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MATHEMATICAL MODEL OF ELASTIC CLOSED FLEXIBLE SHELLS
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Abstract. A model of deformation and mechanical stability of a thin-walled shell
with geometric deviations, which is close to a circular cylindrical shell, under the
action of axial compression and normal pressure is developed. The model uses the
scheme of a flexible shell of zero Gaussian curvature with a perturbed edge, which
makes it possible to apply the methods of the geometrically nonlinear theory of
torso shells.
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1. Introduction

It is well known that thin-walled shells are very sensitive to the presence of local
initial geometrical deviations of the middle surface and ends [24]. The presence of
even small deviations within the limits of the wall thickness of cylindrical shells
leads to a significant decrease in the carrying capacity of the shell by a factor of
2–3, especially when axial compression is applied.

At the same time, multifactor experimental studies show that nonlocal deviations
such as ovality and taper are also significant [11,21]. Moreover, holographic inter-
ferometry of shells with both ovality and conicity (Fig.1) shows surprising prox-
imity of their radial displacements field to the displacements of cylindrical shells
with deviation in the form of two waves along the edge. This similarity requires an
explanation.

Shells with nonlocal deviations, which are made of sheet material by joining it
without stretching the middle surface, are shells with an unfolding principal sur-
face, or, equivalently, with zero Gaussian curvature. The essential complexity of
describing the behavior of such shells arises already at the stage of describing the
geometry of their principal surface. If the ovality of the opposite ends is not the
same, then the principal surface differs from the cylinder and cone. In this case,
there is no single point of intersection of the generators and the axis of the shell,
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Figure 1. Arrangement of radial displacements for shell with both ovality
and conicity a) and with deviations of the lower end b).

which was traditionally taken as the origin for the conical shells proper. The intro-
duction of coordinates on such a surface is possible by several methods, the main
of which are the following two. According to the first method, a parameterization
is introduced whose coordinate lines do not coincide with the lines of the principal
curvatures of the principal surface – global Gaussian coordinates [14]. Such an
approach in the study of oval cones was demonstrated in the works of Almroth,
Brogan and Marlowe [5]. They used an affine coordinate system – the distance
from the vertex of the cone along the generatrices and the size of the arc of the
cross section. This allowed us to set the boundary conditions in the traditional
form. The equations of the nonlinear theory obtained in this case are complicated,
cannot be simplified and are solved, mainly, numerically. A similar approach for
an arbitrary system of cylindrical coordinates that do not coincide with parame-
terization along the lines of principal curvatures was used in the work of Melbin
and Noordergraaf [19] when considering oval weakly conical shells that mimic the
work of blood vessels. In this case the conicity was assumed to be less than 0.1
radian (up to 6◦).

The application of the second method is connected with the theorem, given, for
example, in the work of Vorovich [26], on the existence of such a parameterization
of equations for shells of zero Gaussian curvature, for which one of the Lame co-
efficients of the principal surface is equal to one, and the corresponding principal
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curvature is zero. The use of such a local coordinate system, so-called Euler co-
ordinates greatly simplifies the considered dependencies, especially if the system
is orthogonal, i.e., if its coordinate lines coincide with the lines of the principal
curvatures of the principal surface of the shell [2, 25, 26]. The specification of
boundary conditions requires in this case close attention to maintain their corre-
spondence with their natural appearance. For cones of arbitrary cross-section, this
approach was demonstrated in the works of Agenosov, Orlov and Sachenkov [3,4].
In this case, the first quadratic form of the surface was given in an orthogonal form
a priori, which requires a separate verification for an arbitrary cross section.

For torso shells that are not conical and cylindrical, solutions in a linear formulation
are given in the works of Krivoshapko and Ivanov [16, 18]. At the same time, the
study of the stability of such shells requires a nonlinear calculation.

The study of the deformation of thin–walled structures in most of the works is
based on the approximate integration of nonlinear differential equations of the the-
ory of flexible elastic shells. The most frequently used technical theory of Donnell–
Mushtari–Vlasov shells [6] in various modifications [15,17,20,23]. As was shown
in [7], an analysis of the accuracy of the terms entering into the equations of the
geometrically nonlinear theory with respect to the natural small parameters of the
structure allows us to obtain a number of simplifications for practically important
computational schemes. This makes it possible to apply perturbation methods for
such constructions according to natural small parameters.

