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ABSTRACT HYPERBOLIC VOLTERRA
INTEGRODIFFERENTIAL EQUATIONS

YUHUA LIN AND NAOKI TANAKA

ABSTRACT. This paper is devoted to the study of
the problem of global solvability for the abstract hyperbolic
Volterra integrodifferential equation

(VIE)

⎧⎨
⎩

u′(t)=A(t)u(t)+
∫ t

0
g(t, s, u(s)) ds+f(t) for t ≥ 0

S(t)u(t) ∈ D for t ≥ 0

u(0) = φ

in a general Banach space X. The result obtained here is ap-
plicable to semilinear hyperbolic integrodifferential equations
with the so-called third kind boundary conditions in a space
of continuous functions.

0. Introduction. The main object of this paper is the study of
global solvability for the semilinear hyperbolic Volterra integrodiffer-
ential equation

(VIE)

⎧⎪⎨
⎪⎩
u′(t) = A(t)u(t) +

∫ t
0
g(t, s, u(s)) ds+ f(t) for t ≥ 0

S(t)u(t) ∈ D for t ≥ 0
u(0) = φ

in a general Banach space X. Here {A(t) : t ≥ 0} is a given family
of bounded linear operators on Y to X, where Y is another Banach
space continuously imbedded in X, D is a closed linear subspace in Y ,
{S(t) : t ≥ 0} is a given family of isomorphisms of X onto X, g(t, s, w)
is an X-valued function of (t, s) ∈ Δ := {(t, s) : 0 ≤ s ≤ t < ∞} and
w ∈ Y , and f ∈ C1([0,∞) : X).
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This is the abstract version of the semilinear hyperbolic Volterra
integrodifferential equation

utt(t, x) = a(t, x)uxx(t, x) +
∫ t

0

b(t, s, x, u(s, x), ux(s, x), uxx(s, x)) ds

with the so-called third kind boundary condition

ux(t, 0) − α(t)u(t, 0) = ux(t, 1) + β(t)u(t, 1) = 0.

It should be noted here that the inclusion S(t)u(t) ∈ D appearing in
(VIE) is used to represent such boundary conditions. (See the final
part of Section 3.)

To handle equations involving differential operators with time-depen-
dent and nondense domains, we employ a family {S(t) : t ≥ 0} of
isomorphisms of X onto X and generalize the notion of Hille-Yosida
operators to the time-dependent case, where we mean by a Hille-Yosida
operator that it satisfies the assumptions of the Hille-Yosida theorem
characterizing the infinitesimal generators of semigroups of class (C0)
except for the density of their domains. It should be noted that the
study of inhomogeneous abstract Cauchy problems for Hille-Yosida
operators was initiated by Da Prato and Sinestrari [1] and their results
have been extended to the case of quasi-linear evolution equations by
Tanaka [11] and that the study of time-dependent initial value problems
by using such a family {S(t) : t ≥ 0} is found in the paper [6] by Kato.

In Section 2 we study the problem of existence of local solutions
to (VIE). The result obtained here is a generalization of the recent
result by Nagel and Sinestrari [10] concerning the problem (VIE) with
S(t) = I, the identity operator on X, for a Hille-Yosida operator,
see also [9]. Our proof is different from theirs and based on the
“generalized variation of constants” formula, see Theorem 1.4. This
formula together with some properties of integral term appearing in
(VIE), see Lemma 1.5, will enable us to study the problem of existence
of local solutions by the usual contraction arguments.

Section 3 contains the study of global solvability for (VIE). In [5]
Hrusa discussed by the energy method the problem of the global
existence of solutions of semilinear integrodifferential equations in the
L2 framework. We are interested in the operator-theoretical approach
to the problem of this kind. This is a motivation of our work in this
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section, and a similar investigation to ours was carried out by Heard [3,
4] in the special case of S(t) = I. Finally we give an application of our
abstract theory to the concrete semilinear integrodifferential equations
with the third kind boundary conditions.

In the rest of this section we list the notation used in this paper. We
denote by B(Y,X) the set of all bounded linear operators on Y to X
with the associated operator norm ‖ · ‖Y,X . We use subscript ∗ to refer
to the strong operator topology in B(Y,X); namely C∗([a, b] : B(Y,X))
is the space of all strongly continuous operator functions on Y to X,
while C([a, b] : B(Y,X)) is the space of all norm-continuous functions.
We write for simplicity MB(τ ) = sup{‖B(t)‖ : t ∈ [0, τ ]} if B(·) ∈
C∗([0, τ ] : B(X)). The symbol {A(t) : t ∈ [0, T0]} ∈ S�(X,M,ω) means
that (ω,∞) ⊂ ρ(A(t)) for t ∈ [0, T0], and

∥∥∥∥
k∏
j=1

(λI −A(tj))−1

∥∥∥∥ ≤M(λ− ω)−k for λ > ω

and every finite sequence {tj}kj=1 with 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ T0 and
k = 1, 2, . . . . Products containing {tj} will always be “time-ordered,”
namely a factor with a larger tj stands to the left of ones with smaller
tj . We say that this condition is the stability condition and the pair
{M,ω} is the stability index.

1. Basic hypotheses and preliminaries. Throughout this paper,
let X be a Banach space with norm ‖ · ‖, Y another Banach space
with norm ‖ · ‖Y which is continuously imbedded in X and D a closed
linear subspace in Y . We begin by setting up basic hypotheses on the
operators A(t), S(t) and g(t, s, w) appearing in the equation (VIE).

The family {A(t) : t ≥ 0} in B(Y,X) satisfies conditions (a1) through
(a3) below.

(a1) For each τ > 0 there is a constant cA(τ ) ≥ 1 such that

(1.1) ‖y‖Y ≤ cA(τ )(‖y‖ + ‖A(t)y‖) for (t, y) ∈ [0, τ ] × Y .

Since A(t) ∈ B(Y,X) and D is closed in Y , it follows from condition
(a1) that for each t ≥ 0, A(t)|D is a closed linear operator in X. Here
A(t)|D is the restriction of an operator A(t) to D.
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(a2) For each τ > 0 there are constants M(τ ) ≥ 1 and ω(τ ) ≥ 0 such
that

{A(t)|D : t ∈ [0, τ ]} ∈ S�(X,M(τ ), ω(τ )).

(a3) A(·) ∈ C1
∗([0,∞) : B(Y,X)).

The family {S(t) : t ≥ 0} of isomorphisms of X onto X satisfies the
following conditions.

(s1) S(·) ∈ C2
∗([0,∞) : B(X)).

