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Abstract. By applying an average method in PDE, we obtain a dichotomy between
“constancy” and “infinity” of the warping functions on complete noncompact Rie-
mannian manifolds for an appropriate isometric immersion of a multiply warped
product manifold N1 ×f2 N2 × · · · ×fk Nk into a Riemannian manifold.

Generalizing the earlier work of the authors in [9], we establish sharp inequalities
between the mean curvature of the immersion and the sectional curvatures of the
ambient manifold under the influence of quantities of a purely analytic nature (the
growth of the warping functions). Several applications of our growth estimates are
also presented.
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1. Introduction

Warped products play very important roles in Differential Geometry and Physics.
Examples of warped product include Riemannian manifolds of constant curvature
and the best relativistic model of the Schwarzschild space-time that describes the
out space around a mass star or a black hole.

In [9], B.-Y. Chen and S. Wei obtained the following necessary condition for an
arbitrary isometric immersion of a warped product N1 ×f N2 into a Riemannian
m-manifold M̃m

c with sectional curvatures bounded from above by a constant c,
generalizing the work of B.-Y. Chen in [3] on warped product submanifolds in a
Riemannian manifold Rm(c) of constant sectional curvature c.

Theorem A ([9, Theorem 3.1]). For any isometric immersion φ : N1 ×f N2 →
M̃m
c from a warped product N1 ×f N2 into a Riemannian m-manifold M̃m

c with
sectional curvatures bounded from above by a constant c, the warping function f
satisfies

−(n1 + n2)2

4n2
H2 − n1c ≤

∆f

f
(1)

where n1 = dimN1 and n2 = dimN2, H2 = 〈H,H〉 is the squared mean
curvature of φ , and ∆f is the Laplacian of f on N1 (defined as the divergence of
the gradient vector field of f , cf. (10)).

The equality sign (1) holds if and only if φ is a mixed totally geodesic immersion
with traceh1 = traceh2, where h1 and h2 are the restriction of the second fun-
damental form h of φ restricted to N1 and N2, respectively, and at each point
p = (p1, p2) ∈ N, c satisfies c = K(u, v) = maxK(p), for every unit vector
u ∈ T 1

p1N1 and every unit vector v ∈ T 1
p2(N2).

On the other hand, the second author extended in [15] the scope of Lq or q-
integrable functions on complete noncompact Riemannian manifolds to functions
with “p-balanced” growth depending on q, and introduced the concepts of their
counter-part to “p-imbalanced” growth (cf. Definition 9). By coupling these
growth estimates with the above inequality (1), Chen and Wei establish in [9] some
sharp inequalities between quantities of a geometric nature (the mean curvature of
the immersion, the sectional curvatures of the ambient manifold) and quantities of
a purely analytic nature (the growth of the warping function).

Theorem B ([9]). If f is nonconstant and two-balanced for some q > 1, then for
every Riemannian n2-manifold N2 and every isometric immersion φ of the warped
product N1 ×f N2 into any Riemannian manifold M̃m

c with c ≤ 0, the mean
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curvature H of φ satisfies

H2 >
4n1n2|c|

(n1 + n2)2
(2)

at some points.

Hence we immediately find a dichotomy between “constancy” and “infinity” (two-
imbalanced) of the warping functions on complete noncompact Riemannian man-
ifolds for an appropriate isometric immersion:

Corollary A ([9]). Suppose the squared mean curvature of the isometric immersion
φ : N1 ×f N2 → M̃m

c satisfies

H2 ≤ 4n1n2|c|
(n1 + n2)2

(3)

everywhere on N1 ×f N2. Then the warping function f is either a constant or it
has two-imbalanced growth for every q > 1.

Applications of these new inequalities are also presented, among which there are
some results on the nonexistence of isometric minimal immersions between certain
types of Riemannian manifolds:

Theorem C ([9]). Suppose q > 1 and the warping function f is two-balanced.
If N2 is compact, then there does not exists an isometric minimal immersion from
N1 ×f N2 into any Euclidean space.

A Riemannian manifold is said to be negatively curved (respectively, non-positively
curved) if it has negative (respectively, non-positively curved) sectional curvatures.

Corollary B ([9]). If f is an Lq function on N1 for some q > 1, then for any Rie-
mannian manifold N2 the warped product N1×f N2 does not admit any isometric
minimal immersion into any non-positively curved Riemannian manifold.

For further extension, let N = N1 × · · · × Nk denote the Cartesian product of k
Riemannian manifolds (N1, g1) · · · , (Nk, gk) , and πi : N → Ni be the canonical
projection of N onto Ni , 1 ≤ i ≤ k. If f2, · · · fk : N1 → R+ are smooth positive-
valued functions, then

g = π∗1g1 +

k∑
i=2

(fi ◦ π1)2π∗i gi

defines a Riemannian metric on N , called multiply warped product metric. The
product manifold N endowed with g is denoted by N = N1×f2 N2×· · ·×fk Nk .

