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Abstract. We consider a modified Kostant-Souriau geometric quantization scheme
due to Czyz and Hess for Hamiltonian systems on the cotangent bundles of com-
pact rank-one Riemannian symmetric spaces (CROSS). It is used, together with a
symplectic reduction process, to relate its energy spectrum to the spectrum of the
Laplace-Beltrami operator. Moreover, the corresponding eigenspaces have real di-
mension equal to the complex dimension of the space of the holomorphic sections
of the quantum bundle which is obtained after the quantization. The relation be-
tween the two constructions was first noticed by Mladenov and Tsanov for the case
of the spheres. In addition to the CROSS case, we announce preliminary results
related to the case of compact Riemannian symmetric spaces of higher rank.
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1. Introduction

It is a well-known fact that on a Riemannian manifold (M, g) all of whose geodesics
are closed there is a natural S1-action and that this action extends to the cotangent
bundle of M . The geodesic flow can be realized as solutions to an S1-invariant
Hamiltonian system on T ∗M . For such systems, under mild conditions, there is a
moment map and a symplectic reduction process, called also Marsden-Weinstein
reduction. This reduction produces a reduced space T ∗M//S1 that can be iden-
tified with the space parametrizing all geodesics and that is equipped with an in-
duced symplectic form. The induced symplectic form depends on a level set of the
corresponding moment map which we call the energy level of the geodesic flow.
In many examples the cotangent bundle has a “complex polarization” - a complex
structure compatible with the symplectic form which becomes Kähler form. A
natural question which has its origin in the relation between the Kepler’s laws and
the hydrogen atom is when such manifold could be “quantized”. The geometric
quantization is not a uniquely defined notion and there are various schemes which
implement it - see, for example, [20, 21] and the references therein. One of them,
originally due to [6, 14], is a twisted version of Kostant-Souriau scheme and as-
signs a holomorphic line bundle with first Chern class given by the induced Kähler
form with an added extra term. This new term is half of the first Chern class of the
canonical bundle of the manifold M . The quantum condition is the integrality of
that corrected form, while the analog of the Hilbert space of quantum observables
is the space of holomorphic sections of the line bundle.

One of the first examples that was quantized geometrically according to the scheme
described above is the case whenM is the n-dimensional sphere Sn. This example
was treated in [18] by Mladenov and Tsanov and it was observed that the quantum
condition leads to an energy spectrum which is, up to an additive constant, equal to
the spectrum of the Laplace-Beltrami operator ∆Sn . Also, the (complex) dimen-
sion of the quantum Hilbert space equals the (real) dimension of the corresponding
eigenspace of ∆Sn . One explanation of this fact is that both spaces are natural
irreducible representations of SO(n+ 1). A main purpose of the present note is to
initiate the representation theory perspective of a similar relation between the geo-
metric quantization and harmonic analysis on the compact Riemannian symmetric
spaces. More precisely, we relate the spectrum of the Laplace-Beltrami operator to
the quantized energy levels of a Hamiltonian system on the space of all tangents to
maximal totally geodesic tori on a Riemannian symmetric space. Also, via sym-
plectic reduction we relate the multiplicities of the eigenvalues to the dimensions
of the spaces of holomorphic sections of the corresponding quantum bundles over
the reduced space - which is also a generalized flag manifold.
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This paper will follow an unorthodox approach - we present some detailed exam-
ples first, and then underline the general (representation) theory behind them. More
specifically, in the next section we present the quantization procedure of the energy
of the geodesic flow on CPn and HPn, the complex and quaternionic projective
spaces. We compare the energy spectra to the spectra of the Laplace-Beltrami op-
erators and the multiplicities of the corresponding levels to the dimensions of the
quantum bundles. We note that a quantization scheme for these projective spaces
have been considered also in [7, 8, 19] and results similar to ours were indepen-
dently obtained in [15, 16]. In Section 3 we explain the necessary preliminaries
from the structure theory of simple Lie algebras and its relation to the Riemmanian
symmetric spaces and generalized flag manifolds. Then in Section 4 we focus on
and work out the rank-one case. This case includes the examples of the spheres
and the projective spaces, and we treat these examples in the language of classical
representation theory. In the following section we turn to the general case. We
observe that we can substitute the space parametrizing all geodesics with the space
of all maximal totally geodesic flat submanifolds. This is again a flag manifold
and carries a natural “polarization” which could be used for the quantization - a
Kähler complex structure. Since our aim is to underline the geometric approach
through the Marsden-Weinstein reduction, we also need a Kähler space with a
(multi-valued) Hamiltonian that, after the symplectic reduction, will become the
generalized flag manifold with an appropriate reduced symplectic form, a form
which is also integral and Kähler. This is done in [11] via construction of a Kähler
structure on some open subset of the manifold of all tangent spaces of the maximal
totally geodesic flat submanifold. Then we announce the main result in Section 5 -
Theorem 15. We finish with one of the first examples of symmetric space of rank
two - M = SU(3)/SO(3). The flag manifold parametrizing the totally geodesic
two-tori is the usual flag F = SU(3)/S(U(1) × U(1) × U(1)). We note that
the eigenspaces of the Laplace-Beltrami ∆M are not necessary irreducible SU(3)-
modules and compare them to the spaces of holomorphic sections of the sums of
the corresponding line bundles on F .

