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ON SOLVABILITY OF URYSOHN-VOLTERRA
EQUATIONS WITH HYSTERESIS

IN WEIGHTED SPACES

MOHAMED ABDALLA DARWISH

ABSTRACT. This paper concerns the unique solvability
of the nonlinear integral equations of the second kind with
hysteresis of the form

y(t) = f(t) +

∫ t

−∞
F (t, s, y(s),W[S[y]](s)) ds, 0 ≤ t ≤ T

in weighted spaces. Also we have treated the case of nonlinear
integral equations of the first kind with hysteresis.

1. Introduction. There are various ways in which hysteretic
behavior of a system can be related to an integral equation. One
particular setting, which has been studied by many authors, is using
a convolution integral to describe the memory of a given system.
The memory is characterized by the convolution kernel and thus the
evolution depends on all past values of the state; typically, as one goes
back in time, the influence of the past values of the present evolution
decreases. There are, however, several hysteretic phenomena which
cannot be treated by this method; in particular, it cannot be used
to describe a hysteretic system whose hysteresis loops do not depend
on the speed with which they are traversed. This property is called
rate independence and is inherently nonlinear. In [2] [4] we discuss
systems where a Urysohn-Volterra integral equation is coupled to a rate
independent hysteretic process. For more information about hysteresis,
for instance, see [1], [6], [9].

In this paper we consider a nonlinear integral equation of the second
kind with hysteresis, namely,

(1.1) y(t) = f(t) +
∫ t

−∞
F (t, s, y(s),W [S[y]](s)) ds, 0 ≤ t ≤ T,
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where W and S denote a hysteresis operator and a superposition
operator of the form S[y](t) = g(y(t)), respectively. More precisely,
we assume f and F to be given n-vector valued functions, while y is
the unknown n-vector function. Equation (1.1) is known as a Urysohn-
Volterra equation (see [5]).

Equation (1.1) is history-dependent so, in general, this problem
requires that one give an initial condition on (−∞, 0] and it may then
be treated with the techniques of standard Urysohn-Volterra equations
with hysteresis, see Darwish [2] [4]. Therefore, the nonuniqueness of
solutions of equation (1.1) is an intrinsic feature which occur even in
the case of linear Volterra integral equations without hysteresis (see
[7]).

The main object of this paper is to give sufficient conditions in order
to guarantee the existence of the unique solutions of equation (1.1)
in the weighted space Cw which were introduced in [8] and references
therein. Also we have treated the case of nonlinear integral equations
of the first kind with hysteresis.

2. Preliminaries. Let I ⊂ R and consider a weight function
w : I → R+ be continuous and nondecreasing, R+ = (0,+∞). Define
Cw ≡ Cw(I; Rn) := {φ | φ : I → Rn continuous} with the following
norm

‖φ‖w = sup
t∈I

‖φ(t)‖Rn

w(t)
, ∀φ ∈ Cw

to be the underlying space for our problem. Then Cw is a Banach
space.

Definition 2.1 (Rate independent functionals). A functional H :
C([0, T ] : Rn) → R is called rate independent if and only if H[u ◦
ψ] = H[u] holds for all u ∈ C([0, T ]; Rn) and all admissible time
transformations, i.e., continuous increasing functions ψ : [0, T ] → [0, T ]
satisfying ψ(0) = 0 and ψ(T ) = T .

Definition 2.2 (Volterra-operator). Let X be a Banach space. An
operator F : C([0, T ];X) → C([0, T ]) is called a Volterra-operator if,
for all s ∈ [0, T ] and for all u, v ∈ C([0, T ];X) with u(σ) = v(σ) for all
σ ∈ [0, s], (Fu)(σ) = (Fv)(σ) for all σ ∈ [0, s].
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Recall that an operator W : C(I; Rn) → C(I) is hysteresis if it
has both the Volterra property and the rate independence property.
For more information about the hysteresis operator, see [1] and the
references therein.

Remark 2.1. By definition hysteresis operators possess the Volterra
property. This is actually what is needed here; the rate independence
itself does not play any role.