(s2) There is a family {B(t) : t ≥ 0} in B(X) such that

(1.2) S(t)A(t)S(t)−1 = A(t) +B(t) for t ≥ 0

and that B(·) ∈ C1
∗([0,∞) : B(X)).

The X-valued function g(t, s, w) defined for (t, s) ∈ Δ and w ∈ Y
satisfies two conditions below:

(g1) For each w ∈ Y , g(t, s, w) is continuous in X on Δ. For each
τ, r > 0 there exists Lg(τ, r) > 0 such that

(1.3) ‖g(t, s, w) − g(t, s, z)‖ ≤ Lg(τ, r)‖w − z‖Y

for (t, s) ∈ Δ(τ ) := {(t, s) : 0 ≤ s ≤ t ≤ τ} and w, z ∈ BY (r) := {w ∈
Y : ‖w‖Y ≤ r}.

(g2) For each (s, w) ∈ [0,∞) × Y , g(t, s, w) is differentiable in t with
(t, s) ∈ Δ. For each w ∈ Y , (∂/∂t)g(t, s, w) is continuous in X on Δ.
For each τ, r > 0 there exists L̃g(τ, r) > 0 such that

(1.4) ‖(∂/∂t)g(t, s, w) − (∂/∂t)g(t, s, z)‖ ≤ L̃g(τ, r)‖w − z‖Y

for (t, s) ∈ Δ(τ ) and w, z ∈ BY (r).

We shall investigate some properties of the family {S(t) : t ≥ 0}.

Lemma 1.1. The following assertions hold.

(i) S(·)−1 ∈ C1
∗([0,∞) : B(X)) and (d/dt)S(t)−1x = −S(t)−1∂S(t)×

S(t)−1x for x ∈ X and t ≥ 0. Here and subsequently ∂S(t)x denotes
the derivative of S(t)x.

(ii) S(t)(Y ) = Y for t ≥ 0.
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(iii) Both S(·) and S(·)−1 belong to C∗([0,∞) : B(Y )).

Proof. Assertion (i) is an elementary fact. Relation (1.2) implies
{x ∈ X : S(t)−1x ∈ Y } = Y , and so (ii) is true. We note that
S(t), S(t)−1 ∈ B(Y ) by the closed graph theorem. To prove (iii), let
y ∈ Y and t0 ≥ 0. We have by (1.1)

‖S(t)y − S(t0)y‖Y ≤ cA(t0 + 1)(‖S(t)y − S(t0)y‖
+ ‖A(t)S(t)y −A(t0)S(t0)y‖
+ ‖(A(t0) −A(t))S(t0)y‖)

for t ∈ [0, t0 + 1]. By (1.2) we have A(t)S(t)y = S(t)A(t)y−B(t)S(t)y
for t ≥ 0, which shows that A(t)S(t)y is continuous in t ≥ 0. Assertion
(iii) follows from this fact, (a3) and (s1). Similarly we have S(·)−1 ∈
C∗([0,∞) : B(Y )).

Lemma 1.2. We define a family {A(t) : t ≥ 0} by

A(t) = A(t)|D +B(t) + ∂S(t)S(t)−1

for t ≥ 0. Then the following assertions hold.

(A1) For each t ≥ 0, A(t) is a closed linear operator in X with domain
D.

(A2) For each τ > 0 we have

‖y‖Y ≤ cA(τ )(‖y‖ + ‖A(t)y‖) for (t, y) ∈ [0, τ ] ×D,

where cA(τ ) = cA(τ )(1 + sup{‖B(t) + ∂S(t)S(t)−1‖ : t ∈ [0, τ ]}).
(A3) For each τ > 0, {A(t) : t ∈ [0, τ ]} ∈ S�(X,M(τ ), β(τ )), where

β(τ ) = ω(τ ) +M(τ ) sup{‖B(t) + ∂S(t)S(t)−1‖ : t ∈ [0, τ ]}.
(A4) A(·) ∈ C1

∗([0,∞) : B(D,X)).

Proof. (A1) and (A4) are obvious. (A2) follows from (1.1) by
an easy computation. To prove (A3), let τ > 0. The fact that
(β(τ ),∞) ⊂ ρ(A(t)) for t ∈ [0, τ ] is proved by the identity

(1.5)

(λI−A(t))−1 = (λI−A(t)|D)−1

·
∞∑
n=0

((B(t)+∂S(t)S(t)−1)(λI−A(t)|D)−1)n
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for λ > β(τ ) and t ∈ [0, τ ]. It is known [11, Lemma 1.1] that there is
a family {| · |t : t ∈ [0, τ ]} of norms on X such that

(n1) ‖x‖ ≤ |x|t ≤ |x|s ≤M(τ )‖x‖ for x ∈ X and (t, s) ∈ Δ(τ ),

(n2) |(λI − A(t)|D)−1x|t ≤ (λ− ω(τ ))−1|x|t for x ∈ X, t ∈ [0, τ ] and
λ > ω(τ ).

The stability condition is shown as follows. Let {ti}ki=1 be a finite
sequence such that 0 = t0 ≤ t1 ≤ · · · ≤ tk ≤ τ and λ > β(τ ). By (n1)
and (n2) we have

|(B(t) + ∂S(t)S(t)−1)(λI −A(t)|D)−1x|t
≤M(τ )‖(B(t) + ∂S(t)S(t)−1)(λI −A(t)|D)−1x‖
≤M(τ )‖B(t) + ∂S(t)S(t)−1‖(λ− ω(τ ))−1|x|t

for x ∈ X and t ∈ [0, τ ]. By this fact we estimate (1.5) to give

(1.6) |(λI −A(t))−1x|t ≤ (λ− β(τ ))−1|x|t

for x ∈ X and t ∈ [0, τ ]. Set al := |∏l
i=1(λI − A(ti))−1x|tl for

l = 0, 1, . . . , k. By (1.6) we have al ≤ (λ − β(τ ))−1|∏l−1
i=1(λI −

A(ti))−1x|tl ≤ (λ− β(τ ))−1al−1 for l = 1, 2, . . . , k. Here we have used
property (n1). Solving this inequality we find ak ≤ (λ − β(τ ))−ka0.
The stability condition is proved by using (n1) again.

The following is a direct consequence of [11, Theorem 1.5].

