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ABSTRACT. We study overlapping additive Schwarz pre-
conditioners for the Galerkin boundary element method when
used to solve Neumann problems for the Laplacian. Both
the h and p versions of the Galerkin scheme are considered.
We prove that the condition number of the additive Schwarz
operator is bounded by O(1 + log2(H/δ)) for the h version,
where H is the size of the coarse mesh and δ is the size of the
overlap, and bounded independently of the mesh size and the
polynomial order for the p version.

1. Introduction. We consider in this paper the Neumann problem
for the Laplace equation in the exterior of a curve in the plane. Via
the standard fundamental solution, we reformulate the problem as a
boundary integral equation of the first kind with a symmetric kernel.
The Galerkin method when used to solve this equation results in solving
a linear system, the coefficient matrix A of which is dense. If N is the
size ofA, then the Gauss solver requires O(N3) operations for computa-
tion of the coefficients giving the corresponding Galerkin approximate
solution. Hence when N is large, one resorts to iterative methods. The
matrix being symmetric and positive definite, the conjugate gradient
method is among the most practical and efficient iterative methods.
Since A is ill-conditioned, in the sense that its condition number in-
creases with N , the convergence rate of the conjugate gradient method
will deteriorate, which leads to a huge number of iterations needed to
achieve accuracy.

Several authors have investigated preconditioners for this equation.
Multigrid preconditioners, wavelet approximation and matrix com-
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pression, multiplicative Schwarz methods, multilevel additive Schwarz
methods, and hierarchical basis preconditioning have been studied [37],
[38], [3], [8], [9], [10], [36], [22], [16], [18], [17], [29], [31], [33], [34].
In [23], [28] a different approach was suggested: the Dirichlet stiffness
matrix is used to precondition the Neuman stiffness matrix, and vice
versa.

In spite of the abundance of results on preconditioners for first kind
integral equations, the simple two-level additive Schwarz methods have
not been thoroughly studied. In [30] a nonoverlapping method was
suggested for the h version, with an open question on overlapping
methods. In [32] a nonoverlapping and an overlapping method for
the p version were suggested and the condition numbers were proved to
be bounded by O(1+ log2 p) for both preconditioners, even though the
numerical results in that paper seem to suggest a constant bound for
the overlapping method. It is reasonable to expect that an overlapping
method yields a bounded condition number (at least when the overlap
is generous enough), implying fewer iterations in the solutions as
compared to a nonoverlapping method.

In this paper we aim at two goals. Our first task is to discuss an over-
lapping method for the h version and prove that the condition number
of the additive Schwarz operator is bounded by O(1+log2(H/δ)) where
H is the mesh size of the coarse level and δ is the overlap size. We will
report on several numerical experiments with this method. The num-
bers not only support the theoretical result but also suggest that if the
coarse mesh is properly chosen, this overlapping method performs even
better than the multilevel method proposed in [31].

Our second task is to give a sharper estimate for the condition number
of the overlapping method for the p version discussed in [32], namely,
we will prove that the condition number is bounded independently of
h and p. Thus our theoretical result matches the numerical results
reported in that paper.

It should be noted that overlapping methods for finite element dis-
cretization of partial differential equations have been discussed by sev-
eral authors. A nonexhaustive list includes [5], [11], [12], [13], [20],
[21], [25], [27]. We refer to [6], [26] for comprehensive surveys and
fairly complete lists of references. Since integral operators are nonlocal,
which results in dense stiffness matrices when discretization methods
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are used, a study of the method for integral equations is important.

In the analysis for both versions, it is crucial that the boundedness
of some interpolation operators, namely, the linear interpolation in the
case of the h version and an interpolation which yields a polynomial
of degree p from a polynomial of degree p + 1 in the case of the p
version, be proved in the H̃1/2 norm, which is the energy norm for the
equation under consideration. Even though the boundedness of these
operators are known in the H1 norm (for the finite element method),
the corresponding result for the H̃1/2 norm is not obvious and must be
carefully checked to establish bounds that are independent of h and p.

The article is organized as follows. Section 2 describes the boundary
integral formulation and serves to introduce our notation. Section 3
gives an abstract description of additive Schwarz methods. In Section 4
we prove some technical lemmas necessary for the analysis. We discuss
in Section 5 a two-level overlapping method for the h version and prove
in Section 6 a sharper bound for the overlapping method suggested in
[32]. Section 7 is devoted to numerical experiments for the h version,
the results of which confirm our theoretical result. The reader is
referred to [32] for the numerical results for the p version.

2. The boundary-integral equation. We recall some standard
facts from [7], [39] about boundary integral reformulations of bound-
ary value problems. For brevity, we discuss in this paper the Neumann
problem in the exterior of an oriented open arc Γ in R2. A general-
ization to a polygonal curve is straightforward. The analysis for the
Dirichlet problem can be conducted by using the result for the Neu-
mann problem in the same manner as in [31], [32] and therefore will
not be considered further in this paper.

The orientation of Γ permits the definition of the normal vector n
and the identification of Γ as an obstacle with sides Γ1 and Γ2. The
problem then consists in finding U satisfying

∆U = 0 in ΩΓ := R2\Γ,
∂U

∂n
|Γi
= fi for i = 1, 2,

U(z) = o(1) as |z| → ∞.

We shall not pursue classical solutions in this paper; the solutions
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will be functions in Sobolev spaces prompting us to define the following
spaces.

Let Γ̃ be a closed curve which contains Γ and is the boundary of a
regular plane domain. We define, as in [14], [19],

H1/2(Γ̃) := {v = U |Γ̃ : U ∈ H1
loc(R

2)},
H1/2(Γ) := {v = w|Γ : w ∈ H1/2(Γ̃)},

and

H̃1/2(Γ) := {v ∈ H1/2(Γ) : ṽ ∈ H1/2(Γ̃)},
where

ṽ :=
{
v on Γ,
0 on Γ̃\Γ.