Notation and conventions: We adopt the following notations. By Cn and Rn
we denote the standard complex and real n-dimensional vector spaces, while Hn

stands for the real vector space of n-tuples of quaternions on which H acts on
the left. For a complex number z, <(z) and =(z) are the real and imaginary
part of z, respectively. We set 〈x, y〉 =

∑n
i=1 xiyi when x and y are real and

〈x, y〉R = 〈x, y〉 when x, y ∈ Rn, 〈x, y〉C = 2<〈x, y〉 when x, y ∈ Cn, and
〈x, y〉H = 4<〈x, y〉 when x, y ∈ Hn respectively. Similarly ||x||R, ||x||C , ||x||H
are the corresponding real norms. By Sn,CPn,HPn we denote the n-dimensional
sphere, complex projective space and quaternionic projective space, respectively.
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2. Symplectic Reduction and Quantization of the Geodesic Flow of the
Complex and Quaternionic Projective Spaces

We first recall Marsden-Weinstein (or symplectic) reduction and the modified ge-
ometric quantization scheme due to Czyz [6] and Hess [14]. As indicated in the
introduction, this scheme was used by Mladenov and Tsanov [18], who related
the energy spectrum of the geodesic flow on a sphere with the eigenvalues of the
Laplace-Beltrami operator. We refer to [18] for the details in the case of the sphere.
In what follows we present a similar computations for two of the other compact
rank-one Riemannian symmetric spaces (CROSSes), CPn and HPn. For more de-
tails on the Marsden-Weinstein (or symplectic) reduction we refer the reader, for
example, to [1].

If (M,ω) is a symplectic manifold and H is a function on M , then the vector field
XH defined as dH(Y ) = ω(XH , Y ) is called Hamiltonian vector field. We will
call H a Hamiltonian function and the triple (M,ω,H) - a Hamiltonian system.
If G is a group of symplectomorphisms then under mild conditions there is a map
µ : M → g∗, defined by

dµ(X) = iXω

where g is the Lie algebra of G and X ∈ g is identified with the induced vec-
tor field on M . When such µ exists, the action is called Hamiltonian and the
space N = µ−1(c)/G is called the Marsden-Weinstein reduction or the sym-
plectic reduction, where c is a fixed element of the adjoint action of G on g∗.
We denote N by M//G. The space M//G inherits a natural symplectic form
ωred such that i∗(ω) = π∗(ωred) where i : µ−1(c) → M is the inclusion and
π : µ−1(c) → N = µ−1(c)/G is the natural projection. The following result will
be use repeatedly in the paper.

Proposition 1. If (N,ωred) is the symplectic reduction of (M,ω) under the action
of a Lie group G and H is a G-invariant function on M , then there is a unique
function Hred on N such that π∗(Hred) = i∗(H). Moreover the flow of the vec-
tor field XH preserves µ−1(c) and projects on N to the flow of the vector fields
XHred

. Moreover, if we have a second Hamiltonian action of a Lie group G1 on
M which commutes with the action of G, then the level sets of its moment map µ1

are G−invariant and µ1|µ−1(c) = π∗(µ1) where µ1 is the moment map associated
to the action of G1 on N .

In [18] the space of oriented geodesics of M = Sn is explicitly identified with the
complex quadric in CPn via the Marsden-Weinstein reduction. It was noted that the
energy levels of the moment map that satisfy a quantization condition coincide, up
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to an additive constant, with the eigenvalues of the Laplace-Beltrami operator and
the their multiplicity are the same as the (complex) dimension of the holomorphic
sections of the corresponding quantum bundle. Below we provide details on the
next two of the classical examples - the complex and quaternionic projective space.

2.1. Complex Projective Space

For a point [z] = [z0, z1, ..., zn] in the complex projective space CPn, we identify
the holomorphic cotangent space

T ∗[u]CP
n ∼= {(u, v) ∈ Cn+1 × Cn=1 ; 〈u, v〉C = 0}.

To achieve a global description of the tangent bundle, we use the Hopf map π :
S2n+1 → CPn which is induced by the standard action of S1 on S2n+1. This map
is defined by u 7→ [u], where u ∈ R2n+2 = Cn+1 with ||u|| = 1. After identifying
the tangent and cotangent bundles of the sphere via the canonical metric, we can
identify the cotangent bundle as

T ∗S2n+1 = {(u, v) ∈ Cn+1 × Cn+1 ; ||u|| = 1, 〈u, v〉R = 0}.

Then the S1-action ρ for the Hopf projection π extends to T ∗S2n+1 as

ρ(eiθ)(u, v) = (exp(iθ)u, exp(iθ)v).

This action preserves the canonical symplectic form on T ∗S2n+1, which is given by
i∗< (du∧dv). The moment map for the action ρ can be used to show the following
theorem. This theorem is first proven in [7], but for reader’s convenience a short
proof is presented.