Theorem 1.3. Let {A(t) : t ≥ 0} be the family defined as in Lemma
1.2. Then the limit U(t, s)x = limλ↓0 Uλ(t, s)x exists for x ∈ D and
(t, s) ∈ Δ. Here Uλ(t, s) =

∏[t/λ]
i=[s/λ]+1(I − λA(iλ))−1 for (t, s) ∈ Δ,

and D denotes the closure of D in X. The family {U(t, s) : (t, s) ∈ Δ}
satisfies the following properties:

(e1) U(t, s) : D → D for (t, s) ∈ Δ;

(e2) U(t, t)x = x and U(t, r)U(r, s)x = U(t, s)x for x ∈ D and
(t, r), (r, s) ∈ Δ;

(e3) the mapping (t, s) → U(t, s)x is continuous on Δ for any x ∈ D;
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(e4) for each τ > 0, ‖U(t, s)x‖ ≤M(τ ) exp(β(τ )(t−s))‖x‖ for x ∈ D
and (t, s) ∈ Δ(τ ).

We say that the family {U(t, s) : (t, s) ∈ Δ} is the evolution operator
on D generated by {A(t) : t ≥ 0}.

Our argument in this paper is based on the following.

Theorem 1.4. Let {A(t) : t ≥ 0} be the family defined as in Lemma
1.2. Let τ > 0, s ∈ [0, τ ) and h ∈ C1([s, τ ] : X). If the compatibility
condition x ∈ D and A(s)x+ h(s) ∈ D is satisfied, then the problem

(CP;(s, x), h)
{
u′(t) = A(t)u(t) + h(t) for t ∈ [s, τ ]
u(s) = x

has a unique solution u ∈ C([s, τ ] : D) ∩ C1([s, τ ] : X) given by

(1.7) u(t) = U(t, s)x+ lim
λ↓0

∫ t

s

Uλ(t, r)h(r) dr

for s ≤ t ≤ τ . Moreover, the solution u satisfies the equation

(1.8)
A(t)u(t) + h(t) = U(t, s)(A(s)x+ h(s))

+ lim
λ↓0

∫ t

s

Uλ(t, r)(∂A(r)u(r) + h′(r)) dr

for s ≤ t ≤ τ . Here {U(t, s) : (t, s) ∈ Δ} is the evolution operator on
D generated by {A(t) : t ≥ 0}.

Proof. We define a family {Ã(t) : t ∈ [0, τ ]} by

Ã(t) =
(

A(t) h(s∨t)
0 0

)

for t ∈ [0, τ ]. We note that {Ã(t) : t ∈ [0, τ ]} is stable by [11, Lemma
1.6] and that

Ã ∈W 1,1
∗

(
0, τ : B

((
D

R

)
,

(
X

R

)))
.
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It follows from [11, Theorem 1.8] that the limit Ũ(t, s)
(
x
1

)
=

limλ↓0 Ũλ(t, s)
(
x
1

)
exists in

(
D
R

)
because of the compatibility condition,

where Ũλ(t, r) =
∏[t/λ]
i=[r/λ]+1(I − λÃ(iλ))−1 for (t, r) ∈ Δ(τ ), and that

the mapping t → Ũ(t, s)
(
x
1

)
is continuously differentiable in

(
X
R

)
and

(d/dt)Ũ(t, s)
(
x
1

)
= Ã(t)Ũ(t, s)

(
x
1

)
for t ∈ [s, τ ]. According to the device

due to Kato [8, Subsection 1.3], the solution u of (CP;(s, x), h) is given
by the first component of Ũ(t, s)

(
x
1

)
; hence (1.7) holds since we find by

[11, (1.15)],

Ũλ(t, s) =
(
Uλ(t, s)

∫ [t/λ]λ

[s/λ]λ
Uλ(t, r)h(([r/λ] + 1)λ) dr

0 1

)

for t ∈ [s, τ ]. The desired identity (1.8) is obtained by substituting
Ũ(t, s)

(
x
1

)
=

(
u(t)
1

)
into the equality given by [11] that

Ã(t)Ũ(t, s)
(
x

1

)
= lim

λ↓0

(
Ũλ(t, s)Ã(s)

(
x

1

)

+
∫ t

s

Ũλ(t, r)∂Ã(r)Ũ(r, s)
(
x

1

)
dr

)

for s ≤ t ≤ τ .

Lemma 1.5. Let t0 ≥ 0 and T ∈ (t0,∞). For each w ∈ C(J : Y ),
where J = [t0, T ) or [t0, T ], we define F : C(J : Y ) → X by

(1.9) (Fw)(t) = S(t)
∫ t

t0

g(t, s, S(s)−1w(s)) ds

for t ∈ J . Then the following assertions hold.

(F1) For each τ , r > 0 there exists LF (τ, r) > 0 such that

(1.10) ‖(Fw)(t) − (Fz)(t)‖ ≤ LF (τ, r)
∫ t

t0

‖w(σ) − z(σ)‖Y dσ

for w, z ∈ C(J : BY (r)) and t ∈ J ∩ [0, τ ].

(F2) For each τ , r > 0 there exists MF (τ, r) > 0 such that

(1.11)
‖(Fw)(t)‖ ≤ (t− t0)MF (τ, r)

for w ∈ C(J : BY (r)) and t ∈ J ∩ [0, τ ].
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(F3) For each w ∈ C(J : Y ), we have (Fw)(·) ∈ C1(J : X). For each
τ , r > 0 there exists L̃F (τ, r) > 0 such that

(1.12)
∫ t

t0

‖(d/dσ)(Fw)(σ) − (d/dσ)(Fz)(σ)‖ dσ

≤ L̃F (τ, r)
∫ t

t0

‖w(σ) − z(σ)‖Y dσ

for w, z ∈ C(J : BY (r)) and t ∈ J ∩ [0, τ ].

(F4) For each τ , r > 0 there exists M̃F (τ, r) > 0 such that

(1.13)
‖(d/dt)(Fw)(t)‖ ≤ M̃F (τ, r)

for w ∈ C(J : BY (r)) and t ∈ J ∩ [0, τ ].

Proof. By (iii) of Lemma 1.1 we have c(τ ) := sup{‖S(t)−1‖Y : t ∈
[0, τ ]} < ∞ for each τ > 0. To prove (1.10), let w, z ∈ C(J : BY (r)).
We have by (1.3)

‖(Fw)(t) − (Fz)(t)‖

≤MS(τ )Lg(τ, c(τ )r)
∫ t

t0

‖S(s)−1w(s) − S(s)−1z(s)‖Y ds

for t ∈ J∩[0, τ ]; hence (1.10) holds with LF (τ, r)=MS(τ )Lg(τ, c(τ )r)c(τ ).
We note here that for each τ , r > 0 there exist Mg(τ, r) > 0 and
M̃g(τ, r) > 0 such that

(1.14)
‖g(t, s, w)‖ ≤Mg(τ, r)

for (t, s) ∈ Δ(τ ) and w ∈ BY (r),

(1.15)
‖(∂/∂t)g(t, s, w)‖ ≤ M̃g(τ, r)

for (t, s) ∈ Δ(τ ) and w ∈ BY (r).