The spaces H−1/2(Γ) and H̃−1/2(Γ) are defined as the dual spaces of
H̃1/2(Γ) and H1/2(Γ), respectively. The space H̃1/2(Γ) is denoted as
H

1/2
00 (Γ) in [19]. Here we use the notation which is commonly seen in

the literature of boundary element methods.

The weak solution of the above Neumann problem belongs to the
Sobolev space H1

loc(ΩΓ). The trace of a function v ∈ H1
loc(ΩΓ) is a

function in H1/2(Γ). Moreover, if ∆v = 0, the weak normal derivative
∂v/∂n ∈ H̃−1/2(Γ) can be defined. Thus it is natural to assume that
f1, f2 ∈ H−1/2(Γ) and f1 − f2 ∈ H̃−1/2(Γ); see [39] for more details.

It was proved in [39, Theorem 1.3] that if U is a solution to the
above boundary value problem, then the jump u of U across Γ belongs
to H̃1/2(Γ) and satisfies the hypersingular integral equation

(2.1) − 1
π

∂

∂nx

∫
Γ

∂

∂ny
log |x− y|u(y) dsy = f(x), x ∈ Γ,

where

f(x) := −1
2
[f1(x) + f2(x)]−

∫
Γ

[f1(y)− f2(y)] ∂
∂nx

log |x− y| dsy.

On the other hand, if u ∈ H̃1/2(Γ) is a solution of (2.1), then U defined
by

U(z) :=
∫

Γ

u(x)
∂

∂nx
log |z − x| dsx

−
∫

Γ

log |z − x|[f1(x)− f2(x)] dsx, z ∈ ΩΓ,
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which belongs to H1
loc(ΩΓ), is a solution to the Neumann problem.

It was shown in [7], [39] that if

Du(x) := − 1
π

∂

∂nx

∫
Γ

∂

∂ny
log |x− y|u(y) dsy, x ∈ Γ,

then
a(v, w) := 〈Dv,w〉 ∀ v, w ∈ H̃1/2(Γ)

is a positive-definite and symmetric bilinear form on H̃1/2(Γ) satisfying

(2.2) a(v, v) ∼ ‖v‖2
H̃1/2(Γ)

∀ v ∈ H̃1/2(Γ).

A weak form of equation (2.1) is the problem of finding

(2.3) u ∈ H̃1/2(Γ) : a(u, v) = 〈f, v〉 ∀ v ∈ H̃1/2(Γ).

Here 〈f, v〉 denotes the duality pairing which coincides with the L2 inner
product on Γ if f, v ∈ L2(Γ). The problem (2.3) will be approximated
by first constructing a finite-dimensional subspace S ⊂ H̃1/2(Γ) and
then finding

(2.4) uS ∈ S : a(uS , v) = 〈f, v〉 ∀ v ∈ S.

For ease of presentation we assume, without loss of generality, that Γ
is an interval in R. If Γ is an arbitrary interval (a, b), then it is known
that, cf. [2], [4], [14], [19]

(2.5) ‖v‖2
H1/2(a,b) ∼ ‖v‖2

L2(a,b) + |v|2H1/2(a,b)

and

(2.6) ‖v‖2
H̃1/2(a,b)

∼ |v|2H1/2(a,b) +
∫ b

a

v2(x)
b− x dx+

∫ b

a

v2(x)
x− a dx,

where

(2.7) |v|2H1/2(a,b) :=
∫ b

a

∫ b

a

|v(x)− v(y)|2
|x− y|2 dx dy.
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3. Abstract framework of additive Schwarz methods. Addi-
tive Schwarz methods provide fast solutions to equation (2.4) by solv-
ing, at the same time, problems of smaller size. Let S be decomposed
as

(3.1) S = S0 + · · ·+ SJ ,

where Si, i = 0, . . . , J , are subspaces of S, and let Pi : S → Si,
i = 0, . . . , J , be projections defined by

a(Piv, w) = a(v, w) ∀ v ∈ S, ∀w ∈ Si.

If we define P := P0 + · · ·+ PJ , then the additive Schwarz method for
equation (2.4) consists in solving, by an iterative method, the equation

(3.2) PuS = g,

where the righthand side is given by g =
∑J

i=0 gi, with gi ∈ Si being
solutions of

(3.3) a(gi, w) = 〈f, w〉 for any w ∈ Si.

The equivalence of (2.4) and (3.2) was discussed in [31]. For a detailed
description of the implementation of the method, the reader is referred
to [41].

Bounds for the minimum and maximum eigenvalues of the additive
Schwarz operator P can be obtained by using the following lemma, see
[24], [25], [40].

Lemma 3.1. (i) If there exists a constant C0 such that, for any
u ∈ S and ui ∈ Si satisfying u =

∑J
i=0 ui, the following inequality

(3.4) a(u, u) ≤ C2
0

J∑
i=0

a(ui, ui)

holds, then
λmax(P ) ≤ C2

0 .



SCHWARZ PRECONDITIONERS 183

(ii) If there exists a constant C1 such that any u ∈ S has a decom-
position u =

∑J
i=0 ui satisfying

(3.5)
J∑

i=0

a(ui, ui) ≤ C2
1a(u, u),

then
λmin(P ) ≥ C−2

1 .

4. Technical lemmas. In this section we will present some technical
lemmas. The first lemma provides a bound in the H̃1/2-norm for the
linear interpolation operator.

Lemma 4.1. Let Γ be partitioned into subintervals Γi, i = 1, . . . , J ,
by a mesh of maximum size h. If u ∈ C(Γ) ∩ H̃1/2(Γ) is defined so
that its restrictions on Γi are polynomials of degree p, then the linear
interpolant Πhu of u at the mesh points of Γ satisfies

‖Πhu‖H̃1/2(Γ) ≤ C ′(1 + log p)‖u‖H̃1/2(Γ),

where C ′ is independent of u, h and p.

Proof. It was proved in [32, Lemma 3.5] that

J∑
i=1

|Πhu|2H1/2(Γi)
≤ c1(1 + log p)

J∑
i=1

|u|2H1/2(Γi)
,

where c1 is independent of u, h and p. Let w := u−Πhu. Then

(4.1)
J∑

i=1

|w|Γi
|2H1/2(Γi)

≤ 2(c1 + 1)(1 + log p)
J∑

i=1

|u|2H1/2(Γi)
.

