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A NEW INTEGRAL EQUATION FORMULATION
FOR THE SCATTERING OF PLANE ELASTIC

WAVES BY DIFFRACTION GRATINGS

T. ARENS

ABSTRACT. The scattering of plane elastic waves by a
rigid periodic surface is considered. The Green’s tensor for
a half-space with a rigid surface is introduced and its prop-
erties, notably its asymptotic decay rate in horizontal layers
above the plane, are analyzed. The Green’s tensor is then
used to define single and double layer potentials for a periodic
surface, making use of the generalized stress tensor. Subse-
quently, a novel integral equation formulation for the scatter-
ing of plane waves by a diffraction grating is derived using
a Brakhage/Werner type ansatz for the solution. Employing
the Fredholm alternative, existence of solution is proved for
all angles of incidence and all wave-numbers.

1. Introduction. It is the object of this paper to derive a new
integral equation formulation for a certain scattering problem, namely
the scattering of a time harmonic plane elastic wave by an unbounded
periodic structure. The propagation of time harmonic waves with
circular frequency ω in an elastic solid with Lamé constants μ, λ
(μ, λ+ μ > 0) and density ρ is governed by Hooke’s law

(1) τjk = λdiv uδjk + μ

(
∂uj

∂xk
+
∂uk

∂xj

)
, j, k = 1, 2, 3,

and by the equation of motion

(2)
3∑

k=1

∂τjk

∂xk
+ ω2ρuj = 0, j = 1, 2, 3.

Here the vector field u denotes the displacements and τ the stress
tensor. We will assume that the density ρ is constant throughout the
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medium, say ρ ≡ 1. Inserting the components of τ as given by (1) into
the equations of motion (2) then yields the Navier equation

(3) μΔu + (λ+ μ) grad div u + ω2u = 0.

All waves are assumed to be traveling in a half-space bounded by a
diffraction grating, given as x2 = f(x1) with f smooth and 2π-periodic,
on which all displacements are assumed to vanish. As this special
geometry is invariant in the x3-direction, the system of equations (3)
separates into two parts, one describing compressional and vertically
polarized shear waves, the other describing horizontally polarized shear
waves. The second part is in fact a scalar Helmholtz equation, and the
solution of this problem has been studied in depth elsewhere, e.g., [14,
21] and the references contained therein. Here we will only consider
the first part; the scattering problem is treated as a problem of plane
strain.

The incident field is assumed to be a superposition of plane compres-
sional and shear waves given by

(4) uinc(x) = apθ̂e
ikpx·θ̂ + asθ

⊥eiksx·θ̂, ap, as ∈ C.

Here θ ∈ (0, π) is the angle of incidence, θ̂ := (cos θ,− sin θ)�, θ⊥ :=
(sin θ, cos θ)� and kp, ks denote the wave numbers for compressional
and shear waves, respectively. Thus, denoting the scattered field by u,
it is the object to solve equation (3) in Ω := {x ∈ R2, x2 > f(x1)}
subject to the boundary condition

(5) u(x) = −uinc(x) on ∂Ω.

In both the mathematical and engineering literature, integral equation
methods have been widely used to solve scattering problems for elastic
waves, the books by Kupradze et al. [16, 17] and Constanda [7] giving a
comprehensive mathematical introduction to the subject. Lately, work
has focused on crack [12, 13, 23] and inverse problems [10, 11, 15].
Some investigations on elastic wave scattering by periodic free surfaces
employing integral equation methods, including the formulation of a
radiation condition, were made in [9, 18]. However, to the author’s
knowledge, [1] contains the first rigorous proof of uniqueness and
existence of solution for the scattering of elastic waves by a diffraction
grating.
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Although [1] answers the question of uniqueness for the boundary
value problem (3), (5) completely, existence of solution could only be
proved for all but a discrete set of combinations of angle of incidence and
wave numbers of the incident field. Similar problems arise when consid-
ering scattering of acoustic waves by diffraction gratings [14] but recent
results by Chandler-Wilde/Ross [4] have shown how these difficulties
can be avoided by employing the Green’s function for a half-plane with
an impedance boundary condition; see also Szemberg [22] for a related
approach. The use of the simpler Dirichlet Green’s function for a half-
plane has recently been proposed by Zhang/Chandler-Wilde [24]. The
advantage of these fundamental solutions are their faster asymptotic
decay rates in vertically bounded strips. This ensures the existence
of corresponding quasi-periodic Green’s functions, which are used for
diffraction grating problems, for all combinations of wave-number and
angle of incidence and also makes extensions of these results to rough
surfaces possible.

In the theory of elasticity, however, the question of fundamental
solutions for half-space problems is a more delicate issue as, in general,
no representations in terms of standard special functions exist. Since
Lamb, in his classical paper [19], gave representations of Green’s
tensors for a number of free surface problems, much attention has been
given to this issue. However, the author is not aware of any published
work for the case of a rigid surface.

