of triangulations of R. Assume that δn = max{diameter (∆k) |
k = 1, . . . , n} → 0 as n → ∞ and that the integral equation
(λ − K) ρ = ψ is uniquely solvable, with K : L∞(R) → C(R) a com-
pact operator. Let Pn be the interpolatory projection defined by (2.4)
or (2.6).

a) For sufficiently large n, we have

ρ− ρM
n = (λ−KM

n )−1(I − Pn)K(I − Pn) ρ

and ρM
n → ρ as n→ ∞.
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b) Assume that ψ ∈ Cr+1(R), k(., ., ξ, η) ∈ Cr+1(R) for all (ξ, η) ∈
R, with the uniformly bounded derivatives. Then

(3.1) ‖ρ− ρM
n ‖∞ ≤ c (δn)2r+2.

Proof. a) Since Pn converges pointwise to the identity operator on
C(R) and K : L∞(R) → C(R) is compact,

‖K −KM
n ‖ = ‖(I − Pn)K(I − Pn)‖ → 0, as n→ ∞.

Hence for sufficiently large n, say n ≥ N , (2.13) is uniquely solvable
and the inverses (λ−KM

n )−1 are uniformly bounded on C(R).

By the resolvent identity, we get

ρ− ρM
n = (λ−KM

n )−1(I − Pn)K(I − Pn)(λ−K)−1ψ.

Thus

‖ρ− ρM
n ‖∞ ≤ ‖(λ−KM

n )−1‖ ‖(I − Pn)K(I − Pn) ρ‖∞ −→ 0

as n→ ∞.

b) Note that since k(., ., ξ, η) ∈ Cr+1(R), for u ∈ L∞(R) and i, j ≥ 0,
i+ j = r + 1, we have

(3.2)
∂r+1Ku (x, y)

∂xi∂yj
=

∫
R

∂r+1k(x, y, ξ, η)
∂xi∂yj

u(ξ, η) dξ dη.

Thus the range of K is contained in Cr+1(R). It follows that

(3.3) ‖Ku‖r+1,∞ ≤ area (R) ‖k‖r+1,0,∞ ‖u‖∞.

Hence, using (2.7) we get

‖K(I − Pn)g‖r+1,∞ ≤ area (R) ‖k‖r+1,0,∞ ‖(I − Pn)g‖∞
≤ c area (R) ‖k‖r+1,0,∞ ‖g‖r+1,∞ (δn)r+1.

As ψ ∈ Cr+1(R) and

ρ =
K ρ+ ψ

λ
,
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it follows that ρ ∈ Cr+1(R). Thus

‖ρ− ρM
n ‖∞ ≤ ‖(λ−KM

n )−1‖ ‖(I − Pn)K(I − Pn) ρ‖∞
≤ c ‖(λ−KM

n )−1‖ ‖K(I − Pn) ρ‖r+1,∞ (δn)r+1

≤ c ‖(λ−KM
n )−1‖ ‖k‖r+1,0,∞‖ρ‖r+1,∞ (δn)2r+2,

which proves (3.1).

Remark 3.2. The above estimate should be compared with the
following estimate in the collocation method.

If ρ ∈ Cr+1(R), then it is proved in Atkinson [2, p. 178] that

(3.4) ‖ρ− ρn‖∞ ≤ c (δn)r+1.

Note that, in general, the condition ρ ∈ Cr+1(R) is deduced from the
assumption in part (b) of the above theorem, that is, by assuming that
the righthand side ψ ∈ Cr+1(R) and that kernel k(., ., ξ, η) ∈ Cr+1(R)
for all (ξ, η) ∈ R.

As the rank of Pn is nfr, the size of the system of equations in the
collocation method that needs to be solved is nfr. In Section 2 it is
seen that the computation of ρM

n also involves solution of a system of
equations (2.20) of size nfr.

Thus, essentially under the same assumptions as in the collocation
method and by solving a system of equations of the same size as in the
collocation method, the order of convergence is improved from r+1 to
2(r + 1).

Remark 3.3. It can be seen that the iterated solutions ρ̃M
n and ρ̃n

have the same orders of convergence as ρM
n and ρn, respectively.