Moreover, since w vanishes at the mesh points, w|Γi
∈ H̃1/2(Γi) for

i = 1, . . . , J . It follows from [2, Theorem 6.6] that for any α ∈ R,
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noting that ‖ · ‖H̃1/2(Γi)
, | · |H1/2(Γi) and ‖ · ‖L∞(Γi) are invariant under

scaling,

‖w|Γi
‖2

H̃1/2(Γi)
≤ |w|Γi

|2H1/2(Γi)
+ c2(1 + log p)‖w|Γi

‖2
L∞(Γi)

≤ |w|Γi
|2H1/2(Γi)

+ 2c2(1 + log p)(‖u− α‖2
L∞(Γi)

+ ‖Πhu− α‖2
L∞(Γi)

)

≤ |w|Γi
|2H1/2(Γi)

+ 4c2(1 + log p)‖u− α‖2
L∞(Γi)

,

where c2 is a constant independent of p and of the length of Γi, i.e.,
h. Taking α to be the value of u at one endpoint of Γi so that u − α
vanishes at at least one point in Γi we can use [32, Lemma 3.3] to infer

‖w|Γj
‖2

H̃1/2(Γj)
≤ |w|Γj

|2H1/2(Γj)
+ c3(1 + log p)2|u|2H1/2(Γj)

,

where c3 is a constant independent of p and h. This inequality and
(4.1) imply

‖w‖2
H̃1/2(Γ)

≤
J∑

i=1

‖w|Γi
‖2

H̃1/2(Γi)

≤ 2(c1 + 1)(1 + log p)|u|2H1/2(Γ) + c3(1 + log p)
2|u|2H1/2(Γ)

≤ (2 + 2c1 + c3)(1 + log p)2‖u‖2
H̃1/2(Γ)

.

Here the first inequality is a standard property of the H̃1/2 norm which
was first proved in [35]. A proof can also be found in [1] or [32]. The
result now follows by using the triangular inequality, completing the
proof.

Results on the extension of a polynomial on the boundary of a
rectangular element onto the element itself are well known; see, e.g.,
[2]. The following lemma yields an extension of a piecewise polynomial
function on a boundary onto the domain.

In the following, by a square, say Ω, we mean the closed set. However,

for notational simplicity we still write Hs(Ω) instead of Hs(
◦
Ω), where

◦
Ω is the interior of Ω.
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A B

γ1
−

γ2
−

γ3
−

γ4
− γ4

+

γ3
+

γ2
+

γ1
+

Ω+Ω−

FIGURE 1. Ω = Ω+ ∪ Ω−, γ± = γ±
1 ∪ · · · ∪ γ±

4 , γ = γ−
1 ∪ γ+

1 .

Lemma 4.2. Let Ω± be two squares with sides γ±1 , . . . , γ
±
4 as in

Figure 1. Let Ω := Ω+ ∪ Ω−, γ± := γ±1 ∪ · · · ∪ γ±4 and γ := γ+
1 ∪ γ−1 .

Assume that f is a continuous function on γ such that f(A) = f(B) = 0
and f± := f |γ±

1
are polynomials of degree p. Then F ∈ H1(Ω) exists

such that

F± := F |Ω± ∈ Pp(Ω±), F |γ±
3
= F |γ±

4
= 0, F |γ = f,

and

(4.2) ‖F‖H1(Ω) ≤ c‖f‖H̃1/2(γ),

where c is a constant independent of f and p but may depend on the
size |Ω| of Ω. Here Pp(Ω±) is the space of polynomials in Ω± of degree
at most p in each variable.

Proof. Let f̃± be functions defined on γ± as

f̃± :=



f± on γ±1 ,
f+ ◦ η on γ±2 ,
0 on γ±3 ∪ γ±4 ,

where η is the rotation transformation that maps γ+
2 onto γ+

1 . We note
that f̃+ and f̃− take the same values on γ±2 and are continuous on
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γ±, respectively. By [2, Theorem 7.5] F± ∈ Pp(Ω±) exists such that
F±|γ± = f̃± and

(4.3) ‖F±‖H1(Ω±) ≤ c‖f̃±‖H1/2(γ±),

where c is independent of f and p but may depend on |Ω±|. Since
F+|γ+

2
= F−|γ−

2
, if we define

F :=
{
F+ on Ω+,
F− on Ω−,

then F is continuous on Ω; thus F ∈ H1(Ω). In view of (4.3), (4.2) will
follow if

(4.4) ‖f̃±‖H1/2(γ±) ≤ c‖f‖H̃1/2(γ).

It is clear from the definition of f̃± that

‖f̃−‖H1/2(γ−) ∼ ‖f‖H̃1/2(γ)

and
‖f̃+‖H1/2(γ+) ∼ ‖f+‖H1/2(γ+

1 ) ≤ c‖f‖H̃1/2(γ).

Thus (4.4) holds and the lemma is proved.

The next lemma is essential to prove a bound for the minimum
eigenvalue of P , see (3.5), for both versions.

Lemma 4.3. Let {θl : l = 1, . . . , L} be a partition of unity on
Γ := (a, b) such that

(4.5) 0 ≤ θl ≤ 1,
L∑

l=1

θl = 1,
∣∣∣∣dθl

dx

∣∣∣∣ ≤ C

δ
,

for some constants C and δ, and let Il := [al, bl] = supp θl.

(i) For any w ∈ H̃1/2(Γ), the following holds

(4.6)

L∑
l=1

‖θlw‖2
H̃1/2(Il)

≤ 4C2
L∑

l=1

bl − al

δ2
‖w‖2

L2(Il)
+ 2

L∑
l=1

|w|2H1/2(Il)

+
∫

Γ

|w(x)|2
b− x dx+

∫
Γ

|w(x)|2
x− a dx.
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(ii) There exist a positive constant C̃ and a partition of unity {θl :
l = 1, . . . , L} composed of piecewise-linear functions on a mesh of size
δ ≤ minl(bl −al)/2 such that, for any w ∈ H̃1/2(Γ), the following holds
(4.7)

L∑
l=1

‖θlw‖2
H̃1/2(Il)

≤ C̃

L∑
l=1

(
1 + log

bl − al

δ

)2( 1
bl − al

‖w‖2
L2(Il)

+ |w|2H1/2(Il)

)

+
∫

Γ

|w(x)|2
b− x dx+

∫
Γ

|w(x)|2
x− a dx.