The equations of the theory of flexible elastic shells can be obtained from the gen-
eral variation principles of the mechanics of a deformable solid [1] – Lagrange,
Castiliano, Reissner, Hu–Vashizu – by constructing the corresponding functional
and finding its stationary or extreme points. This problem can be solved either by
creating analytical stationary conditions (Euler equations), or by applying variation
methods directly to the functional under consideration [6]. If the Lagrange princi-
ple implies the equilibrium equations and natural boundary conditions in stresses,
then the Reissner principle implies the equations of equilibrium, the relations of
elasticity and the natural boundary conditions in stresses and displacements. It is
known that the Reissner principle is a Hamiltonian form of the Lagrange principle
and, thus, allows the introduction of generalized variables [22]. Reducing the di-
mensionality of the functional can be achieved by specifying the type of solution in
two coordinates, as well as by using hypotheses of applied theories. The Reissner
principle allows the use of independent approximations of forces and deflections,
which satisfy the boundary conditions. All this makes the Reissner method most
suitable for constructing equations of the theory of flexible elastic shells nonlinear
deformation.
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2. The Mathematical Description of the Shells Surface with Deviations

We consider one of the variants of parameterization for calculating shells of zero
curvature with a conicity and different ovality of the ends. For a rectangular coor-
dinate system associated with the shell axis and the axes of base ellipses described
by the equations

x = a2 cos t2, y = b2 sin t2, z = L

(1)

x = a1 cos t1, y = b1 sin t1, z = 0

when using the results of [18]. The equation of the median surface of the torso
shell in the parametric form takes the following form

x = x(λ, t2) = a1 cos t1 + λ(a2 cos t2 − a1 cos t1)

y = y(λ, t2) = b1 sin t1 + λ(b2 sin t2 − b1 sin t1) (2)

z = z(λ) = λL

where t1, t2 are the parameters of the corresponding points of the ellipses, t1 is
determined from the uniqueness condition of the torso surface

(a1/b1)tant1 = (a2/b2)tant2.

The coordinate lines
t2 = const

generally are not parallel to each other and non-coplanar with the axis of the shell,
and the curves

λ = const

are transverse sections of the principal surface of the shell by planes perpendicular
to its axis (Fig. 2 a)). Such a coordinate system is not orthogonal in the general
case. The parameters of its quadratic forms are determined by the formulas given
in [16, 18].

Analysis of equations (1)–(2) shows that the deviation of the axial section of the
middle surface from the straight line δW for shells of medium length L and thick-
ness h for different ovality of the ends reaches 2h (Fig. 2 b), c)), the angle of the
section is indicated near the curves). Thus, the shell with different ovality ends has
a significant initial flexure, and its deformation should be modeled on the basis of
geometrically nonlinear relationships between deformations and displacements.
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Figure 2. Illustrative arrangement of generatrices a) and deviations of the
axial section of the torso shell from a straight line with greater ovality of the
upper b) or lower c) end.

The conditions given in [18] were used to determine the principal directions on the
principal surface of the shell. The first quadratic form in the considered reference
frame has the form

A2dt22 + 2Fdλdt2 +B2dλ2.

The obtained orthogonal reference frame includes the straight-line coordinate lines

y = t2 = const

considered earlier, coinciding with the generators and the direction of zero curva-
ture, and curvilinear guides along the lines of maximum positive curvature

x = λ+

t∫
t0

F

A2
dt2 = const

and the first quadratic form has the form

A2dy2 +A2
2dλ2

where
A2

2 = B2 − F 2/A2·

The magnitude of the deflection of the guides from the plane of the cross-section
of the shell ∆L is greater 10h for medium-length shells (Fig. 3). Hence, even with
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Figure 3. Deviations of the coordinate lines from the lines of the principal
curvature for small (1, 4) and large (2, 3) conicity with a larger (1, 2) or
smaller (3, 4) ovality of the smaller end.

uniform axial compression, the oval-conical shells are inhomogeneously loaded
and have a non-planar edge with respect to the line of principal curvature.

Thus, shells with different ovality of ends and with conicity have a noncanonical
shape, non-planar edges and an initial flexure. Their calculation must be done by
special methods, for example, by method of perturbation according to the param-
eter [11, 21], on the basis of geometrically nonlinear equations of shells bending.
Such equations are constructed below.