‖ρ− ρ̃M
n ‖∞ ≤ c (δn)2r+2,(3.5)

‖ρ− ρ̃n‖∞ ≤ c (δn)r+1,(3.6)

When r is even and the triangulation is symmetric, we obtain the
following improved error bounds.

Theorem 3.4. Let R be a polygonal region in R2, and let Tn

be a sequence of symmetric triangulations of R such that δn =
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max{diameter (∆k) | k = 1, . . . , n} → 0 as n→ ∞. Let K be a compact
operator on C(R) and assume that the integral equation (λ−K) ρ = ψ is
uniquely solvable. Assume that for r even, ψ ∈ Cr+1(R), k(., ., ξ, η) ∈
Cr+1(R) for all (ξ, η) ∈ R, and

∂r+1k

∂xi∂yj
(x, y, ., .) ∈ C1(R)

for all i, j ≥ 0, i+ j = r + 1 and (x, y) ∈ R.

Then

‖ρ− ρM
n ‖∞ ≤ c (δn)2r+3,(3.7)

‖ρ− ρ̃M
n ‖∞ ≤ c (δn)2r+4.(3.8)

Proof. If g ∈ Cr+1(R), then using (2.8) and (3.2) it can be shown
that

(3.9) ‖K(I − Pn)g‖r+1,∞ ≤ c ‖k‖r+2,∞ ‖g‖r+1,∞ (δn)r+2.

Hence

‖ρ− ρM
n ‖∞ ≤ c ‖(λ−KM

n )−1‖ ‖K(I − Pn) ρ‖r+1,∞ (δn)r+1

≤ c ‖(λ−KM
n )−1‖ ‖k‖r+2,∞ ‖ρ‖r+1,∞ (δn)2r+3,

which proves (3.7).

Note that

ρ− ρ̃M
n =

1
λ
K(ρ− ρM

n )

=
1
λ
K(λ−K)−1(K −KM

n )(λ−KM
n )−1ψ

=
1
λ

(λ−K)−1K(I − Pn)K(I − Pn) ρM
n

=
1
λ

(λ−K)−1K(I − Pn)K(IPn)(ρ+ ρM
n − ρ).

Hence

(3.10) ‖ρ− ρ̃M
n ‖∞ ≤ 1

|λ| ‖(λ−K)−1‖
(
‖K(I−Pn)K(I−Pn) ρ‖∞

+ ‖K(I−Pn)K(I−Pn)‖ ‖ρM
n − ρ‖∞

)
.
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Using the estimates (2.8) and (3.9), it follows that

(3.11)

‖K(I − Pn)K(I − Pn) ρ‖∞ ≤ c ‖k‖0,1,∞ ‖K(I−Pn) ρ‖r+1,∞ (δn)r+2

≤ c ‖k‖0,1,∞ ‖k‖r+2,∞ ‖ρ‖r+1,∞ (δn)2r+4.

For u ∈ C(R), using (2.7) and (3.3), we obtain

‖(I − Pn)Ku‖∞ ≤ c ‖Ku‖r+1,∞ (δn)r+1

≤ c area (R) ‖k‖r+1,0,∞ ‖u‖∞(δn)r+1.

Hence

(3.12) ‖(I − Pn)K‖ ≤ c (δn)r+1.

Since Pns are uniformly bounded, the estimate (3.8) follows by com-
bining (3.7), (3.10), (3.11) and (3.12).

Remark 3.5. The above estimates should be compared with the
estimate (3.4) in the collocation method and the following estimate
in the iterated collocation method proved in [2, p. 180].

(3.13) ‖ρ− ρ̃n‖∞ ≤ c (δn)r+2.

The additional condition that the kernel needs to satisfy in Theorem 3.4
is

∂r+1k

∂xi∂yj
(x, y, ., .) ∈ C1(R)

for all i, j ≥ 0, i+ j = r + 1 and (x, y) ∈ R.