This fact follows readily from conditions (g1) and (g2). Equation
(1.11) follows immediately from (1.14). For w ∈ C(J : Y ) we have
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(Fw)(·) ∈ C1(J : X) and

(1.16) (d/dt)(Fw)(t) = ∂S(t)
∫ t

t0

g(t, s, S(s)−1w(s)) ds

+ S(t)
(
g(t, t, S(t)−1w(t))

+
∫ t

t0

(∂/∂t)g(t, s, S(s)−1w(s)) ds
)

for t ∈ J . Similarly to the argument above, we have (1.12) by (1.3)
and (1.4). The desired inequality (1.13) follows easily from (1.14) and
(1.15).

2. Local solvability. This section is devoted to the local solvability
for (VIE). We begin by showing the existence and uniqueness of
solutions of the problem

(VIE; t0, u0)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u′(t) = A(t)u(t) for t ≥ t0

+
∫ t
t0
g(t, s, u(s)) ds+ f0(t)

S(t)u(t) ∈ D for t ≥ t0
u(t0) = u0,

where (t0, u0) ∈ [0,∞) × Y and f0 ∈ C1([t0,∞) : X). Let J be an
interval of the form [t0, t0+τ ) or [t0, t0+τ ] with τ such that 0 < τ <∞.
A function u in the class C(J : Y )∩C1(J : X) is said to be a solution to
(VIE; t0, u0) on J if u(t0) = u0, S(t)u(t) ∈ D for t ∈ J , and u satisfies
u′(t) = A(t)u(t) +

∫ t
t0
g(t, s, u(s)) ds+ f0(t) for t ∈ J . Such a solution

to (VIE; t0, u0) is called a local solution to (VIE; t0, u0).

Proposition 2.1 The following assertions hold.

(i) The (VIE; t0, u0) has at most one solution on any closed interval
[t0, T ].

(ii) The (VIE; t0, u0) has a local solution if the compatibility condition
u0 ∈ Y , S(t0)u0 ∈ D and ∂S(t0)u0 + S(t0)(A(t0)u0 + f0(t0)) ∈ D is
satisfied.
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Remark. If u is a solution to (VIE; t0, u0) on [t0, T ] then

(d/dt)S(t)u(t) = ∂S(t)u(t)+S(t)
(
A(t)u(t)+

∫ t

t0

g(t, s, u(s)) ds+f0(t)
)

for t ∈ [t0, T ]. Since S(t)u(t) ∈ D for t ∈ [t0, T ], the righthand side
belongs to the set D; hence ∂S(t0)u0 + S(t0)(A(t0)u0 + f0(t0)) ∈ D.

Proof. Let u be a solution to (VIE; t0, u0) on [t0, T ], and set w(t) =
S(t)u(t) for t ∈ [t0, T ]. Clearly w(·) ∈ C([t0, T ] : D) ∩ C1([t0, T ] : X)
by (iii) of Lemma 1.1, and we have by (1.2)

{
w′(t) = A(t)w(t) + (Fw)(t) + S(t)f0(t) for t ∈ [t0, T ]
w(t0) = S(t0)u0,

where {A(t) : t ≥ 0} is the family defined as in Lemma 1.2 and F is
defined by (1.9). Since S(t0)u0 ∈ D and A(t0)S(t0)u0 + S(t0)f0(t0) =
w′(t0) ∈ D; namely the compatibility condition is satisfied, we have by
Theorem 1.4
(2.1)

w(t) = U(t, t0)S(t0)u0 + lim
λ↓0

∫ t

t0

Uλ(t, σ)((Fw)(σ) + S(σ)f0(σ)) dσ

and

(2.2)

A(t)w(t) = U(t, t0)(A(t0)S(t0)u0 + S(t0)f0(t0))

+ lim
λ↓0

∫ t

t0

Uλ(t, σ)(∂A(σ)w(σ)

+ (d/dσ)((Fw)(σ) + S(σ)f0(σ))) dσ
− (Fw)(t) − S(t)f0(t)

for t ∈ [t0, T ]. Here {U(t, s) : (t, s) ∈ Δ} is the evolution operator
on D generated by {A(t) : t ≥ 0}. To prove (i), let v be another
solution to (VIE; t0, u0) on [t0, T ], and set z(t) = S(t)v(t) for t ∈ [t0, T ].
We represent the difference between w and z by (2.1) and (2.2), and
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estimate it by (A3) of Lemma 1.2, (1.10) and (1.12). This yields

‖w(t) − z(t)‖ ≤ lim
λ↓0

∫ t

t0

M(T )(1 − λβ(T ))−([t/λ]−[σ/λ])

·
(
LF (T,R0)

∫ σ

t0

‖w(s) − z(s)‖Y ds
)
dσ

≤ N(T )LF (T,R0)(T − t0)
∫ t

t0

‖w(s) − z(s)‖Y ds

and

‖A(t)(w(t) − z(t))‖ ≤ (N(T )(M∂A(T ) + L̃F (T,R0))

+ LF (T,R0))
∫ t

t0

‖w(σ) − z(σ)‖Y dσ

for t ∈ [t0, T ], where we set R0 = sup{‖w(t)‖Y ∨ ‖z(t)‖Y : t ∈ [t0, T ]}.
Here and subsequently we use the notation

N(τ ) = M(τ ) exp(β(τ )τ ),
M∂A(τ ) = sup{‖∂A(t)y‖ : y ∈ D, ‖y‖Y ≤ 1, t ∈ [0, τ ]}.

Adding these inequalities, and using (A2) we obtain the inequality of
Gronwall type; hence w = z on [t0, T ]. By the injectivity of S(t) we
have u = v on [t0, T ].