Denote by tracehi the trace of the second fundamental form h of N = N1×· · ·×
Nk into a Riemannian manifold restricted to Ni .
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B.-Y. Chen and F. Dillen proved in [6] the following.

Theorem D. Let φ : N1 ×f2 N2 × · · · ×fk Nk → M be an isometric immersion
of a multiply warped product N = N1 ×f2 N2 × · · · ×fk Nk into an arbitrary
Riemannian manifold M . Then we have

−n
2(k − 1)

2k
H2 − n1(n− n1) max K̃ ≤

k∑
j=2

nj
∆fj
fj

(4)

where n =
∑k

i=1 ni and max K̃(p) denotes the maximum of the sectional curva-
ture function of the ambient spaceM restricted to two-plane sections of the tangent
space TpN of N at p = (p1, . . . , pk).

The equality sign of (4) holds identically if and only if the following two conditions
hold

i) φ is mixed totally geodesic such that trace h1 = · · · = trace hk

ii) At each point p ∈ N , the sectional curvature function K̃ satisfies K̃(u, v) =

max K̃(p) for every u ∈ T 1
p1N1 and every v ∈ T 1

p2,...pk
(N2 × · · ·Nk) .

One main purpose of this article is to prove the following theorem which extends
Theorem B, in particular, inequality (2) to arbitrary isometric immersions of mul-
tiply warped product manifolds into an arbitrary Riemannian manifold.

Theorem 1. If for each j, 2 ≤ j ≤ k, fj is nonconstant and two-balanced with
some qj > 1, then, for any multiply warped product N = N1×f2 N2×· · ·×fk Nk

in a Riemannian manifold M , the mean curvature H of N in M satisfies

H2 >
−2kn1(n− n1)

n2(k − 1)
max K̃ (5)

at some points, where max K̃ is defined in Theorem D.

In particular, if each fj is nonconstant and in Lqj for some qj > 1, then (5) holds
at some points.

In particular, if M is a Riemannian manifold of constant sectional curvature c ≤ 0,
then Theorem 1 reduces to the following.

Theorem 2. If for each j, 2 ≤ j ≤ k, fj is nonconstant and two-balanced with
some qj > 1, then, for any multiply warped product N = N1×f2N2× · · · ×fkNk
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in a Riemannian manifold Rm(c) of constant sectional curvature c ≤ 0, the mean
curvature H of N in Rm(c) satisfies

H2 >
2kn1(n− n1)

n2(k − 1)
c (6)

at some points.

In particular, if each fj is nonconstant and in Lqj for some qj > 1, then (6) holds
at some points.

Theorems 1 and 2 are sharp and inequalities (5) and (6) are optimal. For details,
we refer to Remark 18, Example 3.1, Example 3.2, and Remark 19.

In views of Theorem 1, we give the following dichotomy.

Theorem 3. Suppose the squared mean curvature of the isometric immersion of a
multiply warped productN = N1×f2N2×· · ·×fkNk into a Riemannian manifold
satisfies

H2 ≤ −2kn1(n− n1)

n2(k − 1)
max K̃ (7)

everywhere on N . Then there exists an integer i, 2 ≤ i ≤ k such that either
the warping function fi is a constant or fi has two-imbalanced growth for every
qi > 1.

Some other applications of Theorem 1 are the following.

Corollary 4. If for each j, 2 ≤ j ≤ k, fj is nonconstant and two-balanced for
some qj > 1, then there does not exist a minimal immersion of any multiply warped
productN = N1×f2N2×· · ·×fkNk into a Riemannian manifold whose maximum
sectional curvature is nonpositive.

In particular, if each fj is nonconstant and in Lqj for some qj > 1, then there does
not exist a minimal immersion of any multiply warped product N = N1 ×f2 N2 ×
· · · ×fk Nk into a Euclidean space.

Applying the growth estimates in Theorem 15 and the average method in PDE
in Proposition 16, we have the following Liouville property and characterization
results.

Corollary 5. Suppose the squared mean curvature of the isometric immersion φ of
a multiply warped product N = N1×f2 N2× · · · ×fk Nk into a complete, simply-
connected Riemannian manifold Rm(c) of constant sectional curvature c satisfies
(7) everywhere onN . If for each j, 2 ≤ j ≤ k, fj is two-balanced for some qj > 1,
then we have:
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1) Every warping function fj , 2 ≤ j ≤ k is constant.