3.1.1 Superconvergent piecewise linear interpolation.

Theorem 3.6. Let R be a polygonal region in R2, Tn be a sequence
of symmetric triangulations of R and K : L∞(R) → C(R) be a compact
operator. Assume that δn = max{diameter (∆k) | k = 1, . . . , n} → 0
as n → ∞ and that the integral equation (λ − K) ρ = ψ is uniquely
solvable. Let Pn be a sequence of projections based on the nodes defined
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by (2.9). Assume that ψ ∈ C4(R), k(., ., ξ, η) ∈ C2(R) for all (ξ, η) ∈ R,
and k(x, y, ., .) ∈ C4(R) for all (x, y) ∈ R, Then

‖ρ− ρM
n ‖∞ ≤ c (δn)6,(3.14)

‖ρ− ρ̃M
n ‖∞ ≤ c (δn)8.(3.15)

The proof of the theorem above uses the estimates (2.7) and (2.10)
and is similar to that of Theorem 3.4.

Remark 3.7. The following estimates in the collocation and the iter-
ated collocation methods follow from the results in Atkinson-Chandler
[3].

‖ρ− ρn‖∞ ≤ c (δn)2,(3.16)

‖ρ− ρ̃n‖∞ ≤ c (δn)4.(3.17)

The estimates above and the estimates in Theorem 3.6 should be
compared with the estimates (3.1), (3.4), (3.5) and (3.6) with r = 1.

3.2 Orthogonal projection. Let r ≥ 0 be an integer and Xn be
the set of all φ ∈ L∞(R) such that φ|∆k

is a polynomial of degree ≤ r,
for k = 1, . . . , n. The dimension of Xn is nfr = (n(r + 1)(r + 2))/2.
Let P̃n : L2(R) → Xn be the orthogonal projection. As in the case of
the interpolatory projection, let

(3.18) (λ− (P̃nKP̃n + P̃nK(I − P̃n) + (I − P̃n)KP̃n)) ρM
n = ψ

and

(3.19) ρ̃M
n =

K ρM
n + ψ

λ
.

Define

(3.20) KM
n = P̃nKP̃n + P̃nK(I − P̃n) + (I − P̃n)KP̃n.

We first prove some preliminary results.
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Proposition 3.8 a) If k(x, y, ., .) ∈ Cr+1(R) for all (x, y) ∈ R, then

(3.21) ‖K(I − P̃n)‖ ≤ c (δn)r+1,

where the operator norm is either the L2 norm or the L∞ norm.

b) If k(x, y, ., .) ∈ Cr+1(R) for all (x, y) ∈ R, k(., ., ξ, η) ∈ Cr+1(R)
for all (ξ, η) ∈ R, and g ∈ Cr+1(R), then

(3.22) ‖K(I − P̃n)K(I − P̃n)g‖∞ ≤ c (δn)4r+4.

Proof. Let Pn : L∞(R) → Xn be the piecewise constant interpolatory
projection defined by (2.4) or Pn : C(R) → Xn be the piecewise
polynomial interpolatory projection, with r ≥ 1, defined by (2.6). We
have

(3.23)

‖(I − P̃n)g‖2 = ‖g − Png + P̃nPng − P̃ng‖2

≤ 2 ‖g − Png‖2

≤ 2
√

area (R) ‖g − Png‖∞.

If g ∈ Cr+1(R), then using (2.7) we get

(3.24) ‖(I − P̃n)g‖2 ≤ 2
√

area (R) c ‖g‖r+1,∞(δn)r+1.

Similarly,

(3.25)
‖(I − P̃n)g‖∞ ≤ (1 + ‖P̃n‖L∞) ‖g − Png‖∞

≤ (1 + sup
n

‖P̃n‖L∞) c ‖g‖r+1,∞(δn)r+1.

For a fixed (x, y) ∈ R, define k(x,y)(ξ, η) = k(x, y, ξ, η), (ξ, η) ∈ R and
let g ∈ L2(R).

Consider∣∣∣K(I − P̃n)g(x, y)
∣∣∣ =

∣∣∣∣
∫

R

k(x, y, ξ, η) (I − P̃n) g(ξ, η) dξ dη
∣∣∣∣

=
∣∣∣〈(I − P̃n) g, k(x,y)

〉∣∣∣
=

∣∣∣〈g, (I − P̃n) k(x,y)

〉∣∣∣
≤ ‖(I − P̃n) k(x,y)‖2 ‖g‖2.
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Hence using (3.24) we get

‖K(I − P̃n)g‖∞ ≤ 2
√

area (R) c ‖k‖0,r+1,∞ ‖g‖2 (δn)r+1.