Proof. In view of (2.6) we will estimate

T1 : =
∫

Il

∫
Il

|(θlw)(x)− (θlw)(y)|2
|x− y|2 dx dy,

T2 : =
∫

I1

|(θlw)(x)|2
bl − x dx and T3 :=

∫
Il

|(θlw)(x)|2
x− al

dx.

By using (4.5) we have

T1 ≤ 2
∫

Il

∫
Il

|θl(x)− θl(y)|2
|x− y|2 |w(x)|2 dx dy

+ 2
∫

Il

∫
Il

|w(x)− w(y)|2
|x− y|2 |θl(y)|2 dx dy

≤ 2C2 bl − al

δ2
‖w‖2

L2(Il)
+ 2|w|2H1/2(Il)

.

For the term T2 we note that θ(bl) = 0 when l = 1, . . . , L− 1 and use
(4.5) again to obtain

T2 =
∫

Il

|θl(bl)− θl(x)|2
bl − x |w(x)|2 dx ≤ C2 bl − al

δ2
‖w‖2

L2(Il)
.

When l = L, i.e., bl = b, θL(b) = 0 may not hold, but we can estimate
T2 as

T2 =
∫

IL

|(θLw)(x)|2
b− x dx ≤

∫
Γ

|w(x)|2
b− x dx.
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Similarly, for T3 we have

T3 ≤ C2 bl − al

δ2
‖w‖2

L2(Il)
when 2 ≤ l ≤ L

and

T3 ≤
∫

Γ

|w(x)|2
x− a dx when l = 1.

Summing over l = 1, . . . , L, we obtain (4.6).

The proof of (4.7) mainly follows [13]. For simplicity of notation we
assume, without loss of generality, Il = [0, β] and write I and θ instead
of Il and θl. We will prove that each of T1, T2, when 1 ≤ l ≤ L − 1,
and T3, when 2 ≤ l ≤ L, is bounded by

(4.8)
(
1 + log

β

δ

)2( 1
β
‖w‖2

L2(I) + |w|2H1/2(I)

)
.

We define θ to be linear in [0, δ] and [β−δ, β] and equal to 1 in [δ, β−δ],
i.e.,

θ(x) :=



x/δ 0 ≤ x ≤ δ,
1 δ < x < β − δ,
(β − x)/δ β − δ ≤ x ≤ β.

Splitting the integral over I into three integrals over I1 := [0, δ],
I2 := [δ, β − δ] and I3 := [β − δ, β], and denoting for any v

Aij(v) :=
∫∫

Ii×Ij

|v(x)− v(y)|2
|x− y|2 dx dy,

we observe that, by symmetry, in order to estimate T1 it suffices to
consider A11(θw), A12(θw), A13(θw), A22(θw), A23(θw) and A33(θw).
There is no need to consider A22(θw) because A22(θw) = A22(w). The
symmetric shape of θ implies the similarity of A11(θw) and A33(θw),
and of A12(θw) and A23(θw). Three terms remain to be considered:
A11(θw), A12(θw) and A13(θw).

From the definition of θ it is easy to see that

A11(θw) ≤ 2
δ
‖w‖2

L2(0,δ) + 2A11(w).
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It was proved in [13, Lemma 3.4] that

(4.9)
1
δ
‖w‖2

L2(0,δ) ≤ c̃

(
1 + log

β

δ

)(
1
β
‖w‖2

L2(I) + |w|2H1/2(I)

)
,

where c̃ is independent of w, β and δ. Thus A11(θw) is bounded by
(4.8). For the term A12(θw) we have

A12(θw) =
1
δ2

∫ δ

0

∫ β−δ

δ

|xw(x)− δw(y)|2
|x− y|2 dy dx

≤ 2
δ2

∫ δ

0

(∫ β−δ

δ

dy

|x− y|2
)
|x− δ|2|w(x)|2 dx+ 2A12(w)

≤ 2
δ
‖w‖2

L2(0,δ) + 2A12(w).

Using again (4.9) we obtain the estimate for A12(θw). Finally, for
A13(θw), since the assumption δ ≤ β/2 implies that β/2 − x ≥ 0 for
x ∈ I1 and y − (β/2) ≥ 0 for y ∈ I3, we find

A13(θw) =
1
δ2

∫ δ

0

∫ β

β−δ

|xw(x)− (β − y)w(y)|2
|x− y|2 dy dx

≤ 2
δ2

∫ δ

0

∫ β

β−δ

|x+ y − β|2
|x− y|2 |w(x)|2 dy dx

+
2
δ2

∫ δ

0

∫ β

β−δ

|β − y|2 |w(x)− w(y)|
2

|x− y|2 dy dx

≤ 2
δ2

∫ δ

0

∫ β

β−δ

|(y−(β/2))−((β/2)−x)|2
|(y−(β/2))+((β/2)−x)|2 |w(x)|

2 dy dx+2A13(w)

≤ 2
δ
‖w‖2

L2(0,δ) + 2A13(w).

Inequality (4.9) yields the estimate for A13(θw), implying T1 is bounded
by (4.8). The proof for T2 follows by using again the definition of θ:

T2 ≤
∫ β−δ

0

|w(x)|2
β − x dx+

1
δ2

∫ β

β−δ

(β − x)|w(x)|2 dx

≤
∫ β−δ

0

|w(x)|2
β − x dx+

1
δ
‖w‖2

L2(β−δ,β).
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It was proved in [13, Lemma 3.5] that

∫ β−δ

0

|w(x)|2
β − x dx ≤ c̄

(
1 + log

β

δ

)2( 1
β
‖w‖2

L2(I) + |w|2H1/2(I)

)
.