3. Shell Models in the Form of Geometrically Nonlinear Equations with
Complex Boundary Conditions

Let us consider the deformation of a thin elastic shell of zero Gaussian curvature
of constant thickness h, made of an elastic isotropic material (Fig. 4).

We introduce on the shell surface S a curvilinear orthogonal basis with axes x, y, z.
In this case, the coordinate lines x, y coincide with the lines of the principal curva-
ture of the surface, the axis z is normal to it. We connect the coordinate direction
of the axis with the line of principal zero curvature. We confine ourselves to the
case of small, in comparison with unity, deformations, finite displacements, finite
but small angles of rotation of the normal. We also accept Kirchhoff’s kinetic
hypothesis on plane sections.
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Figure 4. A layout of the coordinate axes of the shell element.

Deformations εij and changes in the curvature kij of the principal surface are ex-
pressed through displacements along the axes u, v, w in form

ε11 = u,x +
1

2

(
w2
,x +

1

4A2
2

(
(A2v),x − u,y

)2
)

ε22 =
uA2,x

A2
+
v,y
A2

+
w

R
+

1

2

(
Y 2 +

1

4A2
2

(
(A2v),x − u,y

)2
)

ε12 = ε21 =
1

2

(
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u,y
A2
− vA2,x

A2
− w,xY

)
(3)

k11 = −w,xx, k22 =
1

A2
Y,y −

w,xA2,x

A2

k12 = k21 =
1

2

(
Y,x −

w,xy
A2
− Y A2,x

A2
+

1

2A2R

(
(A2v),x − u,y

))

where Y =

(
−w,y
A2

+
v

R

)
, R = R(x, y) – the radius of curvature of the non–

deformed median surface in the direction of the coordinate line y and displace-
ment v, and A1, A2are Lame parameters of the median surface for shells with

developable surface, A1 ≡ 1,
∂

∂x
= ( ),x,

∂

∂y
= ( ),y, v – Poisson’s ratio.
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For an elastic isotropic solid, the relations between the forces Tij , moments Mij

and strains distributed over the shell thickness are

T11 = (ε11 + µε22)D, T22 = (ε22 + µε11)D

T12 = ε12D(1− µ), M11 =
Dh3

12
(k11 + µk22) (4)

M22 =
Dh3

12
(k22 + µk11), M12 = k12(1− µ)

Dh3

12

where E – Young’s modulus of material elasticity, D =
Eh

1− µ2
·

In the mixed formulation, the stress function F is introduced

T11 =
(F,y/A2),y +A2,xF,x

A2
, T22 = F,xx, T12 =

(F,x/A2),y + F,xA2,x/A2

A2
·

If we neglect the effect of tangential displacements on the angles of rotation of the
normal at a point, which corresponds to the theory of shallow shells [20, 27], then
equations (3) will be simplified as follows

ε11 = u,x +
1

2
w2
,x, ε22 =

v,y
A2

+
uA2,x

A2
+
w

R
+

1

2

(
w,y
A2

)2

ε12 = ε21 =
1

2A2
(A2v,x + u,y −A2,xv + w,xw,y)

(5)

k11 = −w,xx, k22 = − 1

A2

((
w,y
A2

)
,y

+ w,xA2,x

)

k12 = k21 =
1

2

((
−w,y
A2

)
,x

− w,xy
A2

+
w,yA2,x

A2
2

)
·

From the Gauss–Codazzi equations we get A2,xx = 0.

The coordinate system is orthogonal. In this case, the coordinate lines are curvilin-
ear and do not coincide with the boundary of the shell. Thus, the border is different
from the location of the coordinate lines x = const.

In the system of longitudinal orthogonal coordinates, which coincide with the lines
of the main curvatures, for the shell of zero Gaussian curvature, the equilibrium
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equations will take the form

T11,x + T21,y +A−1
2 A2,x(T11 − T22) = 0

T22,y + T12,x +A−1
2 A2,xT21 + k2Q2 = 0

Q1,x −Q2,y +A−1
2 A2,xQ1 −A−1

2 A2,xT22 = q (6)

M11,x +A−1
2 A2,x(M11 −M22)− k2M22 −Q1 = 0

M22,y −Q2 = 0, M11,x −M22,y +A−1
2 A2,xM11 = 0·

Shear forces Qi can be explicitly expressed and excluded from the system of equa-
tions of equalities. It can be seen that the use of longitudinal coordinates for shells
of zero Gaussian curvature allows us to consider a simplified model with constant
coefficients for higher derivatives. The shell model with a developable surface can
be represented in the following general form for convenience of calculation by the
modified method of parameter continuation (MMCP) [9, 10, 12, 13].