We shall prove assertion (ii) by the Picard-Banach fixed point the-
orem. To do so, let T0 > t0 be fixed and choose R > 0 so that
‖S(t0)u0‖Y < R. We now set r0 = R − ‖S(t0)u0‖Y , and define a
set E by

E = {w ∈ C([t0, T ] : D) : ‖w(t) − S(t0)u0‖Y ≤ r0 for t ∈ [t0, T ]}.
Here T ∈ (t0, T0] is yet to be determined. Clearly, E is a complete
metric space with metric d defined by d(w, z) = sup{‖w(t) − z(t)‖Y :
t ∈ [t0, T ]}. Let w ∈ E. By (F3) of Lemma 1.5, (Fw)(·) ∈
C1([t0, T ] : X). Condition (s1) implies S(t)f0(t) ∈ C1([t0, T ] : X), since
f0 ∈ C1([t0,∞) : X). By (1.2) we have A(t0)S(t0)u0 + S(t0)f0(t0) =
S(t0)A(t0)u0 + ∂S(t0)u0 + S(t0)f0(t0) ∈ D. From Theorem 1.4 we
deduce that the problem{

w̃′(t) = A(t)w̃(t) + (Fw)(t) + S(t)f0(t) for t ∈ [t0, T ]
w̃(t0) = S(t0)u0
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has a unique solution w̃ ∈ C([t0, T ] : D) ∩ C1([t0, T ] : X). This fact
enables us to define a mapping Ψ from E into C([t0, T ] : D) by Ψw = w̃.
Since (Ψw)(·) is a solution of (CP;(t0, S(t0)u0), (Fw)(·)+S(·)f0(·)), we
have by (1.7)

‖(Ψw)(t)−S(t0)u0‖ ≤ sup{‖U(t, t0)S(t0)u0−S(t0)u0‖ : t ∈ [t0, T ]}

+
∫ t

t0

N(T0)‖(Fw)(σ)+S(σ)f0(σ)‖ dσ

for t ∈ [t0, T ]. We note that w(t) ∈ BY (R) for t ∈ [t0, T ]. By (1.11),
the last term on the righthand side is bounded by

(T−t0)N(T0)((T0−t0)MF (T0, R)+MS(T0) sup{‖f0(t)‖ : t ∈ [t0, T0]})

for t ∈ [t0, T ]. We have by (1.8)

‖A(t)((Ψw)(t)− S(t0)u0)‖
≤ sup{‖(U(t, t0) − I)(A(t0)S(t0)u0 + S(t0)f0(t0))‖ : t ∈ [t0, T ]}

+ ‖(A(t0) −A(t))S(t0)u0‖ + ‖S(t0)f0(t0) − S(t)f0(t)‖

+
∫ t

t0

N(T0)‖∂A(σ)(Ψw)(σ) + (d/dσ)((Fw)(σ) + S(σ)f0(σ))‖ dσ

+ ‖(Fw)(t)‖

for t ∈ [t0, T ]. By (1.13) the fourth term is estimated by

N(T0)M∂A(T0)
∫ t

t0

‖(Ψw)(σ) − S(t0)u0‖Y dσ

+ (T − t0)N(T0)(M∂A(T0)R+ M̃F (T0, R)
+ sup{‖(d/dt)S(t)f0(t)‖ : t ∈ [t0, T0]}).

By (1.11) the last term is dominated by (T −t0)MF (T0, R). Combining
these estimates and using (A2) we obtain the inequality

‖(Ψw)(t) − S(t0)u0‖Y ≤ ε(T ) + C

∫ t

t0

‖(Ψw)(σ) − S(t0)u0‖Y dσ

for t ∈ [t0, T ], where C is a positive constant and {ε(T )} is a positive
sequence with limT↓t0 ε(T ) = 0. Here we have used property (e3) of
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Theorem 1.3. We therefore find a T ∈ (t0, T0] such that Ψ(E) ⊂ E. To
show that Ψ is a contraction on E, let w, z ∈ E. Similarly to the proof
of (i), we find by using (1.10) and (1.12) with (τ, r) = (T0, R)

‖(Ψw)(t)−(Ψz)(t)‖ ≤ N(T0)LF (T0, R)(T0−t0)
∫ t

t0

‖w(σ)−z(σ)‖Y dσ

and

‖A(t)((Ψw)(t)− (Ψz)(t))‖

≤ N(T0)
∫ t

t0

(M∂A(T0)‖(Ψw)(σ) − (Ψz)(σ)‖Y

+ L̃F (T0, R)‖w(σ) − z(σ)‖Y ) dσ

+
∫ t

t0

LF (T0, R)‖w(σ) − z(σ)‖Y dσ

for t ∈ [t0, T ]. Adding two inequalities, and using property (A2) we
have

‖(Ψw)(t) − (Ψz)(t)‖Y ≤ c(T0)(T − t0)d(Ψw,Ψz)
+ c(T0, R)(T − t0)d(w, z)

for t ∈ [t0, T ], where we set c(T0) = cA(T0)N(T0)M∂A(T0) and

c(T0, R) = cA(T0)(N(T0)LF (T0, R)(T0 − t0)

+N(T0)L̃F (T0, R) + LF (T0, R));

hence

d(Ψw,Ψz) ≤ c(T0, R)(T − t0)
1 − c(T0)(T − t0)

d(w, z).

This shows that Ψ is a contraction on E for a smaller T ∈ (t0, T0].
By the fixed point theorem there is a w ∈ C([t0, T ] : D) satisfying
the differential equation w′(t) = A(t)w(t) + (Fw)(t) + S(t)f0(t) for
t ∈ [t0, T ], with initial condition w(t0) = S(t0)u0. By using some
properties of {S(t) : t ≥ 0} of Lemma 1.1 we see that the desired
solution u is given by u(t) = S(t)−1w(t) for t ∈ [t0, T ].

The main theorem in this section is provided by
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Theorem 2.2. If φ ∈ Y , S(0)φ ∈ D and ∂S(0)φ + S(0)(A(0)φ +
f(0)) ∈ D, then there are a tmax ∈ (0,∞] and a unique solution u to
(VIE) on [0, tmax) satisfying either

(i) tmax = ∞, or

(ii) tmax <∞ and lim supt↑tmax
‖u(t)‖Y = ∞.

Proof. By (ii) of Proposition 2.1, we define

tmax = sup{T > 0 : the (VIE) has a solution on [0, T ]}.
Clearly, tmax ∈ (0,∞]. Assertion (i) of Proposition 2.1 and the
definition of tmax together imply that there is a unique solution u of
(VIE) on [0, tmax). If tmax = ∞ then the proof is complete.

Now, assume tmax <∞. We have only to show lim supt↑tmax
‖u(t)‖Y =

∞. If this is false, then there is an r0 > 0 such that ‖u(t)‖Y ≤ r0 for
t ∈ [0, tmax). If we set w(t) = S(t)u(t) for t ∈ [0, tmax), then we have

(2.3)
‖w(t)‖Y ≤ R := sup{‖S(t)‖Y : t ∈ [0, tmax]}r0,

for t ∈ [0, tmax).