Thus, in Section 2, we introduce a Green’s tensor for the elastic wave
propagation problem in a half space with a rigid surface. Emphasis will
be laid on a detailed analysis of its asymptotic decay rate in horizontal
strips as this is the critical property for its successful use in solving the
scattering problem for a diffraction grating for all wave-numbers and
incident direction combinations. In Section 3, corresponding results
for certain derivatives of the Green’s tensor are established. The
derivatives of interest are the generalized stresses as introduced by
Kupradze [16] and also used in [8, 20].

In Section 4 definitions of quasi-periodic single- and double-layer po-
tentials are given which will, in turn, by employed to prove existence
of solution to the scattering problem for a diffraction grating in Sec-
tion 5 through a Brakhage/Werner type ansatz for the solution [2].
As we make use of the generalized stress tensor, the operators in the
equivalent integral equation formulation are compact so that the Fred-



278 T. ARENS

holm alternative can be employed. However, the chosen ansatz limits
the method to scattering surfaces with rigid boundaries, i.e., to Dirich-
let boundary value problems. The final existence result holds for all
combinations of angle of incidence and wave numbers.

This first section will close with some notations and general assump-
tions. Vectors and vector fields shall always be denoted in bold type.
For y = (y1, y2)�, we define y′ := (y1,−y2)�. For any set M and
m ∈ N, we define BCm(M) as the set of functions in Cm(M) that,
together with their derivatives up to order m, are bounded in M. If M
is compact, we denote by Cm,α(M), 0 < α ≤ 1, the usual set of Hölder
continuous functions. For unbounded M, we write φ ∈ Cm,α(M) if
φ ∈ Cm,α(N ) for every compact subset N of M.

To abbreviate the differential operator in (3) we shall write

Δ∗u := μΔu + (λ+ μ) grad div u.

The upper half plane shall be denoted by R2
+ := {x ∈ R2 : x2 > 0}.

The Navier equation (3) is to be solved in the domain Ω := {x ∈ R2 :
x2 > f(x1)}, where we assume f ∈ BC2(R) to be strictly positive. We
finally set S := ∂Ω and, for h > max f , call the sets

Sh := {x ∈ R2
+ : f(x1) < x2 < h}

horizontal layers (of height h) above S.

2. The Green’s tensor. In the study of the Navier equation (3)
one usually makes use of the matrix of fundamental solutions which is
the Green’s tensor for free-field conditions, given by

(6)
Γ(x,y) :=

i

4μ
H

(1)
0 (ks|x − y|)

+
i

4ω2
∇�

x ∇x(H(1)
0 (ks|x − y|) −H

(1)
0 (kp|x − y|)),

where H(1)
0 (·) denotes the Hankel function of the first kind and of order

zero. Note the formulas

(7) k2
p =

ω2

2μ+ λ
, k2

s =
ω2

μ
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for the wave numbers.

With the help of the Bessel differential equation, it is easy to see that
the components of this matrix can be written as

Γjk(x,y) =
i

4μ

{
Φ1(|x− y|)δjk + Φ2(|x− y|) (xj − yj)(xk − yk)

|x − y|2
}

j, k = 1, 2,

where, introducing the constant τ = kp/ks,

Φ1(t) := H
(1)
0 (kst) − 1

kst
(H(1)

1 (kst) − τH
(1)
1 (kpt)),

Φ2(t) :=
2
kst

H
(1)
1 (kst) −H

(1)
0 (kst) − 2τ

kst
H

(1)
1 (kpt) + τ2H

(1)
0 (kpt).

As was pointed out in the introduction, the quasi-periodic Green’s
tensor corresponding to Γ that was employed in [1] does not exist for
all combinations of angle of incidence and wave-numbers. To avoid
this difficulty, the new integral equation formulation will make use of
the Green’s tensor for a half space with a rigid surface, i.e., Dirichlet
boundary conditions. Theorems 2.1 and 2.5 below, proved by Fourier
transform and other methods, show that this Green’s tensor is given
by

(8) ΓD(x,y) := Γ(x,y) − Γ(x,y′) + U(x,y),

for x,y ∈ R2
+, x �= y, where

(9) U(x,y) := − i

2πω2

∫ ∞

−∞
(Mp(t, γp, γs;x2, y2)

+Ms(t, γp, γs;x2, y2))e−iX1t dt,

with

Mp(t, γp, γs;x2, y2) :=
eiγp(x2+y2) − ei(γpx2+γsy2)

γpγs + t2

(−t2γs t3

tγpγs −t2γp

)

Ms(t, γp, γs;x2, y2) :=
eiγs(x2+y2) − ei(γsx2+γpy2)

γpγs + t2

(−t2γs −tγpγs

−t3 −t2γp

)
.
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Here X1 := x1 − y1 and

γp :=

⎧⎪⎨
⎪⎩

√
k2

p − t2, k2
p ≥ t2

i
√
t2 − k2

p, k2
p < t2,

γs :=

{√
k2

s − t2, k2
s ≥ t2

i
√
t2 − k2

s , k2
s < t2.