Lemma 2. The space T ∗CPn is biholomorphic to XC and diffeomorphic to X̃C

where
XC
∼= {[u, v] ; 〈u, u〉C = 1, 〈u, v〉C = 0}

with [u, v] representing the class of (u, v) under (u, v) ∼ (exp(iθ)u, exp(iθ)v)
and

X̃C
∼= {[[u, v]] ; 〈u, u〉C = 〈v, v〉C , 〈u, v〉 = 0}

with [[u, v]] defined by the relation (u, v) ∼ (exp(iθ)u, exp(−iθ)v).

Proof: It is well-known that under the action ρ, T ∗CPn = T ∗S2n+1//S1. The
moment map Φ associated to the action ρ is simply Φ(u, v) = =〈u, v〉C . Hence,
T ∗S2n+1//S1 = Φ−1(µ)/S1, for a generic µ ∈ R = iu(1), is identified with XC

which gives the first diffeomorphism. The fact that it is a biholomorphism follows
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from the fact that the reduction is actually Kähler, provided that we consider the
canonical form on T ∗S2n+1 as a Kähler form for the complex structure induced
from the embedding in C2n+2. Finally the diffeomorphism between XC and X̃C

is given by the formulas

ũk =
1√
2

(〈v, v〉Cuk + ivk), ṽk =
1√
2

(vk − i〈v, v〉Cuk).

�

The geodesic flow on a Riemannian manifold is represented as a Hamiltonian
flow on its cotangent bundle. The cotangent bundle of each Riemannian manifold
(M, g) has a canonical symplectic form given in local coordinates as

∑
dxi ∧ dyi

where (x1, ..., xn) are local coordinates of M and (x1, ..., xn, y1, ..., yn) are the
associated local coordinates of T ∗M . Then the function H(x, v) = 1

2g(v, v) for
x ∈M and v ∈ T ∗xM has a Hamiltonian vector field XH and its flow lines project
on M to give the geodesics.

By Proposition 1, if a Lie group G of isometries acts on M , this action induces a
Hamiltonian action on T ∗M and the reduced space T ∗M//G becomes a (reduced)
Hamiltonian system. Whenever T ∗M//G = T ∗N for some Riemannian manifold
N then the solutions of the new system is precisely the geodesic flow on N . In the
particular case of T ∗S2n+1 we obtain the following.

Proposition 3. The canonical symplectic form ΩC on T ∗CPn ∼= XC is

ΩC =
1

2
(du ∧ dv + du ∧ dv)

and the Hamiltonian systemHCPn = (Xc,ΩC , HC =
||v||2

2
) induces the geodesic

flow on CPn. The system is equivalent to (X̃C , Ω̃C , H̃C) in view of the diffeomor-
phism in Lemma 2.

Since the orbits of HCPn correspond precisely to the geodesics of CPn, we first
identify the space parametrizing the geodesics. For this we first consider the
geodesic flow on the sphere S2n+1. Since all of the geodesics on the sphere are
closed, the flow of XH in the cotangent space has also only closed trajectories.
They define an S1-action which is given by (u, v)→ (exp(iθ)u, exp(−iθ)v). This
action commutes with the action inducing the Hopf projection and is Hamiltonian.
So it defines an action on T ∗CPn which has orbits - the flow lines of the Hamilto-
nian vector field defining the geodesics on CPn. We can identify a geodesic c(t) in
CPn with the line (c(t), c′(t)) in TCPn ' T ∗CPn when t is a parameter such that
c′ has constant norm. From here we see that the space parametrizing the geodesics
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can be identified with the Marsden-Weisntein quotient. Let Nc = H̃−1
C (c)/S1 be

the reduced space. To identify Nc with a flag manifold, we use the Hamiltonian
system (X̃C , Ω̃C , H̃C). Let

F = {([x], [w]) ∈ CPn × CPn ; 〈z, w〉C = 0}
= {([x], [w]) ∈ CPn × CPn ; 〈z, z〉C = 〈w,w〉C = 1, 〈z, w〉 = 0}.

One can see that F is biholomorphic to the (1,2)-flag in Cn+1 with homogeneous
representation F = U(n + 1)/U(1) × U(1) × U(n − 1). Denote by p1 and p2

the two projections on the corresponding factors of CPn × CPn. Let α be the
generator (the Fubini-Study form) of H2(CPn,Z). Then ω1 = p∗1α and ω2 = p∗2α
are generators of H2(F,Z). With this notation we have the following:

Proposition 4. If c 6= 0 then the reduced manifold Nc is biholomorphic to the flag
F and the reduced Kähler form is ω̃c = π

√
2c(ω1 + ω2).

Proof: The S1-action of the geodesic flow on T ∗CPn is induced from the one on
T ∗S2n+1. Hence this action is

λ(z, w) = (λz, λw)

for (z, w) ∈ H̃−1
C (c). For the sphere S2n+1

R of radius R the Hopf projection fits

in the diagram Cn+1 S2n+1
R

ioo h // CPn with h∗α = 1
πR2 i

∗Ω (see [18]). If

π̃c is the projection H̃−1
C (c) → Nc = F then we have the following commutative

diagram

H̃−1
C (c)

��

π̃c // Nc

ĩc
��

S2n+1 × S2n+1 h×h // CPn × CPn

where the vertical arrows correspond to the natural embeddings. Therefore

π̃∗c (
√

2cπ(ω1 + ω2)) = π
√

2c
i

2π
(
dz ∧ dz

||z||2
+

dw ∧ dw

||w||2
)

=
1√
2c

i

2
(dz ∧ dz + dw ∧ dw)

=
1

2
(du ∧ dv + du ∧ dv) = ĩ∗c(Ω̃c).