Lemma 2.1 [4]. Let F : C(I; Rn) → C(I) be a Volterra operator.
Assume that F is Lipschitz continuous on every bounded subset of
C(I; Rn). Then for every C > 0, there exists L > 0 such that

(2.1) |(Fy2)(s) − (Fy1)(s)| ≤ L sup
τ∈I
τ≤s

‖y2(τ ) − y1(τ )‖Rn ,

holds for all s ∈ I and all yi ∈ C(I; Rn) with ‖yi‖ ≤ C, i = 1, 2.

3. The unique solvability. Let I be a (bounded or unbounded)
closed subinterval of R and define Cw as above. To facilitate our
discussion, let us first state the following assumptions:

(H1) f ∈ Cw,

(H2) F : I × I × Rn × R → Rn continuous and

(3.1) F (t, s, 0, 0) = 0 for all (t, s) ∈ I2,

(H3) There exists a measurable function m(t, s) defined on I2, such
that

‖F (t, s, y2, w2) − F (t, s, y1, w1)‖ ≤ m(t, s){‖y2 − y1‖ + |w2 − w1|},

(H4) W ◦ S : C(I; Rn) → C(I) satisfies the Lipschitz condition

|W [S[y2]](s) −W [S[y1]](s)| ≤ L sup
s∈I

‖y2(s) − y1(s)‖Rn ,
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for some L > 0, and

(3.2) W [S[0]](s) = 0 in 0 ≤ s ≤ T,

E = (1 + L) sup
t∈I

∫
I

w(s)
w(t)

m(t, s) ds ≤ 1
2

(H5)

and

Ẽ = (1 + L)
∫

I

sup
t∈I

{w(s)
w(t)

m(t, s)
}
ds ≤ δ < 1.(H6)

Theorem 3.1 (Existence). Let assumptions (H1) (H5) be satisfied.
Then the equation

(3.3) y(t) = f(t) +
∫

I

F (t, s, y(s),W [S[y]](s)) ds, t ∈ I,

has at least one solution in Cw.

Proof. Let D = {y ∈ Cw : ‖y − f‖w ≤ b} be a closed subset of Cw,
where b is a number such that ‖f‖w ≤ b, and define the operator F on
D by

(3.4) (Fy)(t) = f(t) +
∫

I

F (t, s, y(s),W [S[y]](s)) ds, t ∈ I,

which enjoys the property that any fixed point of F is a solution of
(3.3). We shall prove that

(i) F maps D into itself,

(ii) F is a contraction mapping on D.

To show (i) we have the estimate

(3.5)

‖Fy−f‖w ≤
∥∥∥
∫

I

[F (t, s, y(s),W [S[y]](s))−F (t, s, f(s),W [S[f ]](s))] ds
∥∥∥

w

+
∥∥∥

∫
I

F (t, s, f(s),W [S[f ]](s)) ds
∥∥∥

w
.



ON SOLVABILITY OF URYSOHN-VOLTERRA EQUATIONS 155

By the aid of (H2) (H4), we have

(3.6)

∥∥∥
∫

I

F (t, s, f(s),W [S[f ]](s)) ds
∥∥∥

w

= sup
t∈I

1
w(t)

∥∥∥
∫

I

F (t, s, f(s),W [S[f ]](s)) ds
∥∥∥
Rn

≤ sup
t∈I

∫
I

1
w(t)

‖F (t, s, f(s),W [S[f ]](s))‖Rn ds

≤ (1 + L) sup
t∈I

∫
I

1
w(t)

m(t, s) sup
s∈I

‖f(s)‖Rn ds

≤ (1 + L)
{

sup
t∈I

∫
I

w(s)
w(t)

m(t, s) ds
}
‖f‖w

≤ 1
2
b.

Also we have the estimate
(3.7)∥∥∥

∫
I

[F (t, s, y(s),W [S[y]](s)) − F (t, s, f(s),W [S[f ]](s))] ds
∥∥∥

w

≤ sup
t∈I

∫
I

1
w(t)

m (t, s)[‖y(s) −f(s)‖Rn +|W [S[y]](s) −W [S[f ]](s)|] ds

≤ (1 + L) sup
t∈I

∫
I

1
w(t)

m(t, s) sup
s∈I

‖y(s) − f(s)‖Rn ds

≤ (1 + L) sup
t∈I

∫
I

w(s)
w(t)

m(t, s) ds‖y − f‖w

≤ 1
2
b.