This inequality and an analogue to (4.9) yield the bound (4.8) for T2.
Similar arguments hold for T3 which completes the proof.

We finish this section by a result concerning the invariance of the
H̃1/2-norm under a special transformation which will be used in the
analysis of the p-version.

Lemma 4.4. Let a < b < c, and let A : u �→ ũ be a mapping from
H̃1/2(a, c) onto H̃1/2(−1, 1) defined as

ũ :=
{
ũ1 on [−1, 0],
ũ2 on [0, 1],

where ũ1 and ũ2 are the affine images of u1 := u|[a,b] and u2 := u|[b,c]
on [−1, 0] and [0, 1], respectively. Then

1
µ
‖u‖2

H̃1/2(a,c)
≤ ‖Au‖2

H̃1/2(−1,1)
≤ µ‖u‖2

H̃1/2(a,c)
,

where µ := max{(c− b)/(b− a), (b− a)/(c− b)}.

Proof. Assume without loss of generality that µ = (c − b)/(b − a).
For any t ∈ [a, b] and τ ∈ [b, c], if

(4.10) s =
t− b
b− a ∈ [−1, 0] and σ =

τ − b
c− b ∈ [0, 1],

then ũ1(s) = u1(t) and ũ2(σ) = u2(τ ). To prove the lemma, in view of
(2.6) we consider three terms

T1 : =
∫ 1

−1

∫ 1

−1

|ũ(x)− ũ(y)|2
|x− y|2 dx dy,

T2 : =
∫ 1

−1

|ũ(x)|2
1− x dx and T3 :=

∫ 1

−1

|ũ(x)|2
1 + x

dx.
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By splitting the integral over [−1, 1] into two integrals over [−1, 0]
and [0, 1] and noting the symmetry, we consider, instead of T1, three
integrals

T11 :=
∫ 1

0

∫ 1

0

|ũ2(σ)− ũ2(σ′)|2
|σ − σ′|2 dσ dσ′,

T12 :=
∫ 0

−1

∫ 0

−1

|ũ1(s)− ũ1(s′)|2
|s− s′|2 ds ds′,

and

T13 :=
∫ 1

0

∫ 0

−1

|ũ1(s)− ũ2(σ)|2
|s− σ|2 ds dσ.

Noting (4.10) we have

T11 =
∫ c

b

∫ c

b

|u2(τ )− u2(τ ′)|2
|τ − τ ′|2 dτ dτ ′,

T12 =
∫ b

a

∫ b

a

|u1(t)− u1(t′)|2
|t− t′|2 dt dt′,

and

T13 = µ
∫ c

b

∫ b

a

|u1(t)− u2(τ )|2
|τ − µt+ (µ− 1)b|2 dt dτ.

Since a ≤ t ≤ b ≤ τ ≤ c and µ ≥ 1, the following holds

|τ − µt+ (µ− 1)b| = τ − t+ (µ− 1)(b− t),

which implies

τ − t ≤ |τ − µt+ (µ− 1)b| ≤ µ(τ − t).

Therefore,

1
µ

∫ b

a

∫ c

b

|u2(τ )− u1(t)|2
|τ − t|2 dτ dt

≤ T13 ≤ µ

∫ b

a

∫ c

b

|u2(τ )− u1(t)|2
|τ − t|2 dτ dt.
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Thus
1
µ
|u|2H1/2(a,c) ≤ T1 ≤ µ|u|2H1/2(a,c).

Similarly we have

T2 =
∫ b

a

|u1(t)|2
2b− a− t dt+

∫ c

b

|u2(τ )|2
c− τ dτ.

Since for t ∈ [a, b] the following holds, under the assumption b−a ≤ c−b,

c− t
µ

≤ 2b− a− t ≤ c− t,

we deduce ∫ c

a

|u(z)|2
c− z dz ≤ T2 ≤ µ

∫ c

a

|u(z)|2
c− z dz.

Finally, a similar argument yields

1
µ

∫ c

a

|u(z)|2
z − a dz ≤ T3 ≤

∫ c

a

|u(z)|2
z − a dz,

completing the proof of the lemma.

5. An overlapping method for the h version. In this section
we design an overlapping method for the h version. We do this by first
introducing a two-level mesh.

The coarse mesh. Assuming, without loss of generality, that Γ =
(−1, 1), we first divide Γ into disjoint subdomains Γi with length Hi,
i = 1, . . . , J , so that Γ = ∪J

i=1Γi and denote by H the maximum value
of Hi.

The fine mesh. Each Γi is further divided into disjoint subintervals
Γij , j = 1, . . . , Ni, so that Γi = ∪Ni

j=1Γij . The maximum length of the
subintervals Γij in Γi is denoted by hi, and the maximum value of hi

is denoted by h.

It is assumed that the meshes are quasi-uniform. To simplify our
arguments, we assume that the lengths of the subdomains and subin-
tervals are on the order of H and h, respectively.



SCHWARZ PRECONDITIONERS 193

θ1 θ2 θ3 θ4

Γ4Γ3Γ2Γ1

′Γ1

′Γ2

′Γ3

′Γ4

2δ

θ1

θ2 θ3

θ4

Γ4Γ3Γ2Γ1

′Γ1

′Γ2

′Γ4

′Γ3

2δ

FIGURE 2. Partitions of unity with smallest (left) and largest (right) possible

overlaps. Note θ2 = θ3 on Γ
′
2 ∩ Γ′3 = Γ2 ∪ Γ3 on the right picture.

We now extend each subdomain Γi on both sides, except for the left
side of Γ1 and the right side of ΓJ which are the endpoints of Γ, so that
the length of the overlap between two extended subdomains Γ′

i and Γ
′
i+1

is on the order of δ for some δ ∈ (0, H]. The smallest possible overlap
is of length 2h whereas the largest is of length 2H, which implies

(5.1) |Γ′
i| ∼ H.

We note that the endpoints of Γ′
i coincide with fine-mesh points: see

Figure 2.