As in the proof of (i) of Proposition 2.1, we have

(2.4)
w(t) = U(t, s)S(s)u(s)

+ lim
λ↓0

∫ t

s

Uλ(t, σ)((F0w)(σ) + S(σ)f(σ)) dσ

and

(2.5)

A(t)w(t) = U(t, s)(A(s)S(s)u(s) + S(s)f(s))

+ lim
λ↓0

∫ t

s

Uλ(t, σ)(∂A(σ)w(σ)

+ (d/dσ)((F0w)(σ) + S(σ)f(σ))) dσ
− (F0w)(t) − S(t)f(t)

for 0 ≤ s ≤ t < tmax. Here {U(t, s) : (t, s) ∈ Δ} is the evolu-
tion operator on D generated by {A(t) : t ≥ 0}, and (F0w)(t) =
S(t)

∫ t
0
g(t, σ, S(σ)−1w(σ)) dσ for t ∈ [0, tmax). By (2.4) we have

(2.6)
‖w(t) − w(t̂)‖ ≤ ‖(U(t, s) − U(t̂, s))S(s)u(s)‖

+
( ∫ t

s

+
∫ t̂

s

)
N(tmax)(‖(F0w)(σ)‖+‖S(σ)f(σ)‖) dσ
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for 0 ≤ s ≤ t, t̂ < tmax. Since S(s)u(s) ∈ D, the first term on the
righthand side tends to zero as t, t̂ ↑ tmax. Noting (2.3) we deduce from
(1.11) that the last term is bounded by

2(tmax − s)N(tmax)(MF (tmax, R)tmax

+MS(tmax) sup{‖f(t)‖ : t ∈ [0, tmax]}).

Taking the limsup as t, t̂ ↑ tmax in (2.6), and letting s ↑ tmax we have

(2.7) lim
t,t̂↑tmax

‖w(t) − w(t̂)‖ = 0.

We represent the difference between A(t)w(t) and A(t̂)w(t̂) by (2.5),
and estimate it by (1.13). This yields

‖A(t)(w(t) − w(t̂))‖
≤ ‖(U(t, s) − U(t̂, s))(A(s)S(s)u(s) + S(s)f(s))‖

+ 2(tmax − s)N(tmax)(M∂A(tmax)R

+ M̃F (tmax, R) + C(tmax))
+ ‖(F0w)(t) − (F0w)(t̂)‖
+ ‖S(t)f(t)− S(t̂)f(t̂)‖ + ‖(A(t) −A(t̂))w(t̂)‖

for 0 ≤ s ≤ t, t̂ < tmax, where we set C(tmax) = sup{‖(d/dt)S(t)f(t)‖ :
t ∈ [0, tmax]}. The third term on the righthand side is equal to∥∥∥∥(S(t) − S(t̂))

∫ t

0

g(t, σ, u(σ)) dσ + S(t̂)
∫ t

t̂

g(t, σ, u(σ)) dσ
∥∥∥∥,

which is estimated by |t− t̂|(M∂S(tmax)tmax +MS(tmax))Mg(tmax, r0).
Here we have used (1.14). The last term is dominated byM∂A(tmax)R|t−
t̂|. From these estimates it follows that

lim sup
t,t̂↑tmax

‖A(t)(w(t) − w(t̂))‖

≤ 2(tmax − s)N(tmax)(M∂A(tmax)R

+ M̃F (tmax, R) + C(tmax))

for 0 ≤ s < tmax. The righthand side tends to zero as s ↑ tmax, and so
this fact combined with (2.7) implies that the limit w∗ = limt↑tmax w(t)
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exists in Y and w∗ ∈ D since D is a closed linear subspace in Y . If
we set u∗ = S(tmax)−1w∗ and define the value of u at tmax by u∗ then
u ∈ C([0, tmax] : Y ). We note that u∗ ∈ Y , S(tmax)u∗ = w∗ ∈ D and
∂S(tmax)u∗+S(tmax)(A(tmax)u∗+ f̃(tmax)) = limt↑tmax(S(t)u(t))′ ∈ D,
where f̃(t) :=

∫ tmax

0
g(t, σ, u(σ)) dσ + f(t) for t ∈ [tmax,∞). Since

f̃ is continuously differentiable on [tmax,∞), we deduce from (ii) of
Proposition 2.1 that the problem⎧⎪⎨

⎪⎩
ũ′(t) = A(t)ũ(t) +

∫ t
tmax

g(t, s, ũ(s)) ds+ f̃(t) for t ≥ tmax

S(t)ũ(t) ∈ D for t ≥ tmax

ũ(tmax) = u∗

has a solution ũ on [tmax, tmax + δ] for some δ > 0. The solution u on
[0, tmax) can be extended to the larger interval [0, tmax + δ] by defining
u = ũ on [tmax, tmax + δ]. This is a contradiction to the definition of
tmax.

3. Global solvability and its application. In this section we
shall give a sufficient condition for the global solvability for (VIE).

Theorem 3.1. For each φ ∈ Y , S(0)φ ∈ D and ∂S(0)φ +
S(0)(A(0)φ+f(0)) ∈ D, the (VIE) has a global solution if the following
condition is satisfied.

For each τ > 0 there are constants K(τ ) > 0 and L(τ ) > 0 such that

(3.1) ‖g(t, s, w)‖ + ‖(∂/∂t)g(t, s, w)‖ ≤ K(τ )‖w‖Y + L(τ )

for (t, s) ∈ Δ(τ ) and w ∈ Y .

Proof. By Theorem 2.2 there is a tmax ∈ (0,∞] and a unique solution
u to (VIE) on [0, tmax) satisfying either (i) or (ii) of Theorem 2.2.
Assume to the contrary that tmax < ∞. If we set w(t) = S(t)u(t) for
t ∈ [0, tmax) then w is a solution of (CP;(0, S(0)φ), (Gw)(·)), where G
is defined by

(Gw)(t) = S(t)
(∫ t

0

g(t, s, S(s)−1w(s)) ds+ f(t)
)
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for t ∈ [0, tmax). Using (1.16) we find by (3.1)

(3.2) ‖(Gw)(t)‖ +
∫ t

0

‖(d/ds)(Gw)(s)‖ ds ≤ c1 + c2

∫ t

0

‖w(s)‖Y ds

for t ∈ [0, tmax), where ci are positive constants. By Theorem 1.4 we
have

‖w(t)‖ ≤ N(tmax)‖S(0)φ‖ +
∫ t

0

N(tmax)‖(Gw)(s)‖ ds

and
‖A(t)w(t)‖ ≤ N(tmax)‖A(0)S(0)φ+ S(0)f(0)‖

+
∫ t

0

N(tmax)(M∂A(tmax)‖w(s)‖Y
+ ‖(d/ds)(Gw)(s)‖) ds+ ‖(Gw)(t)‖

for t ∈ [0, tmax). The claim that ‖w(t)‖Y is bounded on [0, tmax) follows
easily from the inequality of Gronwall type obtained by combining
these inequalities and (3.2), and using property (A2). This contradicts
assertion (ii) of Theorem 2.2.