From (3.5) (3.7), we obtain

(3.8) ‖Fy − f‖w ≤ b.

Consequently, F maps D into itself. To prove (ii), we have

(3.9)
‖Fy2 −Fy1‖w ≤ (1 + L) sup

t∈I

∫
I

w(s)
w(t)

m(t, s) ds‖y2 − y1‖w

≤ 1
2
‖y2 − y1‖w.
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Then F is a contraction on D. Therefore, by the contraction mapping
principle, F has a unique fixed point in D, i.e., the integral equation
(3.3) has a unique solution in D. However this does not prove the
uniqueness in Cw. In the next theorem we will discuss the uniqueness
in Cw.

Theorem 3.2 (Uniqueness). Let assumptions (H1) (H4) and (H6)
be satisfied. Then equation (3.3) has at most one solution in Cw.

Proof. Let y and ỹ be two solutions of equation (3.3) in Cw. Then

(3.10) ‖y(t) − ỹ(t)‖Rn ≤ (1 + L)
∫

I

m(t, s)‖y(s) − ỹ(s)‖ ds.

Let z(t) = ‖y(t) − ỹ(t)‖Rn/w(t) and p(s) = (1 + L) supt∈I{(w(s)
/w(t))|m(t, s)|}, s ∈ I. It is clear, by the aid of (H6), that p(.) is
integrable on I. Also the function z(.) is bounded. Consequently,
(3.10) implies that

(3.11) z(t) ≤
∫

I

p(s)z(s) ds.

The iteration arguments of (3.11) implies, for any positive integer n,
that

(3.12) z(t) ≤
( ∫

I

p(r) dr
)n

∫
I

p(s)z(s) ds,

which by assumption (H6) gives

(3.13) z(t) ≤ δn

∫
I

p(s)z(s) ds.

Thus for all t ∈ I

z(t) ≤ sup
z∈I

z(s)
∫

I

p(s) ds ≤ δ sup
z∈I

z(s)

so that

(3.14) sup
t∈I

z(t) ≤ δ sup
z∈I

z(s).
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Since δ < 1 it follows that supz∈I z(s) = 0. This proves the uniqueness
of the solution of equation (3.3) in Cw.

We gather together the results of Theorem 3.1 and Theorem 3.2;
keeping in mind E ≤ Ẽ, we obtain the sufficient conditions for existence
and uniqueness.

Theorem 3.3 (Existence and uniqueness). Let assumptions (H1) (H5)
be satisfied and, in addition, Ẽ ≤ 1/2. Then equation (3.3) has a unique
solution in Cw.

4. Equations of the second kind. In this section we restrict
ourselves to the unique solvability of the Urysohn-Volterra equation of
the second kind with hysteresis, namely,

(4.1) y(t) = f(t) +
∫ t

a

F (t, s, y(s),W [S[y]](s)) ds,

where a can be finite or −∞. Let I = [a,∞) or R. In what follows we
shall need the following fact, see [8]:

Let g : [a, t] → Rn be an absolutely integrable function, then

(4.2)∫ t

a

g(t1) dt1
∫ t1

a

g(t2) dt2 · · ·
∫ tn−1

a

g(tn) dtn =
1
n!

( ∫ t

a

g(s) ds
)n

.

Now we are in a position to state and prove our main result in this
section.

Theorem 4.1. Let f ∈ Cw(I; Rn). Assume that F satisfies all the
assumptions as in Theorem 3.1 on a ≤ s ≤ t, t ∈ I, and, instead of
(H5), let us assume that

(4.3) 0 < Ẽ = (1 + L)
∫ t

a

sup
t>s

{w(s)
w(t)

m(t, s)
}
ds < ∞.

In addition assume (H6) holds. Then equation (4.1) has a unique
solution in Cw(I; Rn).



