
JGSP 50 (2018) 1–10

LORENTZ-INVARIANT SECOND-ORDER TENSORS AND
AN IRREDUCIBLE SET OF MATRICES

MAYEUL ARMINJON

Communicated by Ivaïlo M. Mladenov
Abstract. We prove that, up to multiplication by a scalar, the Minkowski metric
tensor is the only second-order tensor that is Lorentz-invariant. To prove this, we
show that a specific set of three 4× 4 matrices, made of two rotation matrices plus
a Lorentz boost, is irreducible.

MSC : 15A18, 83A05
Keywords: Irreducible set of matrices, linear algebra, Lorentz group, Minkowski
metric

1. Introduction

It is a basic result of special relativity that the Minkowski metric tensor is invariant
under the Lorentz group. The main aim of this paper is to prove that, up to a scalar,
this property characterizes the Minkowski metric

Theorem 1. Let (M,γ0) be the four-dimensional Minkowski spacetime. Any (0, 2)
tensor on M that is invariant under the Lorentz group is a scalar multiple of the
Minkowski metric tensor γ0.

(See Note 1 for the extension to a Lorentzian spacetime.) This result is not very
surprising and seems to be heuristically known. For instance, after having intro-
duced the classical totally antisymmetric fourth-order tensor, Maggiore [3, p. 24]
states: “The only other invariant tensor of the Lorentz group is ηµν as its invariance
follows from the defining property of the Lorentz group, equation (2.13).” (The lat-
ter equation is equivalent to equation (3) below.) Nevertheless, we saw neither a
precise statement of the above Theorem nor a correct proof in the literature that
we could find. The proof that we present here appeals to Schur’s lemma (Section
2). However, to identify a relevant irreducible set of 4 × 4 matrices in order to
use Schur’s lemma was not completely obvious. To prove the irreducibility of that
set S, we had to study in detail which are the invariant subspaces of each of the
matrices that constitute S (Section 3). Although it is often easy to check that some
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subspace is invariant under some endomorphism (or some matrix), it is less trivial
to identify the complete list of the invariant subspaces. To do that in the case at
hand, we state and prove a result (Lemma 5) about the invariant subspaces of a
specific class of endomorphisms (Section 4).

2. Proof of the Theorem

A (0, 2) second-order tensor T at some point X ∈ M is Lorentz-invariant iff, in
any Cartesian coordinates xµ on M, and for any 4 × 4 real matrix L = (Lµν)
belonging to the (real) Lorentz group O(1, 3), we have 1

T ′µν := Lρµ Tρσ L
σ
ν = Tµν (1)

or (T = (Tµν) being the component matrix of T at X in the coordinates xµ)

LT T L = T. (2)

In particular, the Minkowski metric tensor γ0, with component matrix
η := diag(1,−1,−1,−1) in any Cartesian coordinates, is of course a Lorentz-
invariant (0 2) second-order tensor on M, since by definition a matrix L belongs
to the Lorentz group O(1, 3) iff

LT η L = η. (3)

Because the matrix η is its own inverse: η η = 14 := diag(1, 1, 1, 1), we deduce
from (3) that

L−1 η (LT )−1 = η. (4)

Multiplying on the right each side of (2) by the corresponding side of (4), we get:

LT T η (LT )−1 = T η (5)

or
LT (T η) = (T η)LT . (6)

That is, the matrix M := T η commutes with the transpose of any matrix L in the
Lorentz group. The Theorem1 results immediately from this and from the follow-
ing two statements. �

1 This definition and the Theorem can be extend immediately to any Lorentzian spacetime (V,γ),
by considering, instead of Cartesian coordinates, coordinates that are Cartesian at the given point
X ∈ V, i.e., such that γµν(X) = ηµν .
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Lemma 2. (Schur’s lemma, e.g. [1, §34, Exercise 23, p. 623], [4, Corollary,
p. 65]). Let M be a k × k complex matrix which commutes with any matrix in an
irreducible set S of k×k matrices, i.e., in a set S of k×k complex matrices such that
no nontrivial subspace of Ck is invariant under all mappings x 7→ N x, N ∈ S.
Then M is a complex multiple of the identity matrix 1k.

Proposition 3. The set of the matrices LT , L ∈ O(1, 3), is an irreducible set of
4× 4 complex matrices.