�

In the above calculation we used that H̃C(z, w) = c, so ||z||2 = ||w||2 = 2c.
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Now recall some facts about the quantization scheme of Kostant and Souriau with
the amends of Czyz and Hess.

Let X be a compact Kähler manifold with Kähler form λ. We say that the holo-
morphic line bundle L is a quantum line bundle if its first Chern class satisfies

c1(L) =
1

2π
[λ]− 1

2
c1(X).

Thus X will be quantizable if and only if c1(L) ∈ H2(X,Z) . The corresponding
quantum Hilbert space is the (finite dimensional) linear space H0(X,O(L)).

Proposition 5. We have c1(F) = n(ω1 + ω2).

Proof: We apply the adjunction formula for a hypersurface of degree (1,1) in
CPn × CPn to obtain

c1(F) = −(c1(KCPn×CPn |F) + c1([F]|F))

= c1(CPn × CPn)|F − c1([F]|F)

= (n+ 1)(ω1 + ω2)− (ω1 + ω2) = n(ω1 + ω2).

�

Theorem 6. The energy spectrum of the geodesic flow on CPn is

Ek =
1

2
(n+ 2k)2, k ∈ N

with corresponding multiplicities

mk =

(
n+ k

k

)2

−
(
n+ k − 1

k

)2

.

Proof: For the exact cohomology sequence:

H1(F,O)→ H1(F,O∗)→ H2(F,Z)→ H2(F,O)

and the identities H(F,O) = H2(F,O) = 0 follows that

c1 : H1(F,O∗)
∼=−→ H2(F,Z) ∼= Z⊕ Z.

Therefore every holomorphic line bundleL on F is equivalent toLk1,k2 = k1π
∗
1(H)

+ k2π
∗
2(H), where H is the hyperplane section on CPn.

The quantum condition on c is

1

2π
[ωc]−

1

2
c1(F) = c1(Lk1,k2)
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which implies √
2c

2
− n

2
= k

where k = k1 = k2 is a positive integer. In particular

c =
1

2
(2k + n)2.

To count the multiplicities (i.e., dimH0(F,O(L)) we consider the exact sequence
of sheaves

0→ OCPn×CPn(Lk,k ⊗ L1,1)
α−→ OCPn×CPn(Lk,k)

r−→ O|F(Lk,k)→ 0

where α is the multiplication of sections of Lk,k by the polynomial
∑n

0 ziwi which
defines F in CPn × CPn and r is the restriction. The corresponding exact coho-
mology sequence gives

0 → H0(CPn × CPn,O(Lk−1,k−1))→ H0(CPn × CPn,O(Lk,k))

→ H0(F,O(Lk,k))→ H1(CPn × CPn,O(Lk−1,k−1)) = 0

where the last term is zero by the Kodaira vanishing theorem. Thus we have

mk = dim(H0(F,O(Lk,k))

= dim(H0(CPn × CPn,O(Lk,k))− dim(H0(CPn × CPn,O(Lk−1,k−1)))

=

(
n+ k

k

)2

−
(
n+ k − 1

k

)2

.

�

2.2. Quaternionic Projective Space

We first note that the results in this subsection were independently obtained in
[15, 16]. The geodesic flow on HPn can be described in a similar way as the one
for CPn but with the aid of the quaternionic Hopf map. For that we use three
equivalent representations of T ∗S4n+3

T ∗S4n+3 = {(x, y) ∈ R4n+3 × R4n+3 ; ||x||R = 1, 〈x, y〉R = 0}
= {(u, v) ∈ C2n+2 × C2n+2 ; ||u||C = 1,<〈u, v〉C = 0}
= {(p, q) ∈ Hn+1 ×Hn+1 ; ||p||H = 1, 〈p, q〉R = 0}



18 Dimitar Grantcharov and Gueo Grantcharov

where pk := u2k + u2k+1j, qk := v2k + v2k+1j and 〈p, q〉H =
∑
pkqk. The

quaternionic Hopf map in this case is χ : S4n+3 → HPn, p → [p] where [p] =
[p0, p1, ..., pn] is the class of p for the relation p ∼ σp, σ ∈ Sp(1). The next lemma
is again from [7].

Lemma 7. The cotangent space T ∗HPn is diffeomorphic to both XH and X̃H

defined as follows:

XH := {bp, qc ∈ Hn+1 ×Hn+1 ; ||p||H = 1, 〈p, q〉H = 0}

X̃H := {bz, wc ∈ C2n+2 × C2n+2 ; ||z||C = ||w||C , 〈z, w〉C = 0, I(z, w) = 0}

where I(z, w) = z0w1−z1w0 + ...+z2nw2n+1−z2n+1w2n and bp, qc and bz, wc
denote the equivalence classes of (p, q) and (z, w) under (p, q) ∼ (σp, σq) and
(z, w) ∼ (z, w)g for σ ∈ Sp(1) and g ∈ SU(2) ∼= Sp(1).