The following theorem establishes that ΓD possesses the properties of
a fundamental solution and satisfies the boundary conditions.

Theorem 2.1. For y ∈ R2
+ fixed, ΓD(·,y) − Γ(·,y) ∈ C2(R2

+) ∩
C(R2

+) and its columns are solutions to the Navier equation (3) in
R2

+\{y}. Furthermore, ΓD(x,y) = 0 for x ∈ ∂R2
+.

Proof. From the definition of U(·, ·), it is clear that ΓD − Γ is in-
finitely often continuously differentiable in R2

+ with respect to both
arguments. Furthermore, ΓD − Γ and all its derivatives can be contin-
uously extended to R2

+. Thus, ΓD − Γ has the required regularity.

Introducing the functions

Φ̂(1)(x2; y2, t) :=
1
ω2

(−tγs)
eiγp(x2+y2) − ei(γpx2+γsy2)

γpγs + t2
,

Ψ̂(1)(x2; y2, t) :=
1
ω2
t2
eiγs(x2+y2) − ei(γsx2+γpy2)

γpγs + t2
,

Φ̂(2)(x2; y2, t) :=
1
ω2
t2
eiγp(x2+y2) − ei(γpx2+γsy2)

γpγs + t2
,

Ψ̂(2)(x2; y2, t) :=
1
ω2
tγp

eiγs(x2+y2) − ei(γsx2+γpy2)

γpγs + t2
,

we further observe that the kth column of U(·, ·), k = 1, 2, can be
written as

U·k(x,y) =
1
2π

∫ ∞

−∞

⎛
⎜⎝ (−it)Φ̂(k)(x2; y2, t)+

∂

∂x2
Ψ̂(k)(x2; y2, t)

∂

∂x2
Φ̂(k)(x2; y2, t)−(−it)Ψ̂(k)(x2; y2, t)

⎞
⎟⎠e−iX1t dt.
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Φ̂(k) and Ψ̂(k) are also seen to satisfy the differential equations

∂2

∂x2
2

Φ̂(k) + (k2
p − t2)Φ̂(k) = 0,

∂2

∂x2
2

Ψ̂(k) + (k2
s − t2)Ψ̂(k) = 0.

This means that Φ̂(k) and Ψ̂(k) are Fourier transforms of Lamé poten-
tials with respect to X1 and U·k(·,y) is a solution to (3).

It remains to show that ΓD,·k(x,y) = 0 for x2 = 0. This is done in a
straightforward way by computing the Fourier transform of the Hankel
functions with respect to X1.

The main advantage of using ΓD over Γ is its faster asymptotic decay
rate as |x1| → ∞ in horizontal layers above S for fixed y. For the first
two terms in its representation, this is shown in the following lemma.

Lemma 2.2. For x,y ∈ R2
+, |x − y| ≥ 1, the estimate

max
j,k=1,2

|Γjk(x,y) − Γjk(x,y′)| ≤ h(x2, y2)
|x − y|3/2

,

holds, where h ∈ C(R2).

Proof. Using the notations r = |x−y| and r′ = |x−y′|, the following
holds

Γ(x,y)−Γ(x,y′) =
i

4μ

{
(Φ1(r) − Φ1(r′))I

+
(

0 −2y2(x1 − y1)
−2y2(x1 − y1) 0

)
Φ2(r)
r2

+
(

(x1 − y1)2 (x1 − y1)(x2 + y2)
(x1 − y1)(x2 + y2) (x2 + y2)2

)

·
(

Φ2(r)
r2

− Φ2(r′)
r′2

)}
.

So it obviously suffices to show the estimate for the functions

Φ1(r) − Φ1(r′),
(x1 − y1)Φ2(r)

r2
,
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and

(x1 − y1)2
(

Φ2(r)
r2

− Φ2(r′)
r′2

)
.

Using the mean value theorem yields

|Φ1(r) − Φ1(r′)| ≤ |r − r′| max
r≤t≤r′

|Φ′
1(t)| =

4x2y2
r + r′

max
r≤t≤r′

|Φ′
1(t)|,

and thus the asymptotic decay rate of Hankel functions and their
derivatives as, e.g., given in [6] yields the asserted estimate in the
first case because of the assumption |x − y| ≥ 1. In the second case,
(x1 − y1)/r is bounded and (Φ2(r)/r) has the required decay rate. For
the last function, we rewrite

Φ2(r)
r2

− Φ2(r′)
r′2

=
1

r2 + 4x2y2

(
Φ2(r) − Φ2(r′) +

4x2y2
r2

Φ2(r)
)
.

