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Abstract. Under certain assumptions, we characterize the almost η-Einstein, η-
Ricci and η-Yamabe solitons on a pseudo-Riemannian manifold when the potential
vector field of the soliton is infinitezimal harmonic or torse-forming. Moreover, in
the second case, if the manifold is Ricci symmetric of constant scalar curvature,
then the soliton is completely determined.
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1. Preliminaries

Einstein, Ricci and Yamabe solitons may be regarded as generalized fixed points
of Einstein, Ricci and Yamabe flow respectively, being important tools in partic-
ular areas of theoretical physics and mathematical physics. Recently, some gen-
eralizations have been considered: almost η-Einstein, almost η-Ricci and almost
η-Yamabe solitons, having the previous ones as particular cases. We shall briefly
recall these notions.

Let g be a pseudo-Riemannian metric on the smooth manifold M , ξ a vector field,
η is a one-form, and λ and µ two smooth functions on M . If we denote by £ξ the
Lie derivative operator along the vector field ξ, Ric the Ricci curvature tensor field,
r the scalar curvature, then the data (g, ξ, η, λ, µ) define

i) an almost η-Einstein soliton on M if they satisfy the equation

1

2
£ξg + Ric +

(
λ− r

2

)
g + µη ⊗ η = 0 (1)

ii) an almost η-Ricci soliton on M if they satisfy the equation

1

2
£ξg + Ric + λg + µη ⊗ η = 0 (2)
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iii) an almost η-Yamabe soliton on M if they satisfy the equation
1

2
£ξg + (λ− r)g + µη ⊗ η = 0. (3)

A soliton (g, ξ, η, λ, µ) is said to be steady if λ = 0, shrinking if λ < 0, expanding
if λ > 0 or undefined, otherwise.

In particular: if µ = 0, we call the solitons respectively, almost Einstein, almost
Ricci and almost Yamabe solitons. If λ and µ are constant, we call the solitons re-
spectively, η-Einstein, η-Ricci and η-Yamabe solitons. If µ = 0 and λ is constant,
we call the solitons respectively, Einstein, Ricci and Yamabe solitons.

In the present paper, we treat the above mentioned classes of solitons for two types
of potential vector fields, namely, infinitezimal harmonic and torse-forming. If
the manifold is Ricci symmetric, we provide necessary and sufficient conditions
for the potential vector field of an almost Einstein and almost Ricci soliton to be
infinitezimal harmonic. Also, we prove that in a Ricci symmetric manifold M
of constant scalar curvature, if the potential vector field is torse-forming, then the
manifold is of scalar curvature r = −n(n − 1), with n = dim(M), and the η-
Einstein and η-Ricci solitons are completely determined. Infinitezimal harmonic
vector fields (analytically characterized by trg(£ξ∇g) = 0, for∇g the Levi-Civita
connection of the Riemannian metric g) generalize infinitezimal isometries (i.e
Killing vector fields characterized by £ξg = 0). The two notions coincide on
compact manifolds satisfying trg(£ξRic) = 0, condition used in general relativity
[1], weaker than the Ricci collineation (i.e., £ξRic = 0).

2. Solitons with Infinitezimal Harmonic Potential Vector Field

Definition 1. We say that ξ is an infinitezimal harmonic vector field on the Rieman-
nian manifold (M, g) if trg(£ξ∇g) = 0, where ∇g is the Levi-Civita connection
of g.

According to Yano [4], since trg(£ξ∇g) = −∆ξ + 2Qξ, the vector field ξ is
infinitezimal harmonic if and only if ∆ξ = 2Qξ, where ∆ξ := trg(∇2ξ), with
∇2
X,Y ξ := ∇gX∇

g
Y ξ −∇

g
∇g

XY
ξ, for X , Y ∈ χ(M).