Proof: Consider the action of SU(2) on S4n+3 defined by

Ψg(p, q) := (p, q)g, g ∈ SU(2). (1)

This action has a moment map G : T ∗S4n+3 → su∗(2), given by the formulas
G(p, q) = (A(p, q), B(p, q), C(p, q)), where

〈p, q〉H = <(〈p, q〉H) +A(p, q)i +B(p, q)j + C(p, q)k

and the imaginary quaternions are identified with su∗(2). Hence, T ∗S4n+3//SU(2)
= XH

∼= T ∗HPn.

To prove that XH and X̃H are diffeomorphic, consider the map tH : XH →
X̃H , (z, w) = tH(p, q), where

z2k :=
1√
2

(||v||Cu2k + iv2k), z2k+1 :=
1√
2

(−||v||Cu2k+1 − iv2k+1)

w2k :=
1√
2

(v2k+1 − i||v||Cu2k+1), w2k+1 :=
1√
2

(v2k+1 − i||v||Cu2k+1).

�

The action Ψ defined in (1) commutes with the geodesic flow of S4n+3. Recall the
diffeomorphism tH : XH → X̃H defined at the end of the last proof. Like in the
previous subsection, we have the following.

Proposition 8. Let ΩH = ΩT ∗HPn be the canonical symplectic form on T ∗HPn.
Then

ΩH =
1

2
(du ∧ dv + du ∧ dv).
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Moreover the geodesic flow of HPn is the flow of the equivalent Hamiltonian sys-
tems

(XH ,ΩH , GH) ∼= (X̃H , Ω̃H , G̃H)

where GH =
||q||2H

2
=
||v||2C

2
, Ω̃H = t∗HΩH and G̃H = t∗H(GH).

Next we compute the energy spectrum of the geodesic flow on HPn in a sim-
ilar way as in the case of CPn. We consider again the reduced space Oc =
T ∗HPn//S1 = G̃−1(c)/S1 with the induced symplectic form ωc obtained from
ĩ∗cΩH = π̃∗cωc, where ĩc : G̃−1(c) → T ∗HPn and π̃c : G̃−1(c) → Oc. Denote by
Fis the isotropic Grassmann manifold

Fis = {Λ ∈ Gr2(C2n+2) ; I|Λ = 0}
= {[[z, w]] ∈ Cn+1 × Cn+1 ; ||z||C = ||w||C = 1, 〈z, w〉C = I(z, w) = 0}

where [[z, w]] is representative of (z, w) for (z, w) ∼= (λz, λw)g, λ ∈ S1, g ∈
SU(2) or equivalently (z, w) ∼= (z, w)g, g ∈ U(2). Alternatively, Fis is a hyper-
plane in Gr2(C2n+2)

Fis ∼= {(λij) ∈ Gr2(C2n+2) ; λ01 + λ23 + ...+ λ2n+1,2n+2 = 0}

where (λij) are the Plücker coordinates on Gr2(C2n+2), as well as a homogeneous
space: Fis ∼= Sp(n+ 1)/U(2)Sp(n− 1).

Proposition 9. If c 6= 0 then the reduced space Oc is isomorphic to Fis equipped
with the Kähler form ω̃c = π

√
2cω, where ω is the restriction of the canonical

Kähler form on Gr2(C2n+2) which generates H2(Gr2(C2n+2),Z).

Proof: The S1 action of the geodesic flow on G̃−1
H (c) ⊂ T ∗HPn ∼= X̃H is

λbz, wc = bλz, λwc

which commutes with the action of Sp(1) ∼= SU(2) defining the quaternionic Hopf
fibration. Now from G̃H(z, w) = c we have ||z||2 = ||w||2 = 2c. If λij =
ziwj − zjwi are the Plücker coordinates on Gr2(C2n+2) then

π̃∗c (π
√

2cω) = π
√

2c
i

2π

dλij ∧ dλij∑
i,j ||λij ||2

=
1√
2c

i

2
(dz ∧ dz + dw ∧ dw) = ĩ∗c(Ω̃H).

�

Proposition 10. We have c1(Fis) = (2n+ 1)ω.



20 Dimitar Grantcharov and Gueo Grantcharov

Proof: We note that c1(Gr2(C2n+2)|Fis = (2n + 2)ω and then proceed with the
adjunction formula as in Proposition 2.4 using the fact that Fis is a hypersurface in
Gr2(C2n+2). �

Theorem 11. The energy spectrum of the geodesic flow on HPn is

Ek =
1

2
(2n+ 1 + 2k)2, k ∈ N

with corresponding multiplicities

mk =

(
(2 + k(4 + k)...(2n+ k)

)(
(1 + k)(3 + k)...(2n+ 1 + k)

)
(2n+ 2k + 1)

(2n+ 1)!(2n− 1)!
·

Proof: We only sketch the proof since it is similar to the CPn case. We have
c1 : H1(Fis,O∗)→ H2(Fis,Z) = Z⊕Z. Therefore all holomorphic line bundles
on Fis which arise from the quantization are Lk := S⊗k, where S = ι∗([H]) and
ι is the inclusion ι : Fis → Gr2(C2N+2)). Hence

√
2c

2
− 2n+ 1

2
= k.