The finite-dimensional space S, see (2.4), is defined as the space of
continuous piecewise-linear functions on the fine mesh, vanishing at
the endpoints of Γ. The decomposition (3.1) is then performed by
letting S0 be the space of continuous piecewise-linear functions on the
coarse mesh, vanishing at the endpoints of Γ, and Si = S ∩ H̃1/2(Γ′

i),
i = 1, . . . , J .

This overlapping decomposition completely defines the additive
Schwarz operator P , introduced in Section 3. In the following we prove
a bound for the condition number κ(P ) of P . In view of Lemma 3.1
we prove the following lemmas.

Lemma 5.1. There exists a positive constant C2 independent of h,
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δ and H such that for any u ∈ S if u =
∑J

i=0 ui for some ui ∈ Si, then

a(u, u) ≤ C2

J∑
i=0

a(ui, ui).

Proof. By construction there are at most three subdomains Γ
′
i to

which any x ∈ Γ can belong. (The utmost case happens when δ = H.)
A standard coloring argument (see, e.g., [15]) yields

‖u‖2
H̃1/2(Γ)

≤ 2
(
‖u0‖2

H̃1/2(Γ)
+

∥∥∥∥
J∑

i=1

ui

∥∥∥∥
2

H̃1/2(Γ)

)

≤ 2
(
‖u0‖2

H̃1/2(Γ)
+ 3

J∑
i=1

‖ui‖2
H̃1/2(Γ)

)
.

The desired result now comes from (2.2).

Lemma 5.2. For any u ∈ S there exists ui ∈ Si satisfying
u =

∑J
i=0 ui and

J∑
i=0

a(ui, ui) ≤ C3

(
1 + log2

H

δ

)
a(u, u),

where C3 is a positive constant independent of u, H, h and δ.

Proof. To define a decomposition for u ∈ S we need a projection
defined as follows. Since the operator −d2/dx2 with domain of definite
H̃1(Γ) = H1

0 (Γ) is positive definite and self-adjoint, we can define
Λ =

√−d2/dx2 which in turn is self-adjoint as an operator from
H̃1/2(Γ) to H−1/2(Γ). Moreover, see [4],

〈Λξ, ξ〉 � ‖ξ‖2
H̃1/2(Γ)

∀ ξ ∈ H̃1/2(Γ).

Let PH : H̃1/2(Γ)→ S0 be the projection defined by the inner product
〈Λ·, ·〉, i.e.,

〈ΛPHv, w〉 = 〈Λv, w〉 ∀ v ∈ H̃1/2(Γ), w ∈ S0.
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Using standard arguments one can prove that there exists a constant
C4 > 0 independent of H such that for any v ∈ H̃1/2(Γ)

‖PHv‖H̃1/2(Γ) ≤ C4‖v‖H̃1/2(Γ)(5.2)

and

‖PHv − v‖L2(Γ) ≤ C4H
1/2‖v‖H̃1/2(Γ).(5.3)

Consider a partition of unity on Γ composed of piecewise-linear
functions θi which are defined as in the proof of Lemma 4.3 so that
supp θi = Γ

′
i; see Figure 2. The step-size of the mesh on which θi is

defined is 2δ, the size of the overlap.

For any u ∈ S we define a decomposition of u as a sum of functions
in Si as follows. Let u0 = PHu and ui = Πh(θiw), i = 1, . . . , J , where
w = u − u0 and Πh denotes the linear interpolation operator which
interpolates a continuous function at the fine-mesh points. It is clear
that u =

∑J
i=0 ui. Since θiw is a piecewise-quadratic function on Γ, it

follows from Lemma 4.1 that

‖ui‖H̃1/2(Γ) ≤ C5‖θiw‖H̃1/2(Γ),

where C5 is independent of h. Hence, by using (5.2), (4.7) and (5.3)
we obtain, noting (5.1),

J∑
i=0

‖ui‖2
H̃1/2(Γ)

≤ C2
4‖u‖2

H̃1/2(Γ)
+ C2

5

J∑
i=1

‖θiw‖2
H̃1/2(Γ′

i
)

≤ C2
4‖u‖2

H̃1/2(Γ)

+ C6

(
1 + log2

H

δ

)(
1
H

‖w‖2
L2(Γ) + ‖w‖2

H̃1/2(Γ)

)

≤ C3

(
1 + log2

H

δ

)
‖u‖2

H̃1/2(Γ)
.

The lemma is now a result of (2.2).

Combining Lemmas 3.1, 5.1 and 5.2, we obtain
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Theorem 5.3. The condition number of the additive Schwarz
operator P is bounded as

κ(P ) ≤ C2C3

(
1 + log2

H

δ

)
.

Remark 5.4. If the overlap is generous enough so that δ ≥ cH for
some constant c, then the condition number of the additive Schwarz
operator is bounded independently of h and H.

6. An overlapping method for the p version. In this section
we give a sharper estimate for the condition number of the additive
Schwarz operator designed in [32, Section 5]. We first recall the finite-
dimensional space for this version and the decomposition defined in
[32, Section 5].

Fixing a mesh of size h defined by x0 < x1 < · · · < xN+1 we define
S to be the space of continuous functions vanishing at the endpoints
of Γ whose restrictions on Γi := (xi−1, xi) are polynomials of degree p.
Considering overlapping subdomains

Γ′
i = Γi ∪ {xi} ∪ Γi+1, i = 1, . . . , N,

we now decompose S by (3.1) where S0 is the space of piecewise-linear
functions vanishing at the endpoints of Γ, and

Si := S ∩ H̃1/2(Γ′
i), i = 1, . . . , N.

Let
Lp+1(x) :=

∫ x

−1

Lp(y) dy, x ∈ [−1, 1],

where Lp is the Legendre polynomial of degree p. Note that Lp+1 has
p+ 1 zeros satisfying

−1 = z1 < · · · < zp+1 = 1.