Assume that (g, ξ, η, λ, µ) defines an almost η-Einstein soliton on M . Taking the
covariant derivative of £ξg with respect to Z in equation (1), we get

1

2
(∇gZ£ξg)(X,Y ) = −(∇gZRic)(X,Y )−

(
Z(λ)− Z(r)

2

)
g(X,Y )

− Z(µ)η(X)η(Y )− µ
(
η(X)g(Y,∇gZξ) + η(Y )g(X,∇gZξ)

)
. (4)



Some Geometrical Aspects of Einstein, Ricci and Yamabe Solitons 19

The following formula [3]

(£ξ∇gXg−∇
g
X£ξg−∇g[ξ,X]g)(Y, Z)=−g((£ξ∇g)(X,Y ), Z)−g((£ξ∇g)(X,Z), Y )

for any X , Y , Z ∈ χ(M), reduces to

(∇gX£ξg)(Y, Z) = g((£ξ∇g)(X,Y ), Z) + g((£ξ∇g)(X,Z), Y ) (5)

for any X , Y , Z ∈ χ(M). Since £ξ∇g is a symmetric (1, 2)-tensor field, i.e.,
(£ξ∇g)(X,Y ) = (£ξ∇g)(Y,X), from (5) follows

g((£ξ∇g)(X,Y ), Z) =
1

2
(∇gX£ξg)(Y,Z)+

1

2
(∇gY£ξg)(X,Z)−1

2
(∇gZ£ξg)(X,Y ).

(6)
Using (4) in (6) yields

g((£ξ∇g)(X,Y ), Z) = −
(
(∇gXRic)(Y,Z) + (∇gY Ric)(X,Z)− (∇gZRic)(X,Y )

)
−
(
X(λ)− X(r)

2

)
g(Y,Z)−

(
Y (λ)− Y (r)

2

)
g(X,Z)+

(
Z(λ)− Z(r)

2

)
g(X,Y )

−X(µ)η(Y )η(Z)− Y (µ)η(X)η(Z) + Z(µ)η(X)η(Y ) (7)

+µ(η(X)
(
g(Y,∇gZξ)− g(Z,∇gY ξ)

)
+ η(Y )

(
g(X,∇gZξ)− g(Z,∇gXξ)

)
−η(Z)

(
g(X,∇gY ξ) + g(Y,∇gXξ)

)
).

If (g, ξ, λ) defines an almost Einstein soliton (i.e., µ = 0) in the n-dimensional
Ricci symmetric Riemannian manifold (M, g) (i.e.,∇gRic = 0), from (7) we get

(£ξ∇g)(X,Y ) = −
(
X(λ)− X(r)

2

)
Y −

(
Y (λ)− Y (r)

2

)
X

+g(X,Y )

(
∇λ− ∇r

2

)
where∇ denotes the gradient operator with respect to g, and

trg(£ξ∇g) = (n− 2)

(
∇λ− ∇r

2

)
and we have

Theorem 2. If (g, ξ, λ) defines an almost Einstein soliton in the n-dimensional
Ricci symmetric Riemannian manifold (M, g) with n ≥ 3, then the potential vector

field ξ of the soliton is infinitezimal harmonic if and only if∇λ =
∇r
2
·
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Corollary 3. If (M, g) is an n-dimensional Ricci symmetric Riemannian manifold
with n ≥ 3 and (g, ξ, λ) defines an Einstein soliton, then ξ is infinitezimal har-
monic if and only if∇r = 0 (which is equivalent to∇(div(ξ)) = 0).

Corollary 4. Under the hypotheses of Corollary 3, if (g, ξ, λ) defines an Einstein
soliton of magnetic type (i.e., div(ξ) = 0), then ξ is infinitezimal harmonic and
∇r = 0.

Similarly, in the almost Ricci soliton case we get trg(£ξ∇g) = (n− 2)∇λ and in
the almost Yamabe soliton case we get trg(£ξ∇g) = (n− 2)(∇λ−∇r), and we
can state

Theorem 5. Let (M, g) be an n-dimensional Riemannian manifold with n ≥ 3.

i) If M is Ricci symmetric and (g, ξ, λ) defines an almost Ricci soliton, then ξ
is infinitezimal harmonic if and only if∇λ = 0.

ii) If (g, ξ, λ) defines an almost Yamabe soliton, then ξ is infinitezimal harmonic
if and only if∇λ = ∇r.