4. The Shell Model in a General Case

Let the closed simply connected curvilinear trapezium Ω in the Euclidean space
E2 of two variables {η, ξ} ∈ E2 is close to a rectangle Ω0 and meet the following
relations

Ω = {−π < η < π ; − f1(η) < ξ < 1 + f2(η)}
Ω0 = {−π < η < π ; 0 < ξ < 1} (7)

Ω0 ⊂ Ω, fi(η) ≥ 0, max
η∈[−π,π]

fi(η) = 1, i = 1, 2

where fi(η) are continuous functions over the interval [−π, π].

One can map onto Ω the middle surface of a closed shell having edges smoothly
perturbed in the plane perpendicular to the shell axis [8]. The trapezium boundary
∂Ω consists of the following four parts

∂Ω1 = ∂Ω|η=−π, ∂Ω2 = ∂Ω|η=π

∂Ω3 = ∂Ω|ξ=f1(η), ∂Ω4 = ∂Ω|ξ=1+f2(η)

and the four parts of the rectangle Ω0 boundary ∂Ω0 are

∂Ω01 = ∂Ω|η=−π, ∂Ω02 = ∂Ω|η=π

∂Ω03 = ∂Ω0|ξ=0, ∂Ω04 = ∂Ω0|ξ=1.
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Let U is a set of uniformly bounded functions Ui defined over the region Ω =
Ω
⋃
∂Ω

U = {Ui ∈ U, i = 1, . . . , N}. (8)

Let each of these functions Ui have derivatives everywhere over Ω

i) the uniformly bounded and continuous partial derivatives of order not less
than ni of the following form

U (n) = {Uikp ∈ U (n), Uikp =
∂k+pUi
∂ηk∂ξp

}

(9)

0 ≤ k + p ≤ ni, k, p = 1, . . . , ni, i = 1, . . . , N

ii) the set of continuous partial derivatives of order not less than ni − 1 of the
form

U (n−1) = {Uikp ∈ U (n)}, i = 1, . . . , N
(10)

0 ≤ k + p ≤ ni − 1, k, p = 1, . . . , ni − 1

iii) a set of partial derivatives of a higher order

U (max) = {Uikp ∈ U (max), Uikp ∈ U (n)}
(11)

k + p = ni, k, p = 1, . . . , ni, i = 1, . . . , N.

Besides that, Ui = Ui00, i = 1, . . . , N.

Let there is a system of N nonlinear PDEs

λj

(
η, ξ, U (n)

)
= Φj

(
η, ξ, U (n−1)

)
, j = 1, . . . , N (12)

where λj , Φj are the algebraic analytical functions uniformly bounded over Ω
and represented by the Maclaurin series with respect to η, ξ, Uikp (all variables are
considered as independent). One more assumption is that λj are the linear with
respect to U (max).

For the problem completeness, there must be also some boundary conditions de-
fined over ∂Ω. Let one of them be the condition of the solution periodicity with
respect to η
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U (n)|∂Ω1 = U (n)|∂Ω2 (13)

which reflects the conditions of closed shell modeling, and below are the boundary
conditions for parts ∂Ω3 and ∂Ω4, where ∂Ωk such that

Gkj

(
η, U (n−1)|∂Ωk

)
= 0, j = 1, . . . , nk, k = 3, 4 (14)

where Gkj are the bounded piece-wise continuous algebraic functions regarding all
their arguments. The aim is to find the system (12) solution comprised of functions
from the setU and satisfying the boundary conditions (13)–(14) over ∂Ω. The form
of the studied system of equations defines the number of independent boundary
conditions (14). They should provide a possibility to define all arbitrary functions
included in general solution to the system.

In the general case, the problem (13)–(14) is a nonlinear boundary value problem
with complex boundary conditions over non–canonical (perturbed) domain. Equa-
tions (12)–(14) describe boundary value problems of the theory of plates and torso
shells.

5. Conclusions

The presented model can be applied to describe nonlinear deformation of the shell
of zero Gaussian curvature with geometric deviations under complex loading and
large deflections.
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