Now (x1−y1)2/(r2+4x2y2) is bounded, Φ2(r)−Φ2(r′) can be estimated
in the same way as Φ1(r) − Φ1(r′) above and (Φ2(r)/r2) decays even
faster than required.

To prove a similar estimate for U , a more detailed analysis is re-
quired. To obtain alternative representations of the integrals used in
the definition of U , γp and γs need to be extended to analytic functions
in the complex plane. To this end, branch cuts from ±kp and ±ks,
respectively, to ±kp ± i∞ and ±ks ± i∞ are introduced. Further, note
that the integrands in the definition of U do not have any singularities
on the chosen branches of γp and γs. Restricting ourselves to the case
x1 > y1 for the moment, we deform the path of integration into the
lower half plane as illustrated in Figure 1.

It is easily seen that the integrals over the arcs vanish as their radius
tends to infinity, so only the branch line integrals remain. Denoting
the paths of integration along the branch cuts by C1 ∪ C2 and C3 ∪ C4,
as indicated in Figure 1, and introducing the function

M(t, γp, γs) := − i

2πω2
(Mp(t, γp, γs;x2, y2) +Ms(t, γp, γs;x2, y2)),
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�kp�ks �

kp ks

branch cuts

path of integration

C� C� C� C�

Im�t�

Re�t�

FIGURE 1. The path of integration.

we rewrite U as

U(x,y) =
∫
C1∪C2

M(t, γp, γs)e−iX1t dt

+
∫
C3∪C4

M(t, γp, γs)e−iX1t dt

= (−i)
∫ ∞

0

{M(−ks − is, γp|C2 , γs|C2)

−M(−ks − is, γp|C1 , γs|C1)}e−X1s+iX1ks ds

+ (−i)
∫ ∞

0

{M(−kp − is, γp|C4 , γs|C4)

−M(−kp − is, γp|C3 , γs|C3)}e−X1s+iX1kp ds.

Note that γs|C1 = −γs|C2 and γp|C1 = γp|C2 ; corresponding relations
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hold on C3 and C4. Using the mean-value theorem, we thus conclude

M(−ks − is, γp|C2 , γs|C2) −M(−ks − is, γp|C1 , γs|C1)

= 2 Re (γs|C2)
∂M

∂γs
(−ks − is, γp|C1 , ξ)

for some ξ ∈ (γs|C1 , γs|C2). Now (∂M/∂γs)(−ks − is, γp|C1 , ξ) is seen
to be continuously dependent on s in [0,∞), and for some constant C
continuously dependent on x2 and y2, |s−1/2 Re (γs|C2)(∂M/∂γs)(−ks−
is, γp|C1 , ξ)| ≤ C holds for s ∈ [0, 1]. Analogous results hold for the
second integral. Therefore, we can estimate the asymptotic decay rate
of U by employing the following lemma with r = (1/2).

Lemma 2.3. Assume q ∈ C([0,∞)) so that C1 :=
∫ ∞
0

|q(s)|e−s ds
exists. For X > 1, set

I(X) :=
∫ ∞

0

q(s)e−Xs ds.

Further assume that for some r > −1 there exists C2 > 0 with
|s−rq(s)| ≤ C2 for all s ∈ [0, 1]. Then for X ≥ 1 + (r + 1) logX,

|I(X)| ≤ (C1 + Γ(r + 1)C2)
1

Xr+1
.

Proof. We can estimate

∣∣∣∣
∫ 1

0

q(s)e−Xs ds

∣∣∣∣ ≤ C2

∫ 1

0

sre−Xs ds ≤ C2
Γ(r + 1)
Xr+1

.

On the other hand, we have
∣∣∣∣
∫ ∞

1

q(s)e−Xs ds

∣∣∣∣ ≤ e−(X−1)

∫ ∞

1

|q(s)|e−s ds ≤ C1

Xr+1

for all X ≥ 1 + (r + 1) logX. Adding these two estimates yields the
assertion.
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An identical analysis also yields this decay rate for x1 < y1. The
only difference is that the path of integration has to be deformed into
the upper half plane. Thus, also recalling Lemma 2.2, the following
theorem is proved.

Theorem 2.4. For x,y ∈ R2
+, |x1 − y1| ≥ e, the estimate

max
j,k=1,2

|ΓD,jk(x,y)| ≤ h(x2, y2)
|x1 − y1|3/2

holds, where h ∈ C(R2).

The Green’s tensor ΓD also satisfies the radiation condition often
used in elastic scattering problems, Kupradze’s radiation condition. Let
Γ(p)

D := −k−2
p grad xΓD denote the longitudinal and Γ(s)

D := ΓD − Γ(p)
D

the transversal part of ΓD. Then the following theorem holds.

Theorem 2.5. Let r := |x|. For y ∈ R2
+ fixed,

Γ(p)
D (x,y) = O(r−1/2),

∂Γ(p)
D

∂r
(x,y) − ikpΓ

(p)
D (x,y) = o(r−1/2),

Γ(s)
D (x,y) = O(r−1/2),

∂Γ(s)
D

∂r
(x,y) − iksΓ

(s)
D (x,y) = o(r−1/2)

uniformly in x/r as r → ∞.