Corollary 6. Let (M, g) be an n-dimensional Riemannian manifold with n ≥ 3.

i) If M is Ricci symmetric and (g, ξ, λ) defines a Ricci soliton, then ξ is in-
finitezimal harmonic.

ii) If (g, ξ, λ) defines a Yamabe soliton, then ξ is infinitezimal harmonic if and
only if∇r = 0.

A weaker condition than ∇(div(ξ)) = 0 is ξ(div(ξ)) ≥ 0 which we will further
impose.

Theorem 7. Let (M, g) be a complete Riemannian manifold, ξ an infinitezimal
harmonic vector field satisfying ξ(div(ξ)) ≥ 0 and Ric(ξ, ξ) = 0. If (g, ξ, η, λ, µ)

defines an almost η-Einstein soliton, then (λ, µ) =

(
r(n− 3)

2(n− 1)
,

r

(n− 1)|ξ|2

)
.

Moreover, if
∫
M |ξ|

p <∞, for any p 6= 1, then |ξ| is constant.

Proof: Taking the trace in the almost η-Einstein soliton equation (1) we get

div(ξ) + r + n
(
λ− r

2

)
+ µ|ξ|2 = 0.
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Also, the condition Ric(ξ, ξ) = 0 implies

λ− r

2
+ µ|ξ|2 = 0.

Taking into account that on a complete pseudo-Riemannian manifold, an infinitezi-
mal harmonic vector field ξ satisfying ξ(div(ξ)) ≥ 0 is divergence-free and Killing
vector field [2], we get (n− 3)r = 2(n− 1)λ.

Moreover, replacing the value of the rough Laplacian ∆̄ on η = iξg from Weitzen-
böck formula into Kato’s inequality, we have

|ξ|∆(|ξ|) ≥ −g(∆̄η, η) = −g(∆̃η, η) + g(iQξg, iξg)

where ∆̃ is Hodge-de Rham Laplacian, and taking into account that an infinitezi-
mal harmonic vector field satisfies [2]

∆̃η = 2iQξg

we obtain
|ξ|∆(|ξ|) ≥ Ric(ξ, ξ) = 0

and therefore, under the hypotheses of completeness and
∫
M |ξ|

p < ∞, for any
p 6= 1, the non negative function |ξ| must be constant according to Yau’s theorem
[5]. �

Remark that if n = 3, the soliton is steady. Also, if |ξ| is constant, then λ and µ are
constant if and only if M is of constant scalar curvature (in this case, the soliton
reduces to an η-Einstein soliton).

Similarly, we obtain in the almost η-Ricci and almost η-Yamabe soliton cases, the
followings

Theorem 8. Let (M, g) be a complete Riemannian manifold, ξ an infinitezimal
harmonic vector field satisfying ξ(div(ξ)) ≥ 0.

i) If (g, ξ, η, λ, µ) defines an almost η-Ricci soliton and Ric(ξ, ξ) = 0, then

(λ, µ) =

(
− r

n− 1
,

r

(n− 1)|ξ|2

)
.

ii) If (g, ξ, η, λ, µ) defines an almost η-Yamabe soliton, then (λ, µ) = (r, 0).

3. Solitons with Torse-Forming Potential Vector Field

We shall further assume that the potential vector field of the soliton is torse-forming.
It is known that torse-forming vector fields naturally arise in different geometries,
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for instance, the characteristic vector field of an almost paracontact metric structure
is a torse-forming vector field.

Let ξ be a torse-forming vector field on the n-dimensional pseudo-Riemannian
manifold (M, g), i.e., ∇gξ = Id − η ⊗ ξ, with η := iξg the g-dual one-form of ξ.
Then for any X , Y ∈ χ(M)

£ξg = 2(g − η ⊗ η)

R∇g
(X,Y )ξ = η(X)Y − η(Y )X

Ric(X, ξ) = −(n− 1)η(X)

Qξ = −(n− 1)ξ.

Remark that
∆ξ = (2|ξ|2 − n− 1)ξ

for n = dim(M). Also, Qξ = −(n− 1)ξ and therefore

trg(£ξ∇g) = −(2|ξ|2 + n− 3)ξ

so that one can deduce that in a Riemannian manifold there exists no infinitezimal
harmonic torse-forming vector field.