2) The isometric immersion φ is a minimal immersion into a Euclidean space.

3) The isometric immersion φ is a warped product immersion.

Corollary 6. Let each fj , 2 ≤ j ≤ k be two-balanced for some qj > 1 . Then we
have:

1) Every multiply warped product N = N1 ×f2 N2 × · · · ×fk Nk does not
admit an isometrically minimal immersion into any Riemannian manifold of
negative sectional curvature.

2) If Nk is compact, then N = N1 ×f2 N2 × · · · ×fk Nk does not admit an
isometrically minimal immersion into a Euclidean space.

We state a special case of Corollary 6 as the following.

Corollary 7. If each fj , 2 ≤ j ≤ k, is in Lqj for some qj > 1, then we have

1) Every multiply warped productN = N1×f2N2×· · ·×fkNk does not admit
an isometrically minimal immersion into any negatively curved Riemannian
manifold.

2) If Nk is compact, then N = N1 ×f2 N2 × · · · ×fk Nk does not admit an
isometrically minimal immersion into a Euclidean space.

A map

ψ : N1 ×f2 N2 × · · · ×fk Nk →M1 ×ρ2 M2 × · · · ×ρk Mk

between two multiply warped product manifolds N1 ×f2 N2 × · · · ×fk Nk and
M1 ×ψ2 M2 × · · · ×ψk

Mk is said to be a warped product immersion if ψ is given
by ψ(x1, · · · , xk) = (ψ1(x1), · · · , ψk(xk)) is an isometric immersion, where ψi :
Ni → Mi, i = 2, · · · , k are isometric immersions, and fi = ρi ◦ ψ1 : N1 → R+

for i = 2, · · · , k .
By applying Theorem D, Proposition 16 and Theorem E (Nölker’s Theorem), we
have

Corollary 8. If for each j, 2 ≤ j ≤ k, fj is two-balanced for some qj > 1, then
every isometric minimal immersion of a multiply warped product N = N1 ×f2
N2 × · · · ×fk Nk into a Euclidean space is a warped product immersion.
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The technique used in this article is to apply the Average Method in PDE in Propo-
sition 16 and the Growth Estimates in Theorem 15 to study multiply warped prod-
ucts. In contrast to an extrinsic average variational method in the calculus of
variations [10,16,17], where the sum of analytic quantities is strictly negative, the
average method in PDE in this article deals with the nonnegative sum of analytic
quantities (cf. Remark 2.1).

The techniques used in this article are sufficient general to apply to multiply warped
product manifolds totally real isometrically immersed into complex space forms,
as well as into quaternionic space forms. We also use the same technique for
multiply warped product manifolds to treat doubly warped product manifolds in
the last section.

2. Preliminaries

Let N be a Riemannian n-manifold isometrically immersed in a Riemannian m-
manifold M̃m. We choose a local field of orthonormal frame e1, . . . , en, en+1, . . . ,
em in M̃m such that, restricted to N , the vectors e1, . . . , en are tangent to N and
en+1, . . . , em are normal to N .

For a submanifold N in M̃m, let ∇ and ∇̃ denote the Levi-Civita connections
of N and M̃m, respectively. The Gauss and Weingarten formulas are then given
respectively by (see, for instance, [4, 5])

∇̃XY = ∇XY + h(X,Y )
(8)

∇̃Xξ = −AξX +DXξ

for vector fields X,Y tangent to N and ξ normal to N , where h is the second
fundamental form, D the normal connection, and A the shape operator of the sub-
manifold. Let {hrij}, i, j = 1, . . . , n; r = n+ 1, . . . ,m, denote the coefficients of
the second fundamental form h with respect to e1, . . . , en, en+1, . . . , em.

The mean curvature vector
−→
H is defined by

−→
H =

1

n
traceh =

1

n

n∑
i=1

h(ei, ei) (9)

where {e1, . . . , en} is a local orthonormal frame of the tangent bundle TN of N .
The squared mean curvature is given by

H2 = 〈
−→
H,
−→
H 〉



34 Bang-Yen Chen and Shihshu Walter Wei

where 〈 , 〉 denotes the inner product. A submanifold N is called minimal in M̃m

if its mean curvature vector vanishes identically.

Let P be a Riemannian k-manifold and {e1, . . . , ek} be an orthonormal frame field
on P . For a differentiable function ϕ on P , the Laplacian of ϕ is defined by the
divergence of the gradient of ϕ, or the trace of the Hessian ϕ, i.e.,

∆ϕ =

k∑
j=1

{ejejϕ− (∇ejej)ϕ}. (10)

A functionϕ onP is said to be harmonic (respectively subharmonic or superharmo-
nic) if we have ∆ϕ = 0 (respectively ∆ϕ ≥ 0 or ∆ϕ ≤ 0) on P .