It follows that

‖K(I − P̃n)‖L2 ≤ 2 area (R) c ‖k‖0,r+1,∞ (δn)r+1

and

‖K(I − P̃n)‖L∞ ≤ 2 area (R) c ‖k‖0,r+1,∞ (δn)r+1,

which completes the proof of (3.21).

b) Since∣∣∣K(I − P̃n)g(x, y)
∣∣∣ =

∣∣∣〈(I − P̃n) g, (I − P̃n) k(x,y)

〉∣∣∣ ,
if g ∈ Cr+1(R), then by using (3.25)

‖K(I − P̃n)g‖∞ ≤ c ‖k‖0,r+1,∞ ‖g‖r+1,∞(δn)2r+2.

In a similar fashion, using (3.2) it can be seen that

(3.26) ‖K(I − P̃n)g‖r+1,∞ ≤ c ‖k‖r+1,r+1,∞ ‖g‖r+1,∞(δn)2r+2.

Thus for g ∈ Cr+1(R)

‖K(I − P̃n)K(I − P̃n)g‖∞
≤ c ‖k‖0,r+1,∞ ‖K(I − P̃n)g‖r+1,∞ (δn)2r+2

≤ c ‖k‖0,r+1,∞ ‖k‖r+1,r+1,∞‖g‖r+1,∞ (δn)4r+4,

which completes the proof.

The estimates for ‖ρ− ρM
n ‖∞ and ‖ρ− ρ̃M

n ‖∞ are obtained below.

Theorem 3.9. Let R be a polygonal region in R2, and let Tn be a
sequence of triangulations of R such that δn = max{diameter (∆k) | k =
1, . . . , n} → 0 as n → ∞. Assume that the integral equation
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(λ − K) ρ = ψ is uniquely solvable, with K : L2(R) → L2(R) or
K : L∞(R) → C(R) a compact operator.

a) For sufficiently large n, say n ≥ N , (2.13) is uniquely solvable,
and the inverses (λ−KM

n )−1 are uniformly bounded. We have

(3.27) ρ− ρM
n = (λ−KM

n )−1(I − P̃n)K(I − P̃n) ρ

and ρM
n → ρ as n→ ∞.

b) Assume that ψ ∈ Cr+1(R), k(x, y, ., .) ∈ Cr+1(R) for all (x, y) ∈
R, and k(., ., ξ, η) ∈ Cr+1(R) for all (ξ, η) ∈ R. Then

‖ρ− ρM
n ‖∞ ≤ c (δn)3r+3,(3.28)

‖ρ− ρ̃M
n ‖∞ ≤ c (δn)4r+4.(3.29)

Proof. a) Since P̃n converges pointwise to the identity operator on
L2(R) and K is compact,

‖K −KM
n ‖ = ‖(I − P̃n)K(I − P̃n)‖ −→ 0, as n→ ∞,

where the operator norm is the L2 norm.

Also, since P̃n converges pointwise to the identity operator on C(R)
and the range of K is contained in C(R), it follows that

‖K −KM
n ‖ −→ 0, as n→ ∞,

in the L∞ norm. The result now follows as in the proof of Theorem
3.1 (a).

b) Note that since ρ ∈ Cr+1(R), by (3.25) and (3.26)

‖(I − P̃n)K(I − P̃n) ρ‖∞
≤ (1 + sup

n
‖P̃n‖L∞) c ‖K(I − P̃n) ρ‖r+1,∞(δn)r+1

≤ (1 + sup
n

‖P̃n‖L∞) c ‖k‖r+1,r+1,∞ ‖ρ‖r+1,∞(δn)3r+3.

The estimate (3.28) follows from (3.27) and the above result.
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Since

ρ− ρ̃M
n =

1
λ

(λ−K)−1K(I − P̃n)K(I − P̃n)(ρ+ ρM
n − ρ),

we get

‖ρ− ρ̃M
n ‖∞ ≤ 1

|λ| ‖(λ−K)−1‖
(
‖K(I − P̃n)K(I − P̃n) ρ‖∞

+ ‖K(I − P̃n)K(I − P̃n)‖ ‖ρM
n − ρ‖∞

)
.