Consider now the case of three-dimensional manifolds. It is known that in a
three-dimensional pseudo-Riemannian manifold (M, g), the curvature tensor field
is given by

R∇g
(X,Y )Z = g(Y,Z)

(
QX − r

2
X
)
− g(X,Z)

(
QY − r

2
Y
)

+ Ric(Y,Z)X − Ric(X,Z)Y (8)

for any X , Y , Z ∈ χ(M).

If we assume that ξ is a torse-forming vector field with ∇gξ = Id − η ⊗ ξ for
η := iξg, from (8) we obtain

Q =
r + 2

2
Id − r + 6

2|ξ|2
η ⊗ ξ (9)

and
Ric =

r + 2

2
g − r + 6

2|ξ|2
η ⊗ η.

It follows that Ric(ξ, ξ) = −2|ξ|2 and also

|Ric|2 =
(r + 2)2

2
+ 4. (10)

In this case
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i) the almost η-Einstein soliton equation (1) reduces to

(λ+ 2)g +

(
µ− 1− r + 6

2|ξ|2

)
η ⊗ η = 0

ii) the almost η-Ricci soliton equation (2) reduces to(
λ+ 2 +

r

2

)
g +

(
µ− 1− r + 6

2|ξ|2

)
η ⊗ η = 0

iii) the almost η-Yamabe soliton equation (3) reduces to

(λ+ 2− r)g + (µ− 1)η ⊗ η = 0.

From the above relations, we obtain

Lemma 9. Let (M, g) be a three-dimensional pseudo-Riemannian manifold and
let ξ be a torse-forming vector field on M (∇gξ = Id − η ⊗ ξ with η := iξg).

i) If (1) defines an almost η-Einstein soliton on M , then the scalar curvature
of M is

r = 2
(
λ− 1 + (µ− 1)|ξ|2

)
. (11)

ii) If (2) defines an almost η-Ricci soliton on M , then λ = 1− (µ− 1)|ξ|2.

iii) If (3) defines an almost η-Yamabe soliton on M , then the scalar curvature of
M is r = λ+ 1 + (µ− 1)|ξ|2.

On the other hand, using (9) and the almost η-Einstein soliton equation (1), we
compute

|Ric|2 =
1

2

(
r2 − 2(λ+ 1)r + 4(µ− 1)|ξ|2

)
(12)

and together with (10), it implies

r(λ+ 3) = 2
(
(µ− 1)|ξ|2 − 3

)
.

Using now (11), we get
(r + 2)(λ+ 2) = 0

from where we get either r = −2 (and λ = (1 − µ)|ξ|2) or λ = −2 (and r =
2((µ− 1)|ξ|2 − 3)) we can state
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Theorem 10. Let (M, g) be a three-dimensional pseudo-Riemannian manifold and
let ξ be a torse-forming vector field onM (∇gξ = Id −η⊗ξ with η := iξg). If (1)
defines an almost η-Einstein soliton on M , then the manifold is of constant scalar
curvature r = −2 or the soliton is shrinking.

Remark also that (12) implies µ > 1 +
(λ+ 1)2

4|ξ|2
·

Following the same steps, we obtain from the almost η-Ricci soliton equation

|Ric|2 = −(λ+ 1)r + 2(µ− 1)|ξ|2

and we can state

Proposition 11. Let (M, g) be a three-dimensional pseudo-Riemannian manifold
and let ξ be a torse-forming vector field on M (∇gξ = Id − η⊗ ξ with η := iξg).
If (2) defines an almost η-Ricci soliton on M , then the scalar curvature of M is a
solution of the following equation

r2 + 2(λ+ 3)r + 4(λ− 1)|ξ|2 + 12 = 0. (13)

Remark 12. From (13) we get 2λ(r + 2|ξ|2) = −(r + 3)2 + 4|ξ|2 − 3. Remark
the following facts

i) if the soliton is steady, then the scalar curvature is r = −3 ±
√

4|ξ|2 − 3

provided by |ξ|2 ≥ 3
4 . In particular, if ξ is a unitary vector field, then r ∈

{−4,−2}

ii) if |ξ|2 = − r
2 , then |ξ|2 ∈ {1, 3} and r ∈ {−2,−6}.