An isometric immersion

φ : N1 ×f2 N2 × · · · ×fk Nk →M

of a multiply warped product N1 ×f2 N2 × · · · ×fk Nk into a Riemannian m-
manifold M is called mixed totally geodesic if its second fundamental form h
satisfies h(Di,Dj) = 0 for any distinct i, j ∈ {1, · · · , k}, where Di denotes the
distribution obtained from the vectors tangent to the horizontal lifts of Ni .

We recall the following results for later use.

Theorem E ([13, Nölker’s Theorem]). Let φ : N1 ×f2 N2 × · · · ×fk Nk →
Rm(c) be an isometric immersion into a Riemannian manifold Rm(c) of constant
sectional curvature c . If φ is mixed totally geodesic, then locally φ is a warped
product immersion

In the following, let us assume that N1 is a noncompact complete Riemannian
manifold and B(x0; r) denotes the geodesic ball of radius r centered at x0 ∈ N1.

We recall some notions from [15].

Definition 9. A function on N1 is said to have p-balanced growth (or, simply, is
p-balanced) if it is one of the following: p-finite, p-mild, p-obtuse, p-moderate, and
p-small; it has p-imbalanced growth, or simply is p-imbalanced otherwise.

Notice that the definitions of “p-finite, p-mild, p-obtuse, p-moderate, p-small” and
their counter-parts “p-infinite, p-severe, p-acute, p-immoderate, p-large” growth
depend on q, and q will be specified in the context in which the definition is used.

We have discussed their definitions in [9, Definition 4.1-4.5]. For completeness we
include them as follows (please see also [15]).
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Definition 10. A function f on N1 is said to have p-finite growth (or, simply, is
p-finite) if there exists x0 ∈ N1 such that

lim
r→∞

inf
1

rp

∫
B(x0;r)

|f |qdv <∞ (11)

it has p-infinite growth (or, simply, is p-infinite) otherwise.

Definition 11. A function f has p-mild growth (or, simply, is p-mild) if there exists
x0 ∈ N1 , and a strictly increasing sequence of {rj}∞0 going to infinity, such that
for every l0 > 0, we have

∞∑
j=`0

(
(rj+1 − rj)p∫

B(x0;rj+1)\B(x0;rj) |f |qdv

) 1
p−1

=∞ (12)

and has p-severe growth (or, simply, is p-severe) otherwise.

Definition 12. A function f has p-obtuse growth (or, simply, is p-obtuse) if there
exists x0 ∈ N1 such that for every a > 0, we have∫ ∞

a

(
1∫

∂B(x0;r) |f |qdv

) 1
p−1

dr =∞ (13)

and has p-acute growth (or, simply, is p-acute) otherwise.

Definition 13. A function f has p-moderate growth (or, simply, is p-moderate) if
there exist x0 ∈ N1, and F (r) ∈ F , such that

lim sup
r→∞

1

rpF p−1(r)

∫
B(x0;r)

|f |qdv <∞. (14)

And it has p-immoderate growth (or, simply, is p-immoderate) otherwise, where

F = {F : [a,∞) −→ (0,∞) ;

∫ ∞
a

dr

rF (r)
= +∞ for some a ≥ 0} . (15)

(Notice that the functions in F are not necessarily monotone.)

Definition 14. A function f has p-small growth (or, simply, is p-small) if there
exists x0 ∈ N1 , such that for every a > 0 , we have∫ ∞

a

(
r∫

B(x0;r) |f |qdv

) 1
p−1

dr =∞ (16)

and has p-large growth (or, simply, is p-large) otherwise.
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We recall the following result from [9] for later use.

Theorem 15 (Warping Function Growth Estimates) Let N1 be a noncompact
complete Riemannian manifold and f : N1 → R+ be a C2 positive function
satisfying ∆f/f ≥ 0 on N1 . Then either f is constant or f is two-imbalanced for
every q > 1.

Proof: Follow exactly the proof of Theorems 4.1, 4.2, 4.3, 4.4 and 4.5 in [9,
pp.586-590] and use Definition 9, the assertion follows. �

We also need the following result.

Proposition 16 (An Average Method in PDE) Let c2, · · · , ck be k − 1 positive
constants and let f2, · · · , fk be positive-valued functions defined on a complete
noncompact manifold N1 such that

∑k
j=2 cj∆fj/fj ≥ 0, Then we have:

1) There exists an integer i, 2 ≤ i ≤ k, such that either fi is a constant or fi is
two-imbalanced for every qi > 1.

2) If each fj , 2 ≤ j ≤ k, is two-balanced for some qj > 1, then all of
f2, · · · , fk are constant functions.