Proof. As the assertion is a well-known fact for Γ, it suffices to
show it for U . Observe that terms in (9) involving Mp represent the
longitudinal and the term involving Ms the transversal part of U . For
fixed y, an entry U (p)

jk (·,y), j, k = 1, 2, of the transversal part satisfies
the scalar Helmholtz equation

ΔxU
(p)
jk (x,y) + k2

pU
(p)
jk (x,y) = 0 in R2

+
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and the boundary condition

U
(p)
jk (x,y) = g(x) := −Γjk(x,y) + Γjk(x,y′) − U

(s)
jk (x,y)

on {x2 = 0}.

From (9) we see that U (p)
jk satisfies the upward propagating radiation

condition of [5], see [3] for details. Reviewing the proof of Theorem 2.4,
we see that g(x) = O(|x1|−3/2) as |x1| → ∞. We can thus use the
argument presented in Section 5 of [5] to conclude

|U (p)
jk (x,y)| ≤ C(1 + x2)(1 + r)−3/2

and
∂U

(p)
jk

∂r
(x,y) − ikpU

(p)jk(x,y) = o(r−1/2).

The same argument can be applied to U (s).

3. Derivatives of the Green’s tensor. In this section we
will investigate the properties of certain derivatives of ΓD. Recalling
Hooke’s law (1), we follow Kupradze [16] in introducing a generalized
stress tensor P = (πjk) by

πjk := b div uδjk + μ
∂uj

∂xk
+ a

∂uk

∂xj
,

where a, b are real numbers satisfying a + b = λ + μ. Given a curve
Λ ⊂ R2 with a normal n, the generalized stress vector is defined by

Pu := Pn = (μ+ a)
∂u
∂n

+ bndiv u + a

⎛
⎜⎜⎝
n2

(
∂u2

∂x1
− ∂u1

∂x2

)

n1

(
∂u1

∂x2
− ∂u2

∂x1

)
⎞
⎟⎟⎠ .

Where it is important to distinguish between derivatives taken with
respect to x and y, the notations P(x) and P(y) will be used. The
choice of a and b is left open for the moment. In the case a = μ and
b = λ, Pu reduces to the standard stress vector or traction across Λ.
In the case a = μ(λ + μ)/(λ + 3μ) and b = (λ + 2μ)(λ + μ)/(λ + 3μ),
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Pu is called the pseudostress vector and will also be denoted by Nu.
The significance of this choice will become clear in Section 4.

By applying P· to ΓD, the matrix-functions Π(1)
D and Π(2)

D are intro-
duced:

Π(1)
D,jk(x,y) := (P(x)(ΓD,·k(x,y)))j,

Π(2)
D,jk(x,y) := (P(y)(ΓD,j·(x,y))�)k.

Theorem 3.1. Theorems 2.4 and 2.5 hold with ΓD replaced by Π(1)
D

and Π(2)
D respectively.

Proof. The theorem follows from Lemma 7.2 in [1].

A standard result is the third generalized Betti formula.

Lemma 3.2. Let B ⊆ R2 be a bounded domain in which the
divergence theorem holds. Then, for v,w ∈ C2(B) the third generalized
Betti formula holds

(10)
∫

B

(v · Δ∗w − w · Δ∗v)dx =
∫

∂B

(v · Pw − w · Pv) ds.

Via an application of (10), it is possible to prove the following
reciprocity relation for ΓD.

Lemma 3.3. Let x,y ∈ R2
+, x �= y. Then

ΓD(x,y) = ΓD(y,x)�.

Proof. Let Bε(z) denote the open ball with radius ε and center z,
and set ΩR,ε := {z ∈ R2

+ : |z| < R, z /∈ Bε(x) ∪Bε(y)}. Using (10), it
then follows that

0 =
∫

ΩR,ε

ΓD,·j(z,x) · Δ∗
zΓD,·k(z,y) − ΓD,·k(z,y) · Δ∗

zΓD,·j(z,x) dz
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=
∫

∂ΩR,ε

ΓD,·j(z,x) · Π(1)
D,·k(z,y) − ΓD,·k(z,y) · Π(1)

D,·j(z,x) ds(z)

−→ ΓD,kj(y,x) − ΓD,jk(x,y) ε −→ 0, R −→ ∞
as the integrals over {|z| = R} vanish for R→ ∞ by Theorems 2.5 and
3.1, and it can be seen by a standard argument from potential theory
that the integrals over ∂Bε(x) and ∂Bε(y) converge to −ΓD,jk(x,y)
and ΓD,kj(y,x), respectively.