Since P̃n’s are uniformly bounded, the estimate (3.29) follows from
(3.21), (3.22) and (3.28).

Remark 3.10. We list below the estimates in the Galerkin and the
iterated Galerkin methods for comparison.

In the Galerkin method (2.2) is approximated by

(λ− P̃nK) ρn = P̃nψ,

while in the iterated Galerkin method it is approximated by

(λ−KP̃n) ρ̃n = ψ.

If ρ ∈ Cr+1(R), then it is proved in Atkinson [2, pp. 183 184] that

‖ρ− ρn‖∞ ≤ c (δn)r+1.

and if, in addition, the kernel function k(x, y, ., .) ∈ Cr+1(R), then

‖ρ− ρ̃n‖∞ ≤ c (δn)2r+2.

Thus, in the proof of Theorem 3.9, the conditions imposed on the
kernel are essentially the same as in the iterated Galerkin method.

3.3 Discrete methods. We first consider the case of interpolatory
projections. In practice, the integrals appearing in the system of
equations (2.20) need to be evaluated numerically.
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Consider a composite formula based on

∫
σ

g(s, t) dσ ≈
M∑
i=1

wi g(µi)

with degree of precision d and M ≥ fr. The integral operator K is
approximated by

(KN ρ)(x, y) = 2
n∑

k=1

Area (∆k)
M∑
i=1

wi k(x, y, Tk(µi)) ρ(Tk(µi)),

(x, y) ∈ R.

Thus, in the discretized version of the proposed method, the operator
KM

n defined by (2.14) is replaced by

KD
n = PnK

NPn + PnK
N (I − Pn) + (I − Pn)KNPn.

Let
(λ−KD

n ) ρD
n = ψ

and

ρ̃D
n =

KN ρD
n + ψ

λ
.

The estimates (2.8) and (2.10) are valid withK replaced byKN . Hence,
under the assumption of Theorem 3.1, we have

‖ρ− ρD
n ‖∞ ≤ c (δn)min{d+1,2r+2}.

Thus, in order to retain the orders of convergence of ρM
n , it is necessary

to choose d ≥ 2r + 1.

Also, under the assumption of Theorem 3.4, it can be shown that

‖ρ− ρD
n ‖∞ ≤ c (δn)min{d+1,2r+3}

and

‖ρ− ρ̃D
n ‖∞ ≤ c (δn)min{d+1,2r+4}.
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Similarly, under the assumption of Theorem 3.6, it can be shown that

‖ρ− ρD
n ‖∞ ≤ c (δn)min{d+1,6}

and

‖ρ− ρ̃D
n ‖∞ ≤ c (δn)min{d+1,8}.

Thus, if d ≥ 5, respectively d ≥ 7, then the order of convergence in
(3.14), respectively in (3.15), is retained.

In the case of orthogonal projections, integrals in the integral operator
as well as in the inner product need to be evaluated numerically. Thus,
following Atkinson [2, pp. 143 145], K is replaced by KN , the inner
product is replaced by the discrete inner product

〈f, g〉M = 2
n∑

k=1

Area (∆k)
M∑
i=1

wi f(Tk(µi)) g(Tk(µi))

and the orthogonal projection P̃n is replaced by the discrete projection
Qn. The discretized version of KM

n defined by (3.20) is

KD
n = QnK

NQn +QnK
N (I −Qn) + (I −Qn)KNQn.

We have
‖KN (I −Qn)‖ ≤ c (δn)r+1

and
‖KN (I −Qn)KN (I −Qn)g‖∞ ≤ c (δn)4r+4.

Using these estimates it can be seen that, under the assumptions of
Theorem 3.9,

‖ρ− ρD
n ‖∞ ≤ c (δn)min{d+1,3r+3}

and

‖ρ− ρ̃D
n ‖∞ ≤ c (δn)min{d+1,4r+4}.

4. A two grid method. Consider the following integral equation

(4.1) λu(t) −
∫

R

k(t, s)u(s) ds = v(t), t ∈ R,
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that is,
(λ−K)u = v.

It is assumed that k(t, s) is continuous in t and s and that (λ −K) is
invertible.