Proof: If
∑k

j=2 cj∆fj/fj ≥ 0 holds, then there exists at least i, 2 ≤ i ≤ k, such
that ∆fi/fi ≥ 0 holds. Or

∑k
j=2 cj∆fj/fj < 0 , contradicting to the hypothesis.

Therefore statement (1) of this proposition follows from Theorem 15.

For statement (2), it follows from the assumptions that fi is two-balanced. Hence
statement (1) implies that fi is constant. So we have ∆fi = 0 and∑

j 6=i
cj

∆fj
fj

=

k∑
j=2

cj
∆fj
fj
≥ 0.

Now, by applying statement 1) again to
∑

j 6=i cj∆fj/fj ≥ 0, we can find the
second constant warping function fi′ such that

∑
j 6=i,i′ cj∆fj/fj ≥ 0. Now, using

the same method iteratively, we conclude that all of f2, · · · , fk are all constant.
This proves statement 2). �

Remark 17. The average method given in Proposition 16 is in contrast to an ex-
trinsic average variational method in the calculus of variations [10,16,17], where
the sum of analytic quantities, the second variation formulas of functionals such as
the mass, p-energy, or Yang-Mills functional (over a set of distinguished variation
vector fields) is strictly negative. Our average method in PDE in Proposition 16
deals with the nonnegative sum of analytic quantities, the Laplacian of warping
functions.
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3. Proof of Theorem 1, Theorem 3 and Corollaries 4 - 8

The proofs of these results are based on Theorem D via the Average Method in
PDE given in Proposition 16 and the Warping Function Growth Estimates given in
Theorem 15.

Proof of Theorem 1. Suppose contrary to (5), i.e., there were an isometric immer-
sion φ whose mean curvature H satisfying

H2 ≤ −2kn1(n− n1) max K̃

n2(k − 1)
(17)

everywhere on N . This would imply by multiplying both sides of (7) by a positive
number n2(k − 1)/2k , or equivalently

0 ≤ −n
2(k − 1)

2k
H2 − n1(n− n1) max K̃.

On the other hand, Theorem D would imply

−n
2(k − 1)

2k
H2 − n1(n− n1) max K̃ ≤

k∑
j=2

nj
∆fj
fj
·

After combining this with (17) or its equivalent inequality, we find
k∑
j=2

nj
∆fj
fj
≥ −n

2(k − 1)

2k
H2 − n1(n− n1) max K̃ ≥ 0. (18)

Now, after applying the Average Method in PDE stated in Proposition 16(1), we
would conclude from (18) that some fi, 2 ≤ i ≤ k, could be constant or fi would
be two-imbalanced for every qi > 1, contradicting the assumption that fi is non-
constant and two-balanced for some qi > 1 . Indeed, “fi would be constant” con-
tradicts “fi is nonconstant” and “fi would be two-imbalanced for every qi > 1.”
contradicts “fi is two-balanced for some qi > 1”.

To prove the last assertion, we observed that every Lq function has two-finite, two-
mild, two-obtuse, two-moderate, two-small growth for the same q (cf. [18, Propo-
sition 2.3]). For example, if f defined on N1 is in Lq, then f is two-finite with
respect to the same q. Indeed, there exists x0 ∈ N1 such that (11), where p = 2
holds:

lim
r→∞

inf
1

r2

∫
B(x0;r)

|f |qdv ≤ lim
r→∞

inf
1

r2

∫
N1

|f |qdv

= lim
r→∞

inf
1

r2
C, for some constant C > 0

= 0 <∞.
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Definition 9 and the first assertion of Theorems 1 complete the proof. �

Proof of Theorem 3. Let φ : N = N1×f2 N2×· · ·×fk Nk →M be an isometric
immersion of a multiply warped product N = N1 ×f2 N2 × · · · ×fk Nk in a
Riemannian manifold M . If the mean curvature H of N in M satisfies (7) on N ,
then it follows from the inequality (4) of Theorem D and (7) that

∑k
j=2 nj

∆fj
fj
≥ 0.

Hence, after applying the Average Method in PDE stated in Proposition 16(1),
we conclude that some fi, 2 ≤ i ≤ k, could be constant or fi would be two-
imbalanced. �

Proof of Corollary 4. Suppose contrary, such an immersion would violate (5) and
hence contradicts Theorem 1. �

Proof of Corollary 5. Statement 1) of Corollary 5 follows from Theorem 3 and
Proposition 16(2).

In view of (7) and Proposition 16 2), we have

0 ≤ −H2 − 2kn1(n− n1)c

n2(k − 1)
≤

k∑
j=2

nj
∆fj
fj

= 0.

Therefore we obtain H = c = 0, which implies Statement 2).