Theorem 3.4. (a) For y ∈ R2
+, the columns of Π(2)

D (·,y) are
solutions to the Navier equation (3) in R2

+\{y}.
(b) For x ∈ R2

+, the rows of Π(1)
D (x, ·) are solutions to the Navier

equation (3) in R2
+\{x}.

(c) For x,y ∈ R2
+, x �= y, the following holds:

Π(2)
D (x,y) = Π(1)

D (y,x)�.

(d) Let B ⊆ R2
+ be a bounded domain in which the divergence theorem

holds. Then any solution u to the Navier equation can be represented
as

u(x) =
∫

∂B

ΓD(x,y)Pu(y)− Π2
D(x,y)u(y) ds(y)

for all x ∈ B.

Proof. Part (c) is an immediate consequence of Lemma 3.3. Part (a)
follows from Theorem 2.1 and the definition of the generalized stress
vector. Part (b) follows from parts (a) and (c). Part (d) holds because
of the corresponding relation for Γ, see, e.g., [7, 16] together with
Theorem 2.1 and (10).

4. Single- and double-layer potentials. In the following, assume
φ ∈ BC(S) to be a vector valued density. The normal n on S will be
assumed to be pointing into Ω. We define a single-layer potential by

(11) v(x) :=
∫

S

ΓD(x,y)φ(y) ds(y) for x ∈ R2
+\S,
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and a double-layer potential by

(12) w(x) :=
∫

S

Π(2)
D (x,y)φ(y) ds(y) for x ∈ R2

+\S.

Remark 4.1. As a consequence of Theorems 2.4 and 3.1, for a vector
field φ ∈ BC(S), the integrals∫

S

ΓD(x,y)φ(y) ds(y)

and ∫
S

Π(j)
D (x,y)φ(y) ds(y), j = 1, 2,

exist as improper integrals for all x ∈ R2
+\S.

From now on, we will assume that f is 2π-periodic (in the case of a
different period, this can always be achieved through a simple change
of variables). The following periodicity property, see also [9, 14], will
be of some importance in the following.

Definition 4.2. A vector field u : D → C2, where either D = Ω or
D = S, is called quasi-periodic with phase-shift α �= 0 if

u(x1 + 2π, x2) = eiα2πu(x1, x2) for all x = (x1, x2) ∈ Ω.

Set Λ := {x ∈ S : 0 < x1 < 2π}. The integrals over S in the definition
of the single- and double-layer potentials can then be reduce to integrals
over Λ.

Lemma 4.3. Assume φ to be quasi-periodic with phase-shift α and
K to be a compact subset of R2

+ × R2
+. Then, with p = (2π, 0)�, the

series

ΓDp(x,y) :=
∑
n∈Z

e−iα2πnΓD(x + np,y),

Π(j)
Dp(x,y) :=

∑
n∈Z

e−iα2πnΠ(j)
D (x + np,y), j = 1, 2,
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converge absolutely and uniformly on K\{(x,y) : x − y ∈ pZ}.
Furthermore,∫

S

ΓD(x,y)φ(y) ds(y) =
∫

Λ

ΓDp(x,y)φ(y) ds(y),∫
S

Π(j)
D (x,y)φ(y) ds(y) =

∫
Λ

Π(j)
Dp(x,y)φ(y) ds(y),

j = 1, 2, for x ∈ R2
+.

Proof. The absolute and uniform convergence of the series is implied
by Theorems 2.4 and 3.1. The second part of the lemma is a direct
consequence of the dominated convergence theorem.

From now on it will be assumed that φ is quasi-periodic. The
following theorem then lists some standard results for the two layer
potentials.

Theorem 4.4. (a) v and w are quasi-periodic solutions to the Navier
equation (3) in Ω and in R2

+\Ω.

(b) v can be continuously extended to a function on R2
+ and

v(x) =
∫

S

ΓD(x,y)φ(y) ds(y)

for x ∈ S where the integral exists as an improper integral.

Proof. Part (a) of the theorem is obvious as it is possible to exchange
differentiation and integration for x /∈ S. The quasi-periodicity of v
and w is easily verified directly.

To prove part (b), set

vN (x) :=
N∑

n=−N

∫
Λ

e−iα2πnΓD(x + np,y)φ(y) ds(y).

For vN with ΓD replaced by Γ, the assertion is a well-known result [7].
However, from the properties of ΓD − Γ, as listed in Theorem 2.1, it is
easily seen that it also holds for vN .
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Further, let Lh := {x ∈ Ω : 0 ≤ x1 ≤ 2π, x2 < h}. From Lemma 4.3
it follows that ‖v − vN‖∞,Lh

→ 0. Thus (b) holds for x on Λ. But as
v is quasi-periodic, the assertion follows for x ∈ S.

At this stage it is advantageous to make a special choice for the two
real numbers a and b in the definition of the generalized stress vector. In
general, Π(j)(x,y), j = 1, 2, has a strong singularity at x = y. However,
when using the pseudo stress vector, i.e., a = μ(λ + μ)/(λ + 3μ) and
b = (λ+ 2μ)(λ+μ)/(λ+ 3μ) all but the normal derivatives cancel [16]
so that only weak singularities have to be dealt with.