�

3. Riemannian Symmetric Spaces and Generalized Flag Manifolds

In this section, following the notations of [14], we collect some important facts
about Riemannian symmetric spaces and generalized flag manifolds. Let G be a
compact semisimple Lie group and K a Lie subgroup given by the fixed point set
of an involution θ. Then M = G/K is endowed with a Remannian metric which
makes it a Riemannian symmetric space. Denote by g and k the Lie algebras of
G and K, respectively. Consider the eigenspace decomposition of θ: g = k + p,
and identify p with ToM , the tangent space of M at o = eK. Then [k, p] = p and
[p, p] = k. Denote by a the maximal abelian subalgebra in p. Then dimension of
a is called the rank of M . It is known that gn = k + ip defines the non-compact
dual Lie algebra of g with respect to θ. Denote by Gn the simply-connected Lie
group with Lie algebra gn. Denote also by gc, kc, pc etc. the complexifications of
g, k, p etc. respectively. Note that gc is a complexification of gn and ia is a maximal
abelian subalgebra of ip.

The non-compact groupGn admits an Iwasawa decompositionGn = KAN where
A is the simply-connected Lie group with algebra ia and N is unipotent. There is
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a complex Iwasawa decomposition (see for example [5]) given by Gc0 = KcAcN c

where Kc, Ac, N c, and Gc are the complexifications of K,A,N,G, respectively,
and Gc0 is some Zarisky open and dense subset of Gc.

It is known that K acts transitively on the set of all maximal abelian subalgebras
in p. Denote by m the Lie algebra of the stabilizer of a in K. Then m = {X ∈
k ; [X, a] = 0} and since a is maximal, the centralizer of a in g is l = {X ∈
g ; [X, a] = 0} = m+ a. If L is the corresponding subgroup in G, then L contains
a maximal torus of G (as a centralizer of an abelian subgroup). Hence, the space
G/L is a generalized flag manifold (also called a Kähler C-space and a rational ho-
mogeneous manifold) and carries a natural complex structure, as well as a Kähler
metric. From geometric viewpoint a maximal abelian subalgebra of p is tangent to
maximal totally geodesic flat torus and every such torus is tangent at a point gK to
a left translate of some a from o = eK to gK. In these terms the generalized flag
manifold G/L parametrizes the set of all such tori.

We next provide more information on the roots and weights of the Lie algebra gc

relative to kc and ac. Choose a maximal abelian (Cartan) subalgebra hc of gc which
contains ac. Denote by hck the intersection hc ∩ kc, so that hc = hck + ac and let
∆ ⊂ (hc)∗ be the root system corresponding to (gc, hc). There is a set of the
so-called restricted roots Σ = Σ(gc, ac) ⊂ (ac)∗ ∩ ∆ and we can choose a basis
h1, ..., hk, hk+1, ..., hn of (hc)∗, of basic roots, such that h1, ..., hk (after restricting
them via the projection (hc)∗ → (ac)∗) form a basis of (ac)∗. We continue to use
the same notation h1, ..., hk for the restricted roots. After we choose an ordering
of the basic roots , or equivalently, a positive Weyl chamber, every element of
∆ (respectively, of Σ) is an integer linear combination of h1, ..., hn (h1, ..., hk,
respectively) with coefficients being all non-negative or all non-positive. Similarly
we can choose a positive Weyl chamber in the restricted roots. One important
observation is the following.

Lemma 12. The center Z(lc) of lc coincides with ac.

Proof: By definition ac, is contained in Z(lc), and l = m + a where m is the
centralizer of a in k. Since a is maximal abelian in p, then l is the centralizer of a
in g. Because g is simple, the statement follows. �

With the aid of Lemma 12 we can compute the second cohomology of the flag
manifold G/L. It is well known (see [3] for example) that there is an isomorphism
(Z(lc))∗ ≡ H2(G/L,C) sometimes called transgression, given by α → i

2πdα.
Moreover the first k elements w1, ..., wk of the basis w1, ..., wn of the fundamental
weights dual to h1, ...hn (with respect to the Killing form of gc) define an integral
basis of H2(G/L,Z).
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Now denote by L = Li1,...,ik the holomorphic line bundle on G/L determined by
w = i1w1 + ... + ikwk, where ij ≥ 0. When all i1, i2, ..., ik are positive then
Li1,...,ik is positive and by the Kodaira vanishing theorem, the higher cohomology
classes of L are zero. The space H0(G/L,O(L)) is (complex) representation of
G with highest weight w. The Borel-Weil-Bott theorem (which in case of positive
line bundle is Borel-Weil theorem) shows that the representation is irreducible if
w is dominant, and, in fact is the irreducible highest weight representation with
highest weight w (see [17] for a short algebraic proof).