Statement 3) follows immediately from Corollary 8. �

Proof of Corollary 6. To prove Statement 1), let us suppose contrary. Then it
follows from Theorem D that

0 < −H2 − 2kn1(n− n1) max K̃

n2(k − 1)
≤

k∑
j=2

nj
∆fj
fj
· (19)

Now, by Theorem 15 1), (19) implies the constancy of fi for some 2 ≤ i ≤ k .
Thus

0 <
∑
j 6=i

∆fj
fj
· (20)

Therefore, after applying Proposition 16(2) to (20) we obtain the constancy of
f2, · · · , fk, which leads to 0 < 0 , a contradiction.

For statement 2), let us suppose contrary. Then inequality (18) would be true.
Hence by Proposition 16 1), we would have the constancy of fi for some 2 ≤ i ≤
k . Thus

0 ≤
∑
j 6=i

nj
∆fj
fj
· (21)
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Now, applying Proposition 16 2) shows the constancy of f2, · · · , fk. So, it follows
from Theorem D that φ is mixed totally geodesic and hence, by Moore’s lemma
[12], we conclude that

φ = (φ1, · · · , φk) : N = N1 ×f2 N2 × · · · ×fk Nk → Em1 × · · · × Emk = Em

is a product minimal immersion, which contradicts to the fact that there is no com-
pact minimal submanifold Nk in the Euclidean space Emk . �

Proof of Corollary 7. Follows at once from Corollary 6 and the fact that every Lq

function with q > 1 on N1 is two-balanced for the same q > 1 on N1. �

Proof of Corollary 8. In view of Theorem D and H = c = 0 , we have

0 = −H2 − 2kn1(n− n1)c

n2(k − 1)
=

k∑
j=2

nj
∆fj
fj

= 0.

Now assertion follows from Theorem E [13, Nölker’s Theorem]. �

Remark 18. The following two examples show that Theorem 1 is false if either fj
is constant or fj is two-imbalance for every qj > 1.

Example 3.1. Let N1, . . . , Nk be k copies of the real line R and let us put fj = 1

for j = 2, . . . , k. Then N = N1 ×1 N2 × · · · ×1 Nk is the Euclidean k-space Ek.
Clearly, for a totally geodesic immersion of N into Ek+1, inequality (5) is false.

Example 3.2. Let N1 = {x ∈ R ; x > 0} and N2, . . . , Nk be k − 1 copies of R.
If we put f2 = · · · = fk = x, then each fj is two-imbalance for every qj > 1 and
N = N1×xN2× · · · ×xNk is an open subset of Ek. Again, for a totally geodesic
immersion of N into Ek+1, inequality (5) is false.

Remark 19. Theorems 1 and 2 are sharp in the sense that inequality (5) and (6)
are false if either fj were constant or fj were two-imbalanced for every qj > 1 (For
details, we refer to Remark 18, and Examples 3.1–3.2 above). Furthermore, The-
orem 3 shows that inequality (5) (respectively, (6)) is best possible for Theorem 1
(respectively, for Theorem 2).

4. Multiply Warped Product Manifolds into Complex or Quaternionic
Space Forms

A submanifold N of a Kähler manifold M is said to be totally real if the almost
complex structure J of M carries each tangent space of N into its corresponding
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normal space (cf. [4, 8]). Similarly, one has the notion of totally real submanifolds
in quaternionic Kähler manifolds (cf. [7]).

B.-Y. Chen and F. Dillen proved

Theorem F ([6]). Let φ : N1 ×f2 N2 × · · · ×fk Nk → M̃m(4c) be a totally real
isometric immersion of the multiply warped product N = N1×f2N2×· · ·×fk Nk

into a complex space form of constant holomorphic sectional curvature 4c or in a
quaternionic space form of constant quaternionic sectional curvature 4c. Then

−n
2

4
H2 − n1(n− n1)c ≤

k∑
j=2

nj
∆fj
fj

, n =

k∑
i=1

ni. (22)

By applying the same techniques, i.e., Theorem 15 (Warping Functions Growth
Estimates) and Proposition 16 (An Average Method in PDE), we also have the
following results.

Theorem 20. If for each j, 2 ≤ j ≤ k, fj is nonconstant and two-balanced for
some qj > 1, then for any multiply warped product N = N1×f2 N2× · · · ×fk Nk

totally real isometrically immersed in a complex space form of constant holomor-
phic sectional curvature 4c or in a quaternionic space form of constant quater-
nionic sectional curvature 4c, the mean curvature H of φ satisfies

H2 >
−4n1(n− n1)c

n2
(23)

at some points.

In particular, if each fj is nonconstant and in Lqj for some qj > 1, then (23) holds
at some points.