Let Q[−1, 1] be the space of polynomials of degree at most p on [−1, 1].
We define Tp : C[−1, 1]→ Q[−1, 1] as an interpolation operator which
interpolates a function v ∈ C[−1, 1] at z1, . . . , zp+1, i.e.,

Tpv ∈ Q[−1, 1] and Tpv(zj) = v(zj), j = 1, . . . , p+ 1.
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This operator was first introduced in [25]. It was proved in [32, Lemma
5.2] that

(6.1) |Tpv|H1/2(−1,1) ≤ c|v|H1/2(−1,1) ∀ v ∈ Q[−1, 1]/R,

where c is independent of p and v. An estimate of the form (3.5) with
C2

1 = c(1 + log2 p) was obtained in [32, Section 5] by using (6.1) and
estimating the last two singular terms in the definition (2.6), resulting
in a logarithmic dependence on p of the bound.

In the following we employ another approach to prove a constant
bound independent of p. We first introduce from Tp another interpola-
tion operator T ∗

p and prove, analogously to (6.1), the boundedness of
T ∗

p in the H̃1/2-norm. In the sequel, if v is a function defined on an
interval, then we denote by v̂ its affine image on the reference interval
[−1, 1].

Lemma 6.1. Let f be a continuous function on [−1, 1] vanishing at
±1 such that f− := f |[−1,0] and f+ := f |[0,1] are polynomials of degree
p+ 1. Let T ∗

p (f) be defined as

T ∗
p (f) :=

{
g− on [−1, 0),
g+ on [0, 1],

where g± are polynomials of degree p, the affine images ĝ± of which
are defined by ĝ± := Tp(f̂±), respectively. Then the following holds

(6.2) ‖T ∗
p (f)‖H̃1/2(−1,1) ≤ C ′′‖f‖H̃1/2(−1,1),

where C ′′ is independent of f and p.

Proof. We note that the functions g± so defined are polynomials of
degree p and that T ∗

p (f) ∈ H̃1/2(−1, 1) as was shown in [32, Section
5]. We now prove (6.2). Let

Ω−
1 := [−1, 0]× [−1, 0], Ω−

2 := [−1, 0]× [0, 1], Ω− := Ω−
1 ∪ Ω−

2 ,

Ω+
1 := [0, 1]× [−1, 0], Ω+

2 : = [0, 1]× [0, 1], Ω+ := Ω+
1 ∪ Ω+

2 ,

Ω := Ω− ∪ Ω+ and I := [−1, 1]× {0}.
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By Lemma 4.2 a function F ∈ H1
0 (Ω) exists such that

F |Ω±
i
∈ Pp+1(Ω±

i ), i = 1, 2, F |I = f,

and

(6.3) ‖F‖H1(Ω) ≤ c‖f‖H̃1/2(−1,1),

where the constant c is independent of p. By using the two-dimensional
version of the interpolation operator Tp discussed in [25], we can define
G±

i ∈ Pp(Ω±
i ) such that

|G±
i |H1(Ω±

i
) ≤ c|F |Ω±

i
|H1(Ω±

i
).

Let G denote the function on Ω such that G|Ω±
i
= G±

i . Then
G ∈ H1

0 (Ω), because F ∈ H1
0 (Ω), and

(6.4) |G|H1(Ω) ≤ c|F |H1(Ω).

Now let ∂Ω2 be the boundary of Ω2 := Ω+
2 ∪Ω−

2 , and let Γ
′ := ∂Ω2\I.

We denote by g̃ the extension of T ∗
p (f) by 0 onto Γ′. On each of the

intervals [−1, 0] and [0, 1], G and T ∗
p (f) are polynomials of degree p

which coincide at p + 1 points, the interpolation points. Therefore,
G|I = T ∗

p (f) = g̃|I . On the other hand, G|Γ′ ≡ 0 ≡ g̃|Γ′ . Thus
G|∂Ω2 = g̃, which implies

(6.5) ‖T ∗
p (f)‖H̃1/2(−1,1) = ‖g̃‖H1/2(∂Ω2) ≤ c‖G‖H1(Ω) ∼ |G|H1(Ω).

The estimate (6.2) hence follows from (6.3), (6.4) and (6.5).

Using the projection defined in the proof of Lemma 5.2, the interpola-
tion operator T ∗

p , and the transformation A, introduced in Lemma 4.4,
we can define for each function u ∈ S a representation of the form
u =

∑N
i=1 ui with ui ∈ Si as follows.

Let {θi : i = 1, . . . , N} be a partition of unity composed of piecewise-
linear functions θi satisfying

(6.6) supp θi ⊂ Γ
′
i, 0 ≤ θi ≤ 1,

N∑
i=1

θi = 1,
∣∣∣∣dθi

dx

∣∣∣∣ ≤ 1
h
.
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Let u0 be the projection of u onto S0 defined as in the proof of
Lemma 5.2 so that

‖u0‖H̃1/2(Γ) ≤ C8‖u‖H̃1/2(Γ)(6.7)

and

‖u− u0‖L2(Γ) ≤ C8h
1/2‖u‖H̃1/2(Γ).(6.8)

Let w := u− u0. Then θiw having support in Γ
′
i comprises two parts,

θiw|Γi
and θiw|Γi+i

, each being a polynomial of degree at most p + 1.
Defining

ui = A−1T ∗
pA(θiw), i = 1, . . . , N,

we can prove that, see [32], ui ∈ Si and u =
∑N

i=0 ui.

Lemma 6.2. There exists a constant C9 > 0 independent of p and
N such that with ui defined as above, the following holds

N∑
i=0

a(ui, ui) ≤ C9a(u, u).

Proof. It follows from Lemmas 4.4 and 6.1 that

‖ui‖2
H̃1/2(Γ′

i)
≤ µ‖T ∗

pA(θiw)‖2
H̃1/2(−1,1)

≤ µC ′′‖A(θiw)‖2
H̃1/2(−1,1)

≤ µ2C ′′‖θiw‖2
H̃1/2(Γ′

i
)
,

where µ = hmax/hmin. By using (4.6), (6.7) and (6.8), noting that
δ ∼ h and |Γ′

i| ∼ 2h, we obtain

N∑
i=0

‖ui‖2
H̃1/2(Γ′

i
)
≤ C8‖u‖2

H̃1/2(Γ)
+ µ2C ′′

(
16
h
‖w‖2

L2(Γ) + 4‖w‖2
H̃1/2(Γ)

)

≤ C9‖u‖2
H̃1/2(Γ)

,
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FIGURE 3. Condition number of OP as a function of H/δ when DoF = 2047.

completing the proof of the lemma. The constant C9 is independent of
p and N , but may depend on µ which can be chosen to be constant.