Let r ≥ 0 and Xn denote the set of piecewise polynomials of degree
≤ r with respect to a triangulation Tn of R. Let qn = nfr and
{tn,1, . . . , tn,qn

} be the interpolation points defined by (2.4) or (2.6).
Let {ln,1, . . . , ln,qn

} be the basis of Lagrange functions for Xn, that is,
ln,i ∈ Xn and

ln,i(tn,j) = δi,j , i, j = 1, . . . , qn.

The interpolatory projection is defined by

Png =
qn∑

j=1

g(tn,j) ln,j , g ∈ C(R).

Consider a convergent quadrature formula is defined as follows.

(4.2)
∫

R

g(t) dt ≈
qn∑

j=1

wn,j g(tn,j),

which has the same nodes as the interpolation scheme.

Let

(Knu)(t) =
qn∑

j=1

wn,j k(t, tn,j)u(tn,j), t ∈ R

be the Nyström approximation of K. The equation (4.1) is approxi-
mated by

(4.3) λun(t) −
qn∑

j=1

wn,j k(t, tn,j)un(tn,j) = v(t), t ∈ R,

that is,
(λ−Kn)un = v.

The system of equations (4.3) is equivalent to

(4.4)

λun(tn,i) −
qn∑

j=1

wn,j k(tn,i, tn,j)un(tn,j) = v(tn,i), i = 1, . . . , qn
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and

(4.5) un(t) =
1
λ

[
v(t) +

qn∑
j=1

wn,j k(t, tn,j)un(tn,j)
]
, t ∈ R.

Since Kn converges to K in a collectively compact fashion, it follows
that, for all n large enough, (λ−Kn) is invertible.

4.1 Description of the method. For m < n, let

(4.6) Pmg =
qm∑
j=1

g(tm,j) lm,j

be the interpolatory projection corresponding to a coarse grid. Define

(4.7) Tm = PmKnPm + PmKn(I − Pm) + (I − Pm)KnPm.

Then
Kn − Tm = (I − Pm)Kn(I − Pm).

Since
U = {Knu |n ≥ 1, ‖u‖∞ ≤ 1}

has a compact closure in C(R), it follows that

sup
n≥m

‖(I − Pm)Kn‖ = sup
n≥m

sup
‖u‖∞ ≤1

‖(I − Pm)Knu‖

≤ sup
y∈U

‖(I − Pm)y‖ −→ 0 as m→ ∞.

Thus, for m big enough,

‖Kn − Tm‖ ≤ ‖(I − Pm)Kn‖ ‖(I − Pm)‖ < 1.

Hence, for m big enough, (λ− Tm) is invertible and

‖(λ− Tm)−1‖ ≤ 2 ‖(λ−Kn)−1‖.

A two-grid iteration is defined below.
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Assume that u(0)
n is an initial estimate of the solution un of (4.3). Let

(4.8)
r(k) = v − (λ−Kn)u(k)

n

u(k+1)
n = u(k)

n + (λ− Tm)−1r(k), k = 0, 1, 2, . . . .

Note that

(4.9) r(k) = (λ−Kn)(un − u(k)
n ).

Then
u(k+1)

n = u(k)
n + (λ− Tm)−1(λ−Kn)(un − u(k)

n )

and

(4.10)

un − u(k+1)
n = (I − (λ− Tm)−1(λ−Kn))(un − u(k)

n )

= (λ− Tm)−1(Kn − Tm)(un − u(k)
n )

= (λ− Tm)−1(I − Pm)Kn(I − Pm)(un − u(k)
n )

= Mn,m(un − u(k)
n )

with

(4.11) Mn,m = (λ− Tm)−1(I − Pm)Kn(I − Pm).

Since

sup
n≥m

‖Mn,m‖ ≤ ‖(λ− Tm)−1‖ ‖(I − Pm)‖ sup
n≥m

‖(I − Pm)Kn‖ −→ 0,

as m→ ∞,

for m large enough
τm = sup

n≥m
‖Mn,m‖ < 1.