Proof: In view of the sentence right after equation (9) below, Proposition 1 is an
immediate consequence of the following stronger result. �

Proposition 4. Let the complex vector space C4 be endowed with its canonical
basis (eµ) (µ = 0, ..., 3), with eµ = (δνµ)ν=0,...,3, and identify an endomorphism
of C4 with its matrix in that basis. The set S made by the two spatial rotations
Li having axis ei, i = 1, 2, each having a given angle θi with 0 < θi < π,
plus the Lorentz boost L′1 in the direction e1 with a given coefficient βv := v/c,
0 < βv < 1, is an irreducible set of three 4× 4 complex matrices.

3. Proof of Proposition 4

The rotation matrix having axis e1 and angle θ (with θ = θ1 in the sequel) is

L1 =


1 0 0 0
0 1 0 0
0 0 cos θ − sin θ
0 0 sin θ cos θ

 . (7)

The rotation matrices with axes e2 and e3 and angle θ are deduced from (7) by the
permutations (1 2 3) 7→ (2 3 1) and (1 2 3) 7→ (3 1 2) of the indices, respectively.
The boost matrix in direction e1 and with coefficient βv is

L′1 =


γv −γvβv 0 0
−γvβv γv 0 0

0 0 1 0
0 0 0 1

 , γv :=
1√

1− β2v
· (8)

Note that all matrices L in the set {L1, L2, L3, L
′
1} have real coefficients. There-

fore, an endomorphism of either the real space R4 or the complex space C4 can be
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given by such a matrix L in the same canonical basis (eµ), which is also a basis of
R4. The difference lies in the real or complex coefficients zµ below

z = zµ eµ 7→ Lz = Lµν z
ν eµ. (9)

Any matrix L in the set {L1, L2, L3, L
′
1} has the form L′T , L′ ∈ O(1, 3), of

course, because LTi is the rotation matrix having axis ei and angle −θi, which
belongs to (the real group) O(1, 3), and because L′1 is symmetric and also belongs
to O(1, 3).

Henceforth, we consider only the complex vector space C4 and its complex sub-
spaces, as well as their complex endomorphisms, including those defined by the
matricesL ∈ S. Clearly, the complex vector plane Span{e2, e3} or (in a shorter no-
tation) [e2, e3] is invariant under the rotation L1. It is well known and easy to check
that the restriction of L1 to [e2, e3] has complex eigenvalues λ± = exp (±iθ1)
(which here are distinct from one another and from one since 0 < θ1 < π), with
corresponding eigenvectors a± = e2 ∓ ie3. The complex eigenvalues of the rota-
tion matrices with axes e2 and e3 are exp (±iθi) (i = 2, 3), and the corresponding
eigenvectors are deduced from a± by the permutations (1 2 3) 7→ (2 3 1) and
(1 2 3) 7→ (3 1 2) of the indices, respectively. We will now show that the set S
is an irreducible set of complex matrices, by using these facts about the eigenvec-
tors of the Li ’s, plus the lemma below – whose proof is deferred to Section 4 for
convenience.

Lemma 5. Assume the finite-dimensional vector space E is the direct sum of two
subspaces F and G : E = F ⊕ G, each of which being invariant by the endo-
morphism T of E, with, moreover, T|F = λ IdF, and with T|G admitting a basis
(vj) (j = 1, ..., n) of eigenvectors corresponding with pairwise distinct eigenval-
ues λj such that, in addition, λj 6= λ, j = 1, ..., n.

Then, each invariant subspace W of E by T has the form

W = [(ui)i∈I; (vj)j∈J] := Span{(ui)i∈I; (vj)j∈J}, (10)

where (ui)i∈I (0 ≤ p := Card(I) ≤ dimF) is a family of linearly independent
vectors of F (p = 0 meaning that the family is empty), and where (vj)j∈J (0 ≤ q :=
Card(J) ≤ n = dimG) is a family of eigenvectors extracted from (vj)j=1,...,n

(q = 0 meaning that the family is empty).

Lemma 5 applies to the endomorphism T = L1 of E := C4 given by the matrix (7),
with F := [e0, e1] and G := [e2, e3], the latter being stable by L1 and admitting the
basis of eigenvectors (a+, a−). This allows us to easily write the complete list of
the non-trivial vector subspaces of C4 which are invariant under the endomorphism
L1, equation (7)
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• The (complex) “lines” [a] := Ca, where the vector a ∈ C4 is either

– a linear combination a = λe0 + µe1, λ, µ ∈ C, λ 6= 0 or µ 6= 0

– or a+ = e2 − ie3

– or a− = e2 + ie3.