As applications of Theorem 20 , we have the following.

Corollary 21. If for each j, 2 ≤ j ≤ k, fj is nonconstant and two-balanced for
some qj > 1, then there does not exist a totally real minimal immersion of any
multiply warped product N = N1×f2 N2× · · ·×fk Nk into a complex space form
of constant holomorphic sectional curvature 4c ≤ 0 or into a quaternionic space
form of constant quaternionic sectional curvature 4c ≤ 0.

In particular, if each fj is nonconstant and in Lqj for some qj > 1, then there does
not exist an isometric minimal immersion of N = N1 ×f2 N2 × · · · ×fk Nk into
M̃m(0).
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Another application of Theorem 20 is the following dichotomy.

Corollary 22. Suppose the squared mean curvature of an isometric immersion of
a multiply warped product N = N1 ×f2 N2 × · · · ×fk Nk into a Riemannian
manifold Rm(c) of constant sectional curvature c satisfies

H2 ≤ −4n1(n− n1)c

n2
(24)

everywhere on N . Then there exists an integer i, 2 ≤ i ≤ k, such that the warping
function fi is either a constant or for every qi > 1 , fi has two-imbalanced growth.

By applying the Growth Estimates in Theorem 15 and an Average Method in PDE
in Proposition 16, we have the following.

Corollary 23. Suppose the squared mean curvature of a totally real isometric im-
mersion φ of a multiply warped product N = N1 ×f2 N2 × · · · ×fk Nk into a
complex space form of constant holomorphic sectional curvature 4c or a quater-
nionic space form of constant quaternionic sectional curvature 4c satisfies (24)
everywhere on N . If for each j, 2 ≤ j ≤ k, fj is two-balanced for some qj > 1,
then

1) Every warping function fj , 2 ≤ j ≤ k, is constant.

2) The isometric immersion φ is a minimal immersion into M̃m(0).

Corollary 24. Let each fj , 2 ≤ j ≤ k, be two-balanced for some qj > 1 . Then

1) Every multiply warped productN = N1×f2N2×· · ·×fkNk does not admit
an isometrically totally real minimal immersion into any complex space form
of negative constant holomorphic sectional curvature 4c or a quaternionic
space form of negative constant quaternionic sectional curvature 4c.

2) If N1 is compact, then N = N1 ×f2 N2 × · · · ×fk Nk does not admit an
isometrically totally real minimal immersion into M̃m(0).

We state a special case of Corollary 24 as follows.

Corollary 25. If each fj , 2 ≤ j ≤ k, is in Lqj for some qj > 1, then we have:

1) Every multiply warped productN = N1×f2N2×· · ·×fkNk does not admit
an isometrically totally real minimal immersion into a complex space form of
negative constant holomorphic sectional curvature 4c or into a quaternionic
space form of negative constant quaternionic sectional curvature 4c.
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2) IfN1 is compact, thenN1×f2N2×· · ·×fkNk does not admit an isometrically
totally real minimal immersion into M̃m(0).

Since the proofs of these results can be done in the same way as in Section 3, we
omit their proofs.

5. Doubly Warped Products

Doubly warped products are natural generalization of (ordinary) warped products.

Definition 26. A doubly warped product of Riemannian manifolds (N1, g1) and
(N2, g2) is a product manifold f2N1×f1N2 equipped with metric g = f2

2 g1⊕f2
1 g2,

where f1 : N1 → R+ and f2 : N2 → R+ are positive-valued smooth functions.

As an extension of Theorem A from [9], A. Olteanu proved the following.

Theorem G ([14]). Let φ : f2N1 ×f1N2 → M be an isometric immersion of a
doubly warped product f2N1 ×f1N2 into an arbitrary Riemannian manifold M .
We have

−(n1 + n2)2

4
H2 − n1n2 max K̃ ≤ n2

∆1f1

f1
+ n1

∆2f2

f2
(25)

where ni = dimNi and ∆i is the Laplacian of Ni , for i = 1, 2.

The equality sign holds identically if and only if the following conditions hold:

i) φ is mixed totally geodesic such that trace h1 = trace h2 .

ii) At each point x = (x1, x2) ∈ N , K̃ satisfies K̃(u, v) = maxK(x) for each
unit vector u ∈ T 1

x1N1 and every v ∈ T 1
x2N2.

Similarly, by applying the same techniques via Theorem 15 (Warping Functions
Growth Estimates) and Proposition 16 (An Average Method in PDE), we also have
the following.

Theorem 27. If f1, f2 are nonconstant and two-balanced for some q1, q2 > 1,
then for any isometric immersion of a doubly warped product φ : f2N1×f1N2 into
a Riemannian manifold M , the mean curvature H of φ satisfies

H2 >
−4n1n2

(n1 + n2)2
max K̃ (26)

at some points.