We finally recall some general facts for the Laplace-Beltrami spectrum ∆M (or,
simply, the Laplace spectrum on a symmetric space M . For proofs we refer the
reader, for example to [12, Chapter 5.7] and [4]. The eigenvalues of ∆M are λ =
||w+ρ((ac)∗)||2−||ρ((ac)∗)||2 wherew is as before and ρ((ac)∗) is the half sum of
positive restricted roots of ac. Then ρ((ac)∗) represents one half of the first Chern
class of G/L and w + ρ((ac)∗) represents the first Chern class of L ⊗K

1
2 . Since

the dimension of a simple finite-dimensional representation can be computed by
the Weyl dimension formula, we obtain a representation-theoretic interpretation of
the multiplicity formulas given in Theorems 6 and 11.

4. Rank-One Case

In this section we explicitly formulate the representation-theoretic interpretation
mentioned at the end of the last section for the compact rank-one symmetric spaces
(CROSSes) considered earlier. These cases cover the two examples in Section 2,
as well the case M = Sn treated in [18]. We first note that for all CROSSes, the
Weyl chamber of the restricted roots is one-dimensional. The set of fundamental
weights is

Λ+ = Λ+
ac =

{
λ ∈ ac ;

〈λ, ψ〉
〈ψ,ψ〉

∈ Z+, for allψ ∈ Σ

}
and in the rank-one case Λ+ is generated by a single element θ. In particu-
lar, we can identify the set of (closed) geodesics Geod(M) = G/L in M with
the Marsden-Weinstein reduced space of T ∗M with the S1-action defined by the
geodesic flow. The reduced form Ωc depends on the choice of the level set µ−1(c)
for the moment map of the action µ. We summarize the considerations of the
previous section below.

Theorem 13. LetM = G/K be a CROSS. Assume that the metric onM is scaled
as in [2], so that the curvature of Sn is one for example. Then the following hold.
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i) Under the transgression, the reduced symplectic form Ωc on Geod(M) = G/L
corresponds to π

√
2cθ and with the choice of the positive Weyl chamber and com-

plex structure as above, c1(G/L) corresponds to NMθ for a positive integer NM .

ii) The quantum condition on (Geod(M),Ωc) provides the following energy spec-
trum: ck = γ/2(NM + 2k)2, where γ = 1

4 for M = Sn and γ = 1 for all other
CROSSes.

iii) The spectrum of the semi-Laplacian 1
2∆M on M is given by λk = ||kθ +

ρ(ac)||2 − ||ρ(ac)||2 and ck = ||kθ + ρ(ac)||2 where ρ(ac) is the half-sum of the
positive restricted roots of ac. Here the norms are with respect to the re-scaled
Killing form as in i) and ii).

iv) The multiplicities of ck and λk coincide with the dimension of the finite-dimen-
sional representation L(kθ) of g with highest weight kθ. Moreover the represen-
tation L(kθ), the complexified λk-eigenspace (L2(M)c)λk of ∆M , and the quan-
tization space H0(Geod(M),O(Lk)) coincide as complex vector spaces.

Remark 14. We note that the Laplace-Beltrami operator ∆M , in particular, its
spectrum, depends on the choice of the metric on M . For example, in the case of
M = Sn we have two different metrics: the canonical one of constant curvature
one, and the one arising from the corresponding Killing form B(X,Y ) = 2(n −
1)tr(XY ), X,Y ∈ so(n). This is valid also for the projective spaces and explains
the difference in the spectra formulas given in [2] and in [4]. The difference of γ for
the sphere and all other CROSSes could be explained with the fact that the length
of the closed geodesics with respect to the chosen metric is 2π for the sphere and
π otherwise.

The canonical symplectic form on the cotangent bundle does not have a direct
analog which could be used in the higher-rank case. On the other hand - not all
simple compact Lie groups act transitively on some of the CROSSes, but every
such group acts transitively on some Riemannian symmetric space, possibly of
rank greater than one. So it is naturally to expect that a modification of the previous
quantization scheme exists in the higher rank case.

In the next Section we announce a preliminary result about such correspondence
in the general-rank symmetric spaces. The proof will appear in [11].

5. Symmetric Spaces of General Rank

We use similar setting as in Section 4, but for reader’s convenience we repeat some
of the definitions. Let again M = G/K be a symmetric space with G being
compact and semisimple. Also L is the connected subgroup of G with Lie algebra



24 Dimitar Grantcharov and Gueo Grantcharov

l = m + a, where m is the centralizer of a in k, and as noted in Lemma 12, a is
the center of l. We can also write L = MA where M (not to be confused with
the space M ) and A are the corresponding Lie groups (see, for example, [14],
[9], [10]). Then G/L is a generalized flag manifold parametrizing the maximal
totally geodesic tori of M . As such, it caries a natural complex structure, which
depends on the choice of a Cartan subalgebra of gc and a partial order in it which
determines a positive Weyl chamber which defines a positive Weyl chamber in
(ac)∗. The latter is dual to the cone of the restricted dominant weights. Then, as
a complex manifold, G/L is equivalent to Gc/M cAcN c and has a principle Ac-
bundleGc/M cN c → Gc/M cAcN c with a right action ofAc. The total space Θ =
Gc/M cN c is called the horospherical manifold, [9]. SinceAc = (C−0)r = (C∗)r
is the complexification of the real torus T r = A, then Θ can be identified with an
open set of the (co)tangent vertical bundle of the principal bundle G/M over G/L
with fiber A. This cotangent vertical bundle is also the set of all cotangent planes
to all maximal totally geodesic tori in M . In the case when M has rank r = 1, this
bundle is just T ∗M . Since the characteristic classes of the bundle G/M → G/L
are determined via transgression by the simple restricted roots of a∗, we obtain the
following