• The following “planes” (2D complex subspaces)

– i) [e0, e1]

– ii) [e2, e3] = [e2 − ie3, e2 + ie3]

– iii) [λe0 + µe1, e2 − ie3], λ, µ ∈ C, λ 6= 0 or µ 6= 0

– iv) [λe0 + µe1, e2 + ie3], λ, µ ∈ C, λ 6= 0 or µ 6= 0.

• The following three-spaces

– a) [λe0 + µe1, e2, e3], λ, µ ∈ C, λ 6= 0 or µ 6= 0

– b) [e0, e1, e2 − ie3]

– c) [e0, e1, e2 + ie3].

The list of the non-trivial vector subspaces of C4 which are invariant under the
endomorphism Li (i = 2 or i = 3) obtains by applying the permutation (1 2 3) 7→
(2 3 1) or respectively (1 2 3) 7→ (3 1 2) to the indices in the list above. Therefore,
it is clear that the only line which is invariant under the rotations L1 and L2 (or
under L1 and L3, or under L2 and L3) is [e0]. However, that line is obviously
not invariant under the boost (8). Thus no complex line is invariant under the
set S. As to the “planes”: it is clear also that none of the invariant planes under
L1 numbered i) and ii) in the list above is invariant under L2 (nor under L3, in
fact). Still clear is the fact that an invariant plane under L1, of the form iii) or iv):
[λe0 + µe1, e2 + εie3] (ε = ±1), cannot coincide with either [e0, e2] or [e3, e1],
which are invariant planes under L2. The only remaining possibility to have an
invariant plane under both L1 and L2 is if an invariant plane under L1, of the form
iii) or iv): [λe0 + µe1, e2 + εie3] (ε = ±1), can coincide with an invariant plane
under L2, of one of the corresponding forms: [λ′e0 + µ′e2, e3 + ε′ie1] (ε′ = ±1,
not necessarily ε = ε′). Thus the question is whether, for any α, β ∈ C, one can
find α′, β′ ∈ C such that

u(α, β) := α(λe0+µe1)+β(e2+ εie3) = α′(λ′e0+µ
′e2)+β

′(e3+ ε
′ie1) (11)

that is, such that

αλ = α′λ′, αµ = iε′β′, β = α′µ′, iεβ = β′. (12)
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If ε = 1, we thus have β′ = iβ by (12)4, whence αµ = −ε′β by (12)2. Then
if µ = 0, we must have β = 0. If instead µ 6= 0, we must have α = −ε′β/µ.
In either case, (12) can apply only when either α or β is determined by the other
number, thus it cannot occur on the whole complex plane [λe0 + µe1, e2 + εie3].
The case ε = −1 gives rise to the same discussion. Thus no 2D subspace of C4 is
invariant under both L1 and L2, a fortiori none is invariant under the set S.

Let us finally look if there can be a three-space invariant under the set S, beginning
with asking: which are, if any, the three-spaces invariant under both L1 and L2?

1) We start the latter question by searching if a three-space invariant under L1,
of the form (a) above, can coincide with a three-space invariant under L2, of the
corresponding form. That is: can we have

[λe0 + µe1, e2, e3] = [λ′e0 + µ′e2, e3, e1]? (13)

This is true iff, for any α, β, γ ∈ C, one can find α′, β′, γ′ ∈ C such that

v := α(λe0 + µe1) + βe2 + γe3 = α′(λ′e0 + µ′e2) + β′e3 + γ′e1 (14)

i.e.,
αλ = α′λ′, αµ = γ′, β = α′µ′, γ = β′. (15)

• If λ′ 6= 0, we have from (15)1: α′ = αλ/λ′. Then if µ′ 6= 0, we get
from (15)3: α′ = β/µ′, hence β/µ′ = αλ/λ′. If instead µ′ = 0, (15)3
gives us β = 0. In either case, v in equation (14) is assigned to depend at
most on two parameters, hence (14) cannot hold on the whole three-space
[λe0 + µe1, e2, e3].

• If λ′ = 0, we have from (15)1: αλ = 0. Then if λ 6= 0, this gives α = 0,
so again (14) cannot hold on the whole three-space [λe0 + µe1, e2, e3] . If
instead λ = 0, then since we are considering the case λ′ = 0, necessarily
µ 6= 0 and µ′ 6= 0 to have indeed a three-space on both sides of (13), thus
this is the case that both of them coincide with the three-space [e1, e2, e3],
which is indeed invariant under L1 and under L2.