Finally we shall give an application of our abstract results to the
following semilinear integrodifferential equation with the third kind
boundary condition:

(3.3)⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

utt(t, x)=a(t, x)uxx(t, x)

+
∫ t
0
b(t, s, x, u(s, x), ux(s, x), uxx(s, x)) ds

for (t, x)∈ [0,∞)× [0, 1],
ux(t, 0) − α(t)u(t, 0)

= ux(t, 1) + β(t)u(t, 1) = 0 for t ∈ [0,∞),
u(0, x) = ϕ(x), ut(0, x) = ψ(x) for x ∈ [0, 1].

Here a is of class C1 satisfying a(t, x) ≥ a0 > 0 for (t, x) ∈ [0,∞)×[0, 1],
and α and β are of class C2. The function b from Δ× [0, 1]×R×R×R
to R satisfies the following properties:



VOLTERRA INTEGRODIFFERENTIAL EQUATIONS 213

(b1) b is continuous on Δ × [0, 1] × R × R × R. For each τ, r > 0
there exists Lb(τ, r) > 0 such that

|b(t, s, x, ξ1, η1, σ1) − b(t, s, x, ξ2, η2, σ2)|
≤ Lb(τ, r)(|ξ1 − ξ2| + |η1 − η2| + |σ1 − σ2|)

for (t, s) ∈ Δ(τ ), x ∈ [0, 1] and |ξi| + |ηi| + |σi| ≤ r.

(b2) For each (s, x, ξ, η, σ) ∈ [0,∞) × [0, 1] × R × R × R, b is
differentiable in t ≥ s, and (∂/∂t)b(t, s, x, ξ, η, σ) is continuous on
Δ × [0, 1] × R × R × R.

For each τ, r > 0 there exists L̃b(τ, r) > 0 such that

|(∂/∂t)b(t, s, x, ξ1, η1, σ1) − (∂/∂t)b(t, s, x, ξ2, η2, σ2)|
≤ L̃b(τ, r)(|ξ1 − ξ2| + |η1 − η2| + |σ1 − σ2|)

for (t, s) ∈ Δ(τ ), x ∈ [0, 1] and |ξi| + |ηi| + |σi| ≤ r.

We are interested in getting a solution of (3.3) such that ut, utt, ux
and uxx are continuous on [0,∞)× [0, 1] and that (3.3) holds pointwise
in [0,∞) × [0, 1].

Theorem 3.2. Assume that ϕ ∈ C2[0, 1] and ψ ∈ C1[0, 1] satisfy the
compatibility condition

(3.4)

⎧⎨
⎩
ϕ′(0) − α(0)ϕ(0) = ϕ′(1) + β(0)ϕ(1) = 0,
ψ′(0) − α(0)ψ(0) − α′(0)ϕ(0)

= ψ′(1) + β(0)ψ(1) + β′(0)ϕ(1) = 0.

Then there exist a tmax ∈ (0,∞] and a unique solution u of (3.3) in
the class C([0, tmax) : C2[0, 1]) ∩ C1([0, tmax) : C1[0, 1]) ∩ C2([0, tmax) :
C[0, 1]). Moreover, (3.3) has a unique global solution if the following
additional condition is satisfied.

For each τ > 0, there are constants K(τ ) > 0 and L(τ ) > 0 such that

(3.5) |b(t, s, x, ξ, η, σ)| + |(∂/∂t)b(t, s, x, ξ, η, σ)|
≤ K(τ )(|ξ|+ |η| + |σ|) + L(τ )

for all (t, s) ∈ Δ(τ ), x ∈ [0, 1] and ξ, η, σ ∈ R.
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Proof. Let X = C1[0, 1]×C[0, 1] and Y = C2[0, 1]×C1[0, 1]. Clearly
Y is continuously imbedded in X, where the norms ‖ · ‖ and ‖ · ‖Y are
defined by ∥∥∥∥

(
u

v

)∥∥∥∥ = ‖u‖C1[0,1] ∨ ‖v‖C[0,1] for
(
u

v

)
∈ X

and ∥∥∥∥
(
u

v

)∥∥∥∥
Y

= ‖u‖C2[0,1] ∨ ‖v‖C1[0,1] for
(
u

v

)
∈ Y

respectively. We now define a family {A(t) : t ≥ 0} in B(Y,X) and an
X-valued function g by(

A(t)
(
u
v

) )
(x) =

(
0 1

a(t, x)∂2
x 0

) (
u(x)
v(x)

)
for

(
u

v

)
∈ Y

and

g

(
t, s,

(
u
v

) )
(x) =

(
0

b(t, s, x, u(x), u′(x), u′′(x))

)
for

(
u

v

)
∈ Y ,

respectively. It is seen that (3.3) is reduced to the abstract inte-
grodifferential equation (VIE), by choosing the closed linear subspace
D = {(u, v) ∈ C2[0, 1]×C1[0, 1] : u′(0) = u′(1) = 0} in Y and a family
{S(t) : t ≥ 0} in B(X) defined by(

S(t)
(
u
v

) )
(x) =

(
es(t,x) 0

0 es(t,x)

) (
u(x)
v(x)

)
for

(
u

v

)
∈ X,

where s(t, x) = −α(t)x+ (α(t) + β(t))x2/2 for (t, x) ∈ [0,∞) × [0, 1].

We shall prove that the family {A(t) : t ≥ 0} defined as above satisfies
conditions (a1) through (a3). An easy computation shows that (1.1)
holds with cA(τ ) = 1 ∨ (1/a0). To prove condition (a2), we use two
families {A0(t) : t ≥ 0} and {B0(t) : t ≥ 0} of linear operators in
X = C[0, 1] × C[0, 1] defined by⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(A0(t)ṽ)(x) =
( √

a(t, x) 0
0 −√

a(t, x)

) (
v1(x)
v2(x)

)
x

for ṽ =
(
v1
v2

)
∈ D(A0(t))

D(A0(t)) = {ṽ ∈ C1[0, 1] × C1[0, 1] :
v1(0) + v2(0) = v1(1) + v2(1) = 0}
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and

(B0(t)ṽ)(x) = −
( √

a(t, x) 0
0 −√

a(t, x)

)
qx(t, x)q(t, x)−1ṽ(x)

for ṽ ∈ X, where

q(t, x) =
( √

a(t, x) 1√
a(t, x) −1

)
.