158 M.A. DARWISH

Proof. Define a sequence of successive approximations {yn(t)} by

(4.4)
y0(t) = f(t),

yn+1(t) = f(t) +
∫ t

a

F (t, s, yn(s),W [S[yn]](s)) ds.

Let p(s) = (1 + L) supt>s{(w(s)/w(t))m(t, s)}, s ∈ I. Thus (4.3) takes
the form

∫
I
p(s) ds < ∞. We have the estimate

‖y1(t) − y0(t)‖
w(t)

≤ (1 + L)
∫ t

a

sup
t>s

{w(s)
w(t)

m(t, s)
}
ds‖y0‖w

=
∫ t

a

p(s) ds‖y0‖w.

In general we have

‖yn+1(t) − yn(t)‖
w(t)

≤ ‖y0‖w

∫ t

a

p(t1) dt1
∫ t1

a

p(t2) dt2 · · ·
∫ tn−1

a

p(tn) dtn

≤ ‖y0‖w

n!

( ∫ t

a

p(s) ds
)n

,

where we have used (4.2). Taking the supremum over I, we obtain

‖yn+1 − yn‖w ≤ ‖y0‖w

n!

( ∫
I

p(s) ds
)n

≤ Ẽn

n!
‖y0‖w.

Therefore the sequence {yn(t)} converges in norm in Cw(I; Rn) to a
function y(t). To see that y(t) is a solution of equation (4.1), let J be
an arbitrary compact subinterval of I and let M = maxJ w(t). The
sequence {yn(t)} converges uniformly to y(t) on J , passing the limit
in (4.4). Then y(t) is a solution of equation (4.1) on any compact
subinterval of I and hence on all of I.

To prove the uniqueness in Cw(I; Rn), let y(t) and ỹ(t) be any two
solutions of equation (4.1) in Cw(I; Rn). Then

y(t) − ỹ(t) =
∫ t

a

[F (t, s, y(s),W [S[y]](s)) − F (t, s, ỹ(s),W [S[ỹ]](s))] ds,
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which implies

‖y(t) − ỹ(t)‖ ≤ (1 + L)
∫

I

m(t, s) sup
s∈I

‖y(s) − ỹ(s)‖ ds.

Define z(t) = ‖y(t) − ỹ(t)‖/w(t). Then

(4.5) z(t) ≤
∫ t

a

p(s)z(s) ds,

which implies, by the previously used inductive procedure

(4.6) z(t) ≤ 1
n!

( ∫ t

a

p(s) ds
)n

sup
z∈I

z(s) ≤ Ẽn

n!
sup
z∈I

z(s).

If we let n → ∞, it follows that z(t) = 0 for all t ∈ I. This completes
the proof.

5. Equations of the first kind. In this section we will extend the
results in the above section to the Urysohn-Volterra equation of the
first kind with hysteresis, namely,

(5.1)
∫ t

a

F (t, s, y(s),W [S[y]](s)) ds = f(t),

where a ≥ −∞. Let w be a weight function on I = [a,∞) or R. Let
us first state the following assumptions:

(h1) f ∈ Cw(R; Rn) such that f(a) = 0 and f ′ ∈ Cw(R; Rn),

(h2) F (t, s, y, w) and (∂/∂t)F (t, s, y, w) are continuous for a ≤ s ≤ t,
t ∈ I, y ∈ Rn and w ∈ R; moreover, there exists a measurable function
m(t, s) such that

(5.2)

∥∥∥ ∂

∂t
F (t, s, y2, w2) − ∂

∂t
F (t, s, y1, w1)

∥∥∥
≤ m(t, s){‖y2 − y1‖ + |w2 − w1|},

(h3) the equation F (t, t, y, w) = z has a unique solution y for all
z ∈ Rn, w ∈ R and t ∈ I,
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(h4) there exists a δ > 0 such that

(5.3) ‖F (t, t, y2, w2) − F (t, t, y1, w1)‖ ≥ δ(‖y2 − y1‖ + |w2 − w1|),
for all yi ∈ Rn, wi ∈ R, i = 1, 2 and all t ∈ I,

(h5) W ◦ S : C(I; Rn) → C(I) satisfies the Lipschitz condition

|W [S[y2]](t) −W [S[y1]](t)| ≤ L sup
t∈I

‖y2(s) − y1(s)‖Rn ,

for some L > 0, and

(h6) Ẽ = (1 + L)
∫

I

sup
t>s

{w(s)
w(t)

m(t, s)
}
ds < ∞.