The following lemma was proved in [32].

Lemma 6.3. There exists a constant C10 > 0 independent of p and
N such that, for any u ∈ S, if u = ∑N

i=0 ui for some ui ∈ Si, then

a(u, u) ≤ C10

N∑
i=0

a(ui, ui).

Lemmas 3.1, 6.2 and 6.3 yield

Theorem 6.4. The condition number of the additive Schwarz
operator P is bounded independently of p and N .
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TABLE 1. Condition numbers with overlapping

preconditioner: h = 2/DoF.

DoF δ = h δ = 2h δ = 4h δ = h δ = 2h δ = 4h
H/δ = 2 H/δ = 4

7 3.026 2.838 2.515
15 3.035 3.262 2.876 2.839 2.554
31 3.087 3.266 3.328 2.930 2.900 2.577
63 3.103 3.294 3.342 2.896 2.986 2.932
127 3.117 3.302 3.367 2.900 2.955 3.015
255 3.123 3.303 3.371 2.895 2.957 2.985
511 3.125 3.303 3.371 2.890 2.952 2.987
1023 3.124 3.299 3.369 2.885 2.947 2.982
2047 3.122 3.298 3.367 2.882 2.943 2.976

H/δ = 8 H/δ = 16
15 2.298
31 2.561 2.320 2.238
63 2.597 2.594 2.333 2.468 2.219
127 2.621 2.630 2.613 2.480 2.472 2.208
255 2.614 2.654 2.648 2.482 2.495 2.478
511 2.605 2.648 2.673 2.460 2.490 2.501
1023 2.597 2.639 2.666 2.442 2.467 2.496
2047 2.592 2.632 2.657 2.429 2.449 2.474

H/δ = 32 H/δ = 64
63 2.388
127 2.550 2.272 2.631
255 2.575 2.567 2.259 2.786 2.609
511 2.534 2.568 2.564 2.797 2.764 2.600
1023 2.499 2.529 2.566 2.752 2.775 2.755
2047 2.475 2.495 2.529 2.716 2.731 2.766
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TABLE 1. Continued.

H/δ = 128 H/δ = 256
255 2.954
511 3.120 2.927 3.338
1023 3.116 3.092 2.915 3.505 3.306
2047 3.056 3.090 3.079 3.499 3.473 3.292

H/δ = 512 H/δ = 1024
1023 3.773
2047 3.933 3.737 4.253

TABLE 2. Condition number and number of iterations of different methods.

CG: without preconditioner (number in brackets: order of increase);

MAS: multilevel additive Schwarz method; NP: nonoverlapping preconditioner

with H = 1/2; OP: overlapping preconditioner with H = 1/2 and δ = h = 2/DoF.

DoF Condition number Iterations

CG MAS NP OP CG MAS NP OP

3 0.2012E+01 1.644 2 2

7 0.3865E+01 (0.77) 2.407 2.608 3.026 4 4 4 4

15 0.7578E+01 (0.88) 3.035 3.597 2.839 5 6 6 6

31 0.1535E+02 (0.97) 3.461 4.667 2.561 9 8 7 7

63 0.3089E+02 (0.99) 3.755 5.826 2.468 13 9 8 7

127 0.6220E+02 (1.00) 3.971 7.115 2.550 19 10 9 7

255 0.1249E+03 (1.00) 4.131 8.564 2.786 27 10 9 8

511 0.2503E+03 (1.00) 4.255 10.190 3.120 39 11 10 8

1023 0.5010E+03 (1.00) 4.350 12.010 3.505 55 11 11 8

2047 0.1003E+04 (1.00) 4.425 14.010 3.933 79 11 11 8

7. Numerical experiments. The numerical results for the p
version were presented in [32]. In this section we present results from
our numerical experiments for the overlapping method for the h version.
The experiments were carried out on the machine SUN Ultra-I.

We solved the equation (2.1) with Γ = [−1, 1] and f(x) = 2 which
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FIGURE 4. CPU time of different methods with H chosen as in Table and δ = h = 2/DoF for OP.
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has as exact solution u(x) = −2(1− x2)1/2. We tested the overlapping
method as a preconditioner for the conjugate gradient method with
different values of H and δ, the sizes of the coarse mesh and overlap,
respectively. The stopping criterion for the iteration is

‖Au(m) − b‖2

‖b‖2
≤ 10−4,

where A and b are the stiffness matrix and righthand side, respectively,
obtained from (2.4) with S defined as in Section 5, and ‖ · ‖2 denotes
the l2-norm.

In Table 1 we present the condition numbers of the preconditioned
matrix with different values of H/δ. It is clear that when H/δ is fixed
the condition number is bounded even though the degree of freedom
increases. When H/δ changes, a slight change in the condition number
indicates a logarithmic behavior of the bound, as can be clearly seen
in Figure 3.

In Table 2 we compare the condition numbers and numbers of iter-
ations of four methods, namely, the conjugate gradient method (CG)
without preconditioners, the multilevel additive Schwarz preconditioner
(MAS) developed in [31], the nonoverlapping preconditioner (NP) dis-
cussed in [30], and the present overlappping preconditioner (OP). For
both the nonoverlapping and overlapping methods we took the mesh
with size H = 1/2 to be the coarse mesh, and for the overlapping
method we chose δ = h, which means only a small overlap was used. In
theory, the condition numbers behave like O(h−1), O(1) and O(H/h)
for CG, MAS and NP, respectively. The numbers seem to suggest the
best performance of the overlapping method.

In terms of the CPU time, if the coarse mesh is chosen properly,
the overlapping method performs better than the simple MAS method
and, of course, the other two methods; see Figure 4. This empirical
conclusion might inspire a further study.
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