Similarly to the proof of [2, Theorem 2.1], we have (0,∞) ⊂ ρ(A0(t))
and ‖(λI −A0(t))−1‖X ≤ 1 for λ > 0. Clearly, B0(t) ∈ B(X) for t ≥ 0,
and ω(τ ) := sup{‖B0(t)‖X : t ∈ [0, τ ]} <∞; hence

(3.6) {A0(t) +B0(t) : t ∈ [0, τ ]} ∈ S�(X, 1, ω(τ ))

for each τ > 0. We now turn to the check of condition (a2). We first
show that (ω(τ ),∞) ⊂ ρ(A(t)|D) for t ∈ [0, τ ]. To do so, let λ > ω(τ )
and

(
ξ
η

) ∈ X. We want to solve the equation (λI − A(t)|D)
(
u
v

)
=

(
ξ
η

)
,

namely

(3.7)

⎧⎨
⎩
λu− v = ξ,

λv − a(t, ·)uxx = η,

ux(0) = ux(1) = 0.

We note that if (λI −A(t)|D)
(
u
v

)
=

(
ξ
η

)
, then

(3.8) q(t, ·)
(
ux
v

)
= (λI − (A0(t) +B0(t)))−1q(t, ·)

(
ξx
η

)
.

Indeed, if
(
u
v

)
is a solution of (3.7) then we have

(3.9)

⎧⎨
⎩λ

(
ux
v

)
−

(
0 1

a(t, ·) 0

) (
ux
v

)
x

=
(
ξx
η

)
,

ux(0) = ux(1) = 0.

Since

q(t, x)
(

0 1
a(t, x) 0

)
=

( √
a(t, x) 0
0 −√

a(t, x)

)
q(t, x),
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it follows easily that
(
w1
w2

)
= q(t, ·)(ux

v

)
is a solution of

(λI − (A0(t) +B0(t)))
(
w1

w2

)
= q(t, ·)

(
ξx
η

)
.

On the basis of (3.8), we now put
(
z
v

)
= q(t, ·)−1(λI − (A0(t) +

B0(t)))−1q(t, ·)(ξx

η

)
. It is then seen that

(
z
v

) ∈ C1[0, 1] × C1[0, 1] and
(3.9) holds with ux replaced by z. Defining u = (v+ξ)/λ we have ux = z
and see that

(
u
v

) ∈ D is a solution of (3.7). To prove the uniqueness of
solutions of (3.7), set

(
ξ
η

)
=

(
0
0

)
in (3.7). We have by (3.8),

(
ux

v

)
=

(
0
0

)
because of the injectivity of q(t, ·), and then u = 0 by the first equation
in (3.7). The proof of uniqueness is thus complete. Next, let λ > ω(τ )
and {ti}ki=1 a finite sequence with 0 = t0 ≤ t1 ≤ · · · ≤ tk ≤ τ . For(
ξ
η

) ∈ X we define

(
ulλ
vlλ

)
=

l∏
i=1

(λI −A(ti)|D)−1

(
ξ

η

)(
= (λI −A(tl)|D)−1

(
ul−1
λ

vl−1
λ

) )

for 1 ≤ l ≤ k, where we set
(u0

λ

v0
λ

)
=

(
ξ
η

)
. By (3.8) we find

q(tl, ·)
(

(ulλ)x
vlλ

)
= (λI − (A0(tl) +B0(tl)))−1q(tl, ·)

(
(ul−1
λ )x
vl−1
λ

)
,

and we have by (3.6)

qlλ ≤ (λ− ω(τ ))−1

∥∥∥∥q(tl, ·)
(

(ul−1
λ )x
vl−1
λ

) ∥∥∥∥
X

≤ (λ− ω(τ ))−1 exp(Lq(τ )(tl − tl−1))ql−1
λ

for 1 ≤ l ≤ k. Here we have used the notation

qlλ =
∥∥∥∥q(tl, ·)

(
(ulλ)x
vlλ

) ∥∥∥∥
X

and the fact∥∥∥∥q(t, ·)
(
f1
f2

) ∥∥∥∥
X

≤ exp(Lq(τ )|t− t̂|)
∥∥∥∥q(t̂, ·)

(
f1
f2

) ∥∥∥∥
X
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for t, t̂ ∈ [0, τ ] and
(
f1
f2

) ∈ X. This is proved by using the fact that
there exists Lq(τ ) > 0 such that ‖(q(t, ·) − q(t̂, ·))q(t̂, ·)−1

(
f1
f2

)‖X ≤
Lq(τ )|t − t̂|‖(f1f2)‖X for t, t̂ ∈ [0, τ ] and

(
f1
f2

) ∈ X and the inequality
1 + r ≤ er for r ≥ 0. Solving the above inequality we have qlλ ≤
(λ− ω(τ ))−l exp(Lq(τ )(tl − t0))q0λ, which implies

(3.10) (‖(ulλ)x‖C[0,1] ∨ ‖vlλ‖C[0,1])

≤ cq(τ )(λ− ω(τ ))−l(‖ξx‖C[0,1] ∨ ‖η‖C[0,1])

for 0 ≤ l ≤ k. By the definition of {ulλ} we have λulλ − vlλ = ul−1
λ for

1 ≤ l ≤ k; hence ukλ =
∑k
i=1(1/λ)k−i+1viλ + (1/λ)kξ. We estimate it

by (3.10). This yields

‖ukλ‖C[0,1] ≤ ((cq(τ )/ω(τ )) + 1)(λ− ω(τ ))−k(‖ξ‖C1[0,1] ∨ ‖η‖C[0,1]).

Combining this and (3.10) we find

{A(t)|D : t ∈ [0, τ ]} ∈ S�(X,M(τ ), ω(τ )),

whereM(τ ) = cq(τ )+(cq(τ )/ω(τ ))+1, and so condition (a2) is satisfied.
Condition (a3) is clearly verified.

The family {S(t) : t ≥ 0} in B(X) satisfies condition (s1). Condition
(s2) is checked by taking a family {B(t) : t ≥ 0} in B(X) defined by(

B(t)
(
u
v

) )
(x)

=
(

0
−a(t, x)(sxx(t, x)u(x) + 2sx(t, x)u′(x) − sx(t, x)2u(x))

)

for
(
u
v

) ∈ X. One can easily check conditions (g1) and (g2) by virtue of
(b1) and (b2). By (3.4) we have S(0)

(
ϕ
ψ

) ∈ D and S(0)A(0)
(
ϕ
ψ

)
+

∂S(0)
(
ϕ
ψ

) ∈ D; namely the compatibility condition is satisfied. It
follows from Theorem 2.2 that there are a tmax ∈ (0,∞] and a unique
solution

(
u
v

)
on [0, tmax) of the Volterra integrodifferential equation

(VIE) with initial data φ(x) :=
(ϕ(x)
ψ(x)

)
, and it is therefore proved that

the first component u is a unique solution of (3.3). If the function b
satisfies (3.5) then (3.1) is easily verified, and so (3.3) has a unique
global solution by Theorem 3.1.
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