Differentiating equation (5.1) with respect to t, we obtain

(5.4)
F (t, t, y(t),W [S[y]](t))

+
∫ t

a

∂

∂t
F (t, s, y(s),W [S[y]](s)) ds = f ′(t).

Let us define now a sequence {yn(.)} in Cw(R; Rn) as follows.

Let y0(.) ∈ Cw(R; Rn) be arbitrary and

(5.5)
F (t, t, y(t),W [S[yn+1]](t))

+
∫ t

a

∂

∂t
F (t, s, y(s),W [S[yn]](s)) ds = f ′(t).

By the aid of (h3), the function yn+1(.) is well defined. To prove
that yn+1 remains in Cw(R; Rn) and that the sequence converges in
Cw(R; Rn), we have the estimate

(5.6)

‖F (t, t, y(t),W [S[yn+1]](t)) − F (t, t, f(t),W [S[yn]](t))‖

≤
∫ t

a

∥∥∥ ∂

∂t
F (t, s, y(s),W [S[yn]](s))

− ∂

∂t
F (t, s, y(s),W [S[yn−1]](s))

∥∥∥ ds

≤ (1 + L)
∫ t

0

m(t, s) sup
s∈I

‖yn(s) − yn−1(s)‖ ds.
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But from (h4), we have

‖yn+1(t) − yn(t)‖
w(t)

≤ (1 + L)
δ

∫ t

a

sup
t>s

{
m(t, s)

w(s)
w(t)

}‖yn(s) − yn−1(s)‖
w(s)

ds.

Define

zn+1(t) = ‖yn+1(t) − yn(t)‖/w(t)

and

p(s) = sup
t>s

{m(t, s)(w(s)/w(t))}, s ∈ I.

Then

zn+1(t) ≤
∫ t

a

p(s)zn(s) ds.

By inductive arguments, it follows that

zn+1(t) ≤ 1
n!

( ∫ t

a

p(s) ds
)n

Ẽ‖y0‖w ≤ Ẽn+1

n!
‖y0‖w

or

‖yn+1 − yn‖w ≤ Ẽn+1

n!
‖y0‖w.

Thus yn+1(.) ∈ Cw(R; Rn) for all n ≥ 0 and the sequence {yn+1(.)} is
convergent in Cw(R; Rn). Therefore equation (5.1) has a solution in
Cw(R; Rn). The proof of the uniqueness goes as in Theorem 4.1.

Applications. In this section, we apply the existence and uniqueness
theorems established in the previous section to the following convolu-
tion equation

(6.1) y(t) = f(t) +
∫ t

−∞
k(t− s)F (s, y(s),W [S[y]](s)) ds.

Here, we assume that f , k and F are continuous, and there exists a
measurable function m0 such that

(6.2) ‖F (s, y2, w2) − F (s, y1, w1)‖ ≤ m0(s){‖y2 − y1‖ + |w2 − w1|}.
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The following theorem and its corollary are applications of Theorem
4.1.

Theorem 6.1. Let f ∈ Cw(R; Rn) and F satisfies (6.1). In addition
∫
R

m0(s) sup
t>s

{w(s)
w(t)

k(t− s)
}
ds < ∞.

Then equation (6.1) has a unique solution in Cw(R; Rn).

If the weight function is monotone nondecreasing, we have the fol-
lowing interesting special case

Corollary 6.1. Let the same assumptions as in Theorem 6.1 be
satisfied. In addition assume that the weight function w(.) is monotone
nondecreasing. Then, if∫

R

m0(s) sup
t>s

{|k(t− s)|} ds < ∞,

equation (6.1) has a unique solution in Cw(R; Rn).

Proof. Notice that (w(s)/w(t)) ≤ 1 for all s < t. Hence the proof
follows.
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