Thus

‖un − u(k+1)
n ‖∞ ≤ τm‖un − u(k)

n ‖∞

and

‖un − u(k+1)
n ‖∞ ≤ τm

1 − τm
‖u(k+1)

n − u(k)
n ‖∞.
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Remark 4.1. Analogous to the Nyström iteration method 2 defined in
Atkinson [2, Section 6.2.2], an iterated version of the two-grid method
described by (4.8) is defined below.

Let ũ(0)
n be an initial estimate of the solution un of (4.3) and let

(4.12)

r̃(k) = v − (λ−Kn)ũ(k)
n

ũ(k+1)
n = ũ(k)

n +
1
λ

[
r̃(k) + (λ− Tm)−1Knr̃

(k)
]
, k = 0, 1, 2, . . . .

In this case

un − ũ(k+1)
n =

1
λ

(λ− Tm)−1(I − Pm)Kn(I − Pm)Kn(un − ũ(k)
n ).

Let
τ̃m =

1
|λ| sup

n≥m
‖(λ− Tm)−1(I − Pm)Kn(I − Pm)Kn‖.

For m large enough, τ̃m < 1,

‖un − ũ(k+1)
n ‖∞ ≤ τ̃m ‖un − ũ(k)

n ‖∞

and

‖un − ũ(k+1)
n ‖∞ ≤ τ̃m

1 − τ̃m
‖ũ(k+1)

n − ũ(k)
n ‖∞.

Note that

τ̃m = O( sup
n≥m

‖(I − Pm)Kn‖2),

whereas

τm = O( sup
n≥m

‖(I − Pm)Kn‖).

Since τ̃m → 0 as m → ∞ at double the rate of that of τm, the
iterates ũ (k)

n in this modified version of the two-grid method converge
to un faster than the iterates u(k)

n in the two-grid method defined by
(4.8). The extra computational effort in the modified version is in the
computation of Knr̃

(k).
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4.2 Implementation. The aim is to solve the linear system (4.4)
given by

λun(tn,i) −
qn∑

j=1

wn,j k(tn,i, tn,j)un(tn,j) = v(tn,i), i = 1, . . . , qn

with the unknown

(4.13) un = [un(tn,1), . . . , un(tn,qn
)] .

In the iteration formula (4.8), we need to solve the system

(4.14) (λ− Tm) e = r(k)

with

Tm = PmKnPm + PmKn(I − Pm) + (I − Pm)KnPm.

Applying Pm and I − Pm to (4.14), we obtain

(4.15) λPm e− (PmKnPm + PmKn(I − Pm)) e = Pmr
(k)

and

(4.16) λ (I − Pm) e− (I − Pm)KnPm e = (I − Pm)r(k).

Substitution for (I − Pm) e from (4.16) in (4.15) gives

(4.17) λPm e−
(
PmKnPm +

PmKn(I − Pm)KnPm

λ

)
e

= Pmr
(k) +

PmKn(I − Pm)r(k)

λ
.

Recall that
(Pmg)(tm,i) = g(tm,i), i = 1, . . . , qm.

Hence (4.17) is equivalent to

(4.18) λ e(tm,i) − (KnPm e)(tm,i) −
(Kn(I − Pm)KnPm e)(tm,i)

λ

= r(k)(tm,i) +
Kn(I − Pm)r(k)(tm,i)

λ
, i = 1, . . . , qm.
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The values of e at the collocation points corresponding to the fine grid
are then obtained by the following formula.

(4.19)
e(tn,i) = (Pm e)(tn,i)

+
r(k)(tn,i)−(Pmr

(k))(tn,i)+(KnPm e)(tn,i)−(PmKnPm e)(tn,i)
λ

,

i = 1, . . . , qn.

4.3 Computational cost.

• The LU-factorization of the matrix in (4.18) requires (1/3)q3m flops.

• The calculation of the residuals {r(k)(tn,i)} and {r(k)(tm,i)} requires
approximately qn(qn + qm) flops.

• The calculation of the righthand side of (4.18) requires qm(qn +qm)
flops.

• The solution for {e(tm,i)} requires approximately q2m flops.

• The calculation of {e(tn,i)} requires approximately 4qnqm flops.

Thus the total cost in operations per iteration is approximately qn(qn+
6qm) + 2q2m flops.