Theorem 15 ([11]). LetM = G/K be a compact Riemannian symmetric space of
rank k withG semisimple and let θ1, ..., θk be the basis of fundamental weights that
is dual to the simple restricted roots of ac. Let Θ be the associated horospherical
manifold and Θ → G/L be the corresponding principal (C∗)k-bundle, so G/L

parametrizes the maximal totally geodesic tori in G/K. Let ωM =
i

2π
dρ be the

two-form onG/L representing the half sum of the positive roots in ac, in particular,

the characteristic form representing
1

2
c1(G/L). Then there exists a symplectic

form ω on Θ with the following properties

i) There are positive numbers ni such that the reduced form ω̃ on Θ//A cor-
responding to ω via the Marsden-Weinstein reduction is ω̃ =

∑k
i=1 nidθi +

ωM , ni > 0 on G/L.

ii) When α = n1θ1 + n2θ2 + ... + nkθk is integral (up to a factor of 2π) and
determines a dominant weight, then the corresponding quantum bundle L
determined by ω̃ ∈ c1(L) has the property that its space of holomorphic
sections H0(G/L,O(L)) is an irreducible unitary representation of G with
highest weight α.
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iii) The complexified eigenspaces of the Laplace-Beltrami operator ∆M corre-
sponding to the eigenvalue λα = ||α + ρ||2 − ||ρ||2 on M have dimen-
sion equal to the sum of dimensions of all H0(G/L,O(L)) defined in ii) for
which ||α + ρ||2 = λα + ||ρ||2. All eigenvalues of ∆M are equal to λα for
some α.

Remark 16. The paper by Gindikin [9] is closely related to our considerations. In
that paper the flag G/L = Gc/M cAcN c and the complex space Θ = Gc/M cN c

play important role in a Cauchy-Radon transform. Also, considering the space
Θ as (an open set of) the space parametrizing all tangent spaces to all totally
geodesic tori in G/K, it is shown that its “symplectic quotient” by the k-tori (max
totally geodesics) produces G/L. There seems to be a deeper relation between the
correspondence above and the Cauchy-Radon transform, which we hope to explore
in the future.

Remark 17. We should note that not all irreducible finite-dimensional represen-
tations of G appear as subspaces of the eigenspaces of the Laplace-Beltrami op-
erator. The ones that appear are those corresponding to restricted roots in (ac)∗.
An important exception is the case of symmetric spaces of maximal rank, i.e., when
rk(M) = rk(G). In this case ac is maximal abelian in gc, hence the restricted
roots are all the roots. Note that in this case L is a maximal torus of G. By Borel-
Weil-Bott theorem all irreducible finite-dimensional representations of G appear
as spaces of sections of holomorphic line bundles over G/L. One such example is
given below.

Example: the space M = SU(3)/SO(3). The space SU(3)/SO(3) has rank two,
the same as the rank of SU(3). EveryZ in su(3) has the formZ = X+iY for some
X ∈ so(3). This gives a decomposition su(3) = so(3) + p where p is the space
of purely imaginary matrices. In this case L is a maximal torus of SU(3) and ac

consist of diagonal matrices. In particular the generalized flag manifoldG/L is the
standard manifold of full flags in C3 identified with SU(3)/S(U(1)×U(1)×U(1)).
We write the roots of ac as triples and choose the simple roots to be (up to a factor
of
√
−1): α1 = (1,−1, 0) and α2 = (0, 1,−1). Then the half sum of the positive

roots is 1
2ρ = 1

2(2α1 + 2α2) = (1, 0,−1). Recall that Killing form B(H,H ′)
of two diagonal matrices H = (h1, h2, h3) H ′ = (h′1, h

′
2, h
′
3) is B(H,H ′) =

tr(adHadH′) =
∑

i<j(hi − hj)(h′i − h′j).

The dominant weights are given by k1α1 + k2α2 with integers k1, k2 for which
k1 < 2k2 < 4k1. A straightforward computation gives ||k1α1 + k2α2 − 1

2ρ||
2 =

6[(k1−1)2−(k1−1)(k2−1)+(k2−1)2]. In particular we see that the eigenspaces
of the Laplacian on SU(3)/SO(3) corresponding to λ = ||k1α1 + k2α2 − 1

2ρ||
2 −
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||12ρ||
2 split into irreducible representations subspaces when the equation x2 −

xy + y2 = Q where Q = λ + ||12ρ||
2 does not depend on x and y, have more

than one integer solution with x, y > 1, (x − 1) < 2(y − 1) < 4(x − 1). The
number of integer solutions of this Diophantine equation is a classical number
theory question. In particular when k1 = k2 = n2 + 1, so that Q = n2 with all of
the prime factors of n being of the type 3k + 2, then the solution is unique and the
corresponding eigenspace of the Laplacian is an irreducible SU(3)-module. On the
other hand, for example, if Q = 8281 = 72132, then the corresponding eigenspace
splits into a direct sum of 7 irreducible SU(3)-modules.
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