Consider now the case of Ricci symmetric manifolds. If the potential vector field
of the almost η-Einstein soliton (1) is torse-forming with ∇gξ = Id − η ⊗ ξ for
η := iξg and M is Ricci symmetric (i.e., ∇gRic = 0), then removing Z from (7),
it follows that

(£ξ∇g)(X,Y ) = g(X,Y )

(
∇λ− ∇r

2

)
+η(X)η(Y )∇µ−

(
X(λ)− X(r)

2

)
Y

−
(
Y (λ)− Y (r)

2

)
X−(X(µ)η(Y ) + Y (µ)η(X) + 2µ(g(X,Y )− η(X)η(Y ))) ξ

where∇ stands for the gradient operator with respect to g. Taking Y = ξ we get

(£ξ∇g)(X, ξ) = η(X)

(
∇λ− ∇r

2
+ |ξ|2∇µ

)
−
(
ξ(λ)− ξ(r)

2

)
X

−
(
X(µ)|ξ|2 + ξ(µ)η(X) + 2µη(X)− 2µ|ξ|2η(X) +X(λ)− X(r)

2

)
ξ.
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Assume now that λ, µ and r are constant and ξ is a unitary vector field. Then the
previous relation gives

(£ξ∇g)(X, ξ) = 0. (14)

Taking the covariant derivative of (14) with respect to Y , we obtain

(∇gY£ξ∇g)(X, ξ) = −(£ξ∇g)(X,Y ). (15)

Again from [3]

(£ξR)(X,Y, Z) = (∇gX£ξ∇g)(Y, Z)− (∇gY£ξ∇g)(X,Z). (16)

Therefore (15) and (16) yields

(£ξR)(X,Y, ξ) = 0

and hence
(£ξRic)(X, ξ) = 0

which together with∇gRic = 0 implies

Ric(X, ξ) = η(X)Ric(ξ, ξ)

and
Ric = Ric(ξ, ξ)g + d(Ric(ξ, ξ))⊗ η.

Setting X = Y = ξ in (1) it follows that

Ric(ξ, ξ) =
r

2
− (λ+ µ)

and therefore
Ric = Ric(ξ, ξ)g

produces
Ric(ξ, ξ) =

r

n
·

Replacing Ric in the soliton equation we get

(1− µ)(g − η ⊗ η) = 0. (17)

Computing the soliton equation (1) in (ξ, ξ) we get

λ+ µ = n− 1 +
r

2
(18)

and taking the trace in (1) we obtain

nλ+ µ = −n+ 1 +
r(n− 2)

2
· (19)

From (17), (18) and (19) we can state
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Proposition 13. Let (g, ξ, η, λ, µ) define an η-Einstein soliton on the n-dimensio-
nal pseudo-Riemannian manifold (M, g) with unitary torse-forming potential vec-
tor field (∇gξ = Id − η⊗ ξ with η := iξg). If M is Ricci symmetric with constant
scalar curvature, then the manifold is Einstein of scalar curvature r = −n(n− 1)

and (λ, µ) =
(
− n(n− 3)

2
− 2, 1

)
.

Following the same steps one can prove also

Proposition 14. If (g, ξ, η, λ, µ) defines an η-Ricci soliton on the n-dimensional
pseudo-Riemannian manifold (M, g) with unitary torse-forming potential vector
field (∇gξ = Id − η ⊗ ξ with η := iξg) and M is Ricci symmetric with constant
scalar curvature, then the manifold is Einstein of scalar curvature r = −n(n− 1)
and (λ, µ) = (n− 2, 1).

Conclusions

Geometric flows, with their corresponding solitons, still constitutes a very actual
subject to study. The paper puts into light the connection between the properties
of the potential vector field of a soliton (of being infinitezimal harmonic or torse-
forming) and the scalar curvature of the manifold, any contribution in this direction
bringing new points of view on the geometry of the manifold.
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