Remark 4.2. As compared to Nyström approximation method 1
described in Atkinson [2, Section 6.2] the additional cost involved is
in generating the matrices on the lefthand side of (4.18).

The total cost in operations per iteration in Nyström iteration
method 1 is approximately qn(qn+2qm)+q2m flops, whereas in Nyström
iteration method 2, it is approximately 2qn(qn + qm) + q2m flops. (See
Atkinson [2, Section 6.2].)

Thus for qn 
 qm, the total costs per iteration in Nyström iteration
method 1 and the method (4.8) proposed here are comparable, whereas
each iteration in Nyström iteration method 2 is approximately twice as
expensive.

It can be shown that the total cost in operations per iteration in
the modified multi-grid method defined by (4.12) is approximately
2qn(qn + 2qm) + 2q2m + qnqm flops, which is approximately the same
as in Nyström iteration method 2.
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Numerical results given in the next section show that the two grid
method proposed here requires significantly less number of iterations
as compared to Nyström iteration methods 1 and 2.

5. Numerical results. Even though the results in the previous
section are valid for two variable integral equations, in this section
we compare the performance of the two grid method (4.8) with the
Nyström iteration methods 1 and 2 by applying it to a one variable in-
tegral equation. Consider the following integral equation from Atkinson
[2, p. 254].

(5.1) λu(t) −
∫ 1

0

kγ(s+ t)u(s) ds = v(t), t ∈ [0, 1]

with

kγ(τ ) =
1 − γ2

1 + γ2 − 2γ cos(2πτ )
, 0 ≤ γ < 1.

An approximate quadrature formula is chosen to be the composite
midpoint formula:

∫ 1

0

g(t) dt ≈ 1
n

n∑
j=1

g

(
2j − 1

2n

)
, g ∈ C[0, 1].

Consider the uniform partition

0 <
1
m
<

2
m
< · · · < m− 1

m
< 1

of [0, 1]. The interpolatory projection Pm is chosen to be the piece-
wise constant interpolation with respect to the above partition with
collocation points chosen as (2j − 1)/(2m), j = 1, . . .m.

The integral equation (5.1) is solved with γ = 0.8 and the unknown
functions are

u1(t) ≡ 1, u2(t) = sin(2πt).

Let
u(k)

n = [u(k)
n (tn,1), . . . , u(k)

n (tn,qn
)]T ,

the values of the iterate u(k)
n at fine grid points.



372 R.P. KULKARNI

In Table 5.1 we give numerical results. The initial guess is taken to
be u(0)

n = 0, and the iteration was performed until ‖u(k)
n −u(k−1)

n ‖∞ was
less than 10−13. The columns M1, Nys 1 and Nys 2 give, respectively,
the number of iterates in the proposed method (4.8), Nyström iteration
method 1 and Nyström iteration method 2. The results in columns
Nys 1 and Nys 2 are quoted from Atkinson [2, Tables 6.2 and 6.3].

TABLE 5.1.

Unknown λ m n M1 Nys 1 Nys 2
u1 -1.00 16 32 5 18 10
u1 -1.00 16 64 3 19 11
u1 -1.00 16 128 2 19 11
u1 -1.00 32 64 3 10 6
u1 -1.00 32 128 2 10 6

u1 0.99 32 64 3 29 17
u1 0.99 32 128 2 29 17

u2 -1.00 16 64 11 divergent 27
u2 -1.00 16 128 11 divergent 27
u2 -1.00 32 64 6 14 7
u2 -1.00 32 128 6 14 7

Remark 5.1. It is seen from the above table that in all the cases
considered here, the proposed two grid method requires significantly
less number of iterates as compared to the Nyström iteration method 1.
For the unknown function u1 and for λ = −1.00, the number of iterates
in the proposed method is half as compared to the Nyström iteration
method 2. Note that 1 is one of the eigenvalues of the integral operator
in (5.1). The performance of the proposed method is much better as
compared to the Nyström iteration method 2 when λ = 0.99. In the
case of the unknown function u2 and λ = −1.00, if m = 16, then the
number of iterates in the proposed method is less than half as compared
to the Nyström iteration method 2, whereas ifm = 32, then the number
of iterates in the proposed method and the Nyström iteration method 2
are about the same.
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