Theorem 4.5. Assume a = μ(λ+μ)/(λ+3μ) and b = (λ+2μ)(λ+
μ)/(λ+ 3μ). Then the following statements hold.

(a) The vector field w+ := w|Ω can be extended continuously to Ω
and the relation

w+(x) =
1
2
φ(x) +

∫
S

Π(2)
D (x,y)φ(y) ds(y)

holds on S.

(b) If φ ∈ C0,α(S), then v+ := v|Ω ∈ C1,α(Ω) and v− := v|(R2
+\Ω) ∈

C1,α(R2
+\Ω). The relations

Nv+(x) = −1
2
φ(x) +

∫
S

Π(1)
D (x,y)φ(y) ds(y)

and
Nv−(x) =

1
2
φ(x) +

∫
S

Π(1)
D (x,y)φ(y) ds(y)

hold on S.

(c) For φ ∈ BC(S), the following holds∫
S

ΓD(·,y)φ(y) ds(y),
∫

S

Π(j)
D (·,y)φ(y) ds(y) ∈ C0,α(S).

Proof. The method of proof of (a) is essentially the same as for
Theorem 4.4 (b).
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For (b), we first note that the assertion holds for vN as defined in the
proof of Theorem 4.4. This can be shown in essentially the same way as
in [11, 16] for the three-dimensional case. Furthermore, the sequence
(vN ) is Cauchy in C1,α(B±) where B− := {x ∈ R2 : 0 ≤ x1 ≤ 4π, 0 <
x2 < f(x1)} and B+ := {x ∈ R2 : 0 ≤ x1 ≤ 4π, f(x1) < x2 < h}
with h > max f . This can easily be proven with an argument similar
to that employed in the proof of Lemma 4.3 together with Lemma 7.2
in [1]. The assertion then follows for Ω and R2

+\Ω because of the
quasi-periodicity of v.

Part (c) is shown in the same way as part (b).

5. Scattering by diffraction gratings. We are now finally able
to derive the new integral equation formulation for the problem of
plane elastic wave scattering by a diffraction grating. Throughout
this section it will be assumed that a = μ(λ + μ)/(λ + 3μ) and
b = (λ+ 2μ)(λ+ μ)/(λ+ 3μ).

In the following, we will only consider plane incident waves of the
form

uinc(x) = θ̂eikpx·θ̂,

i.e., incident compressional waves. However, this is done only for
technical simplicity and it is shown in [1] that all arguments can easily
be generalized to hold for incident shear waves and incident plane waves
of the general form (4).

We will thus consider the scattering problem:

(13)
Δ∗u + ω2u = 0 in Ω,

u = −uinc on S.

To ensure uniqueness of solution to (13), a radiation condition has to
be imposed. The condition we will use is similar to the one employed
in solving diffraction grating problems for acoustic waves [14] and has
been used successfully for elastic wave scattering in [1, 9, 18].

Definition 5.1. A bounded vector field u : Ω → C2, quasi-periodic
with phase-shift α, is called radiating if, for x2 > max f it has an
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expansion of the form

u(x) =
∑
n∈Z

{
up,n

(
αn

βn

)
ei(αnx1+βnx2) + us,n

(
γn

−αn

)
ei(αnx1+γnx2)

}
,

where up,n, us,n ∈ C, n ∈ Z, αn := α+ n,

βn :=

⎧⎨
⎩

√
k2

p − α2
n, α2

n ≤ k2
p

i
√
α2

n − k2
p, α2

n > k2
p,

γn :=

{√
k2

s − α2
n, α2

n ≤ k2
s

i
√
α2

n − k2
s , α2

n > k2
s .

The space of admissible solutions to the scattering problem will be
denoted by

QR(α) :=
{
u∈C2(Ω) ∩ C(Ω) : u is quasi-periodic with phase-shift α,

bounded, radiating and solves (3)

}
.

Remark 5.2. It is shown in [1] that the scattering problem (13) has
at most one solution in the set QR(kpθ̂1).

Remark 5.3. Using Lemma 4.3 the methods employed in the proof
of Theorem 7.1 in [1] can be used together with Theorems 2.1, 2.4,
2.5 and 3.1 to prove that the layer potentials v and w are elements of
QR(α) provided the density φ is quasi-periodic with phase-shift α.