In particular, if each fj is nonconstant and in Lqj for some qj > 1, then (26) holds
at some points.
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The proof of this theorem is similar to the proof of Theorem 15. However, because
doubly warped products are somewhat different from ordinary warped products,
we provide the proof of Theorem 5.1 as follows.

Proof of Theorem 27. Suppose contrary to (26), i.e., there were an isometric
immersion φ whose mean curvature H satisfying

H2 ≤ −4n1n2

(n1 + n2)2
max K̃

everywhere on N , which gives

0 ≤ −(n1 + n2)2

4
H2 − n1n2 max K̃. (27)

On the other hand, Theorem G would imply

−(n1 + n2)2

4
H2 − n1n2 max K̃ ≤ n2

∆1f1

f1
+ n1

∆2f2

f2
·

After combining this with (27), we find

n2
∆1f1

f1
+ n1

∆2f2

f2
≥ −(n1 + n2)2

4
H2 − n1n2 max K̃ ≥ 0. (28)

After applying the Average Method in PDE stated in Proposition 16 1), (28) shows
that some fi, i = 1, 2, could be constant or fi would be two-imbalanced for every
qi > 1. This contradicts the assumption that fi is nonconstant and two-balanced
for some qi > 1.

The last assertion follows from Definition 9, the first assertion of Theorems 27 and
the fact that every Lq function has two-finite, two-mild, two-obtuse, two-moderate,
two-small growth for the same q (cf. [18, Proposition 2.3]). �

In particular, if the ambient space M is of constant sectional curvature c ≤ 0, then
Theorem 27 reduces to the following.

Theorem 28. If f1, f2 are nonconstant and two-balanced for some q1, q2 > 1,
then for any isometric immersion of a doubly warped product φ : f2N1×f1N2 into
a Riemannianm-manifoldRm(c) of constant curvature c ≤ 0, the mean curvature
H of φ satisfies

H2 >
−4n1n2

(n1 + n2)2
c (29)

at some points.

In particular, if each fj is nonconstant and in Lqj for some qj > 1, then (29) holds
at some points.
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Also, the following are easy consequences of Theorem 27.

Corollary 29. If for each j (j = 1, 2), fj is nonconstant and two-balanced for
some qj , then there does not exist an isometric minimal immersion of any doubly
warped product φ : f2N1 ×f1N2 into any negatively curved Riemannian manifold.

In particular, if each fj is nonconstant and in Lqj for some qj > 1, then there does
not exist isometric minimal immersion of N = N1 ×f2 N2 × · · · ×fk Nk into a
Euclidean space.

As another easy applications of Theorem 27, we have the following dichotomy.

Corollary 30. Suppose the squared mean curvature of the isometric immersion of
a doubly warped product φ :f2 N1 ×f1 N2 into a Riemannian manifold satisfies

H2 ≤ −4n1n2

(n1 + n2)2
max K̃ (30)

everywhere on N . Then there exists an integer i, 1 ≤ i ≤ 2, such that the warping
function fi is either a constant or for every qi > 1 , fi has two-imbalanced growth.

Analogously, by applying the growth estimates and the average method in PDE as
before, we have the following Liouville property and a characterization result.

Corollary 31. Suppose the squared mean curvature of an isometric immersion φ
of a doubly warped product f2N1×f1N2 into a Riemannian manifold satisfies (27)
on N . If for each j (j = 1, 2), fj is two-balanced for some qj > 1, then we have:

1) Every warping function fj , 1 ≤ j ≤ 2, is constant.

2) The isometric immersion φ is a minimal immersion into a Euclidean space.

Corollary 32. Let each fj , 1 ≤ j ≤ 2 be two-balanced for some qj > 1 . Then we
have:

1) Every doubly warped product f2N1×f1N2 does not admit an isometric min-
imal immersion into any negatively curved Riemannian manifold.

2) If N2 is compact, then f2N1 ×f1 N2 does not admit an isometric minimal
immersion into a Euclidean space.

We state a special case of Corollary 33

Corollary 33. If each fj (j = 1, 2) is in Lqj for some qj > 1, then we have:
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1) Every doubly warped product f2N1×f1N2 does not admit an isometric min-
imal immersion into any negatively curved Riemannian manifold.

2) If N2 is compact, then f2N1 ×f1N2 does not admit an isometric minimal
immersion into a Euclidean space.

Since Corollaries 29-33 can be in the same way as the proofs of Corollary 4, The-
orem 3, Corollary 5 1) & 2), Corollary 6 and Corollary 7, we omit their proofs.
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