We now make an ansatz for the solution u to the scattering problem
which was first proposed by Brakhage and Werner [2]:

(14) u(x) =
∫

Λ

Π(2)
Dp(x,y)φ(y) ds(y)− iη

∫
Λ

ΓDp(x,y)φ(y) ds(y)

where φ ∈ C(S) is a quasi-periodic density with phase-shift kpθ̂1 and
η a complex number satisfying Re (η) �= 0. From Remark 5.3 it follows
that u ∈ QR(kpθ̂1). From Theorems 4.4 and 4.5 we thus conclude that
u is a solution to the scattering problem (13) if φ satisfies the integral
equation

(15)
1
2
φ(x) +

∫
Λ

(Π(2)
Dp(x,y) − iηΓDp(x,y))φ(y) ds(y) = −uinc(x)

on Λ.
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Theorem 5.4. The integral equation (15) has a unique quasi-periodic
solution φ with phase-shift kpθ̂1.

Proof. The method of proof follows closely along the lines of the exis-
tence proof in [1]. Let C2π denote the space of 2π-periodic continuous
functions. For ψ ∈ C2π, we define the integral operators Sθ̂1

,Kθ̂1
and

K ′
θ̂1

as

Sθ̂1
ψ(t) := 2

∫ 2π

0

eikpθ̂1(s−t)ΓDp(t, f(t), s, f(s))

·
√

1 + f ′(s)2ψ(s) ds,

Kθ̂1
ψ(t) := 2

∫ 2π

0

eikpθ̂1(s−t)Π(2)
Dp(t, f(t), s, f(s))

·
√

1 + f ′(s)2ψ(s) ds,

K ′
θ̂1
ψ(t) := 2

∫ 2π

0

eikpθ̂1(s−t)Π(1)
Dp(t, f(t), s, f(s))

·
√

1 + f ′(s)2ψ(s) ds,

with t ∈ [0, 2π]. As was remarked earlier, the kernels of these integral
operators are weakly singular and the integral operators themselves are
thus seen to be compact in C2π. Furthermore, Sθ̂1

and S−θ̂1
are adjoint

with respect to the duality

〈φ, ψ〉 :=
∫ 2π

0

φ · ψ
√

1 + f ′(t)2 dt,

as are Kθ̂1
and K ′

−θ̂1
.

By multiplying (15) by e−ikpθ̂1x1 and setting ψ(x1) := e−ikpθ̂1x1

φ(x1, f(x1)) (note that ψ ∈ C2π), we obtain the equivalent equation

(16)
ψ(t) +Kθ̂1

ψ(t) − iηSθ̂1
ψ(t) = −2e−ikpθ̂1tuinc(t, f(t)),

t ∈ [0, 2π].

The Fredholm alternative can be applied to (16). In fact, we will
complete the proof by showing that the equation

(17) ψ +K ′
−θ̂1

ψ − iηS−θ̂1
ψ = 0



A NEW INTEGRAL EQUATION FORMULATION 295

only admits the trivial solution.

Assume ψ0 ∈ C2π to be a solution to (17). Setting φ0(x) :=
e−ikpθ̂1x1ψ0(x1) and

v(x) :=
∫

Λ

ΓDp(x,y)φ0(y) ds(y), x ∈ R2
+\S,

we know from Theorem 4.4 and Remark 5.3 that v is continuous in R2
+,

a solution to the Navier equation in both Ω and R2
+\Ω and radiating in

Ω. From Theorem 4.5 (c) and (17) we further conclude φ0 ∈ C0,α(S).
Thus, by Theorem 4.5 (b),

2eikpθ̂1x1Nv− = ψ0 +K ′
−θ̂1

ψ0

and from (17) we conclude Nv− − iηv− = 0 on S. On the other hand,
v− = 0 holds on {x2 = 0} because of the properties of the Green’s
tensor. Thus, setting Λ0 := {x ∈ R2 : 0 < x1 < 2π, x2 = 0}, we have

Re (η)
∫

Λ

|v−|2 ds = − 1
2i

∫
Λ

v− · Nv̄− − v̄− · Nv− ds

=
1
2i

∫
Λ0

v− · Nv̄− − v̄− · Nv− ds

= 0

by the third generalized Betti formula (10) as the integrals over {x1 =
0} and {x1 = 2π} cancel out because of the quasi-periodicity of v−.
Thus Nv− = v− = 0 on Λ. Consequently, as v is continuous, v+ = 0
also holds on S. From this, recalling Remark 5.2, we conclude that
v+ ≡ 0 in Ω. Thus, Nv+ = 0 on S; consequently, φ0 = Nv−−Nv+ = 0
and therefore also ψ0 = 0.

Thus the unique solvability of the scattering problem for all combi-
nations of wave-numbers and angle of incidence is proved. Recalling
that this result can easily be extended to general incident plane waves,
we state our final theorem.

Theorem 5.5. Given an incident plane wave of the form

uinc(x) = apθ̂e
ikpx·θ̂ + asθ

⊥eiksx·θ̂, ap, as ∈ C,
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the scattering problem

μΔu + (λ+ μ) grad div u + ω2u = 0 in Ω,
u + uinc = 0 on S

has a unique solution in the space QR(kpθ̂1) +QR(ksθ̂1).
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