2) Then we have to see if a three-space invariant under L1, of the form (a) above,
can coincide with a three-space invariant under L2 and corresponding with the
cases (b) or (c), though of course after the relevant permutation (1 2 3) 7→ (2 3 1).
Thus, we ask if we can have

[λe0 + µe1, e2, e3] = [e0, e2, e3 + iε e1], ε = ±1 (16)
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i.e., we ask if, for any α, β, γ ∈ C, we can find α′, β′, γ′ ∈ C such that

α(λe0 + µe1) + βe2 + γe3 = α′e0 + β′e2 + γ′(e3 + iε e1) (17)

or
αλ = α′, αµ = iεγ′, β = β′, γ = γ′. (18)

Thus we must have γ′ = γ = −iε αµ, so once more the relevant equality, here
(17), cannot hold on a whole three-space.

3) The remaining possibility is the equality

[λe0 + µe2, e3, e1] = [e0, e1, e2 + iε e3], ε = ±1. (19)

The same trivial discussion as for the case (16) leads here (with the same notations)
to β = iε αµ, so (19) cannot happen.

Thus there is just one three-space that is invariant under both L1 and L2, namely
the “spatial three-space” [e1, e2, e3]. (That three-space is invariant under L3 as
well.) But it clearly is not invariant under the boost L′1, equation (8). We conclude
that no proper subspace of C4 is invariant under the set S, which is therefore an
irreducible set of matrices. This proves Proposition 4. �

It is clear that e.g. the set S′ := {L2, L3, L
′
2}, or the set S′′ := {L3, L1, L

′
3} (with

L′i the boost in the direction ei), are irreducible also.

4. Proof of Lemma 5

Let the endomorphism T of E = F⊕G be as in the statement of Lemma 5, and let
W be a vector subspace of E that is invariant under T . Suppose first that W ⊂ G.
Then the fact that W has indeed the form (10) claimed by Lemma 5 is a direct
application of the following known result (see e.g. [2])

Lemma 6. Assume the endomorphism T of the vector space G admits a basis of
eigenvectors (vj), j = 1, ..., n corresponding with pairwise distinct eigenvalues.
Then any subspace of G that is invariant under T has the form

W = [(vj)j∈J] := Span{vj ; j ∈ J} (20)

where J is some subset of {1, ..., n}.

If instead W 6⊂ G, define W′ and W′′ as the projection space of W onto F or
G, respectively, in the decomposition E = F ⊕ G. This definition can be written
explicitly as

W′ = {y ∈ F ; z ∈ G and y + z ∈W} (21)
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and the like for W′′. The subspace W′ is not reduced to zero, for otherwise we
would have W ⊂ G. Indeed, E = F ⊕ G implies that for any x ∈ W there is a
unique pair y ∈ F, z ∈ G such that x = y + z. If W′ = {0} we must have y = 0
by (21). So let (ui)i=1,...,p (1 ≤ p ≤ dimF) be a basis of W′. Since each of the
ui ’s belongs to W′, by the definition (21) there is for each of them a vector z ∈ G
such that the vector x := ui + z belongs to W. Let us decompose z on the basis
(vj) of G, thus getting numbers zj such that z =

∑n
j=1 zj vj . Thus we have

x = ui +
n∑
j=1

v′j ∈W (22)

where, by the assumption of Lemma 5, v′j := zj vj is still an eigenvector of T for
the eigenvalue λj (even though possibly v′j = 0), i.e., T v′j = λj v

′
j , while ui is

an eigenvector of T for the eigenvalue λ 6= λj (j = 1, ..., n). Thus by Lemma 7
below, we have ui ∈W.

Lemma 7 (see e.g. [5]). Assume that v1, ..., vm are eigenvectors of the endomor-
phism T of the vector space E corresponding with pairwise distinct eigenvalues
λj . If W is an invariant subspace of E under T such that v1 + ...+ vm ∈W, then
for each j = 1, ...,m we have vj ∈W.

End of the proof of Lemma 5. Suppose first that

W′′ := {z ∈ G ; y ∈ F and y + z ∈W} (23)

is reduced to zero. Then, because E = F ⊕ G, we have W ⊂ F, just like, as we
showed after (21), we have W ⊂ G in the symmetric case W′ = {0}. Therefore, it
is immediate to check that W = W′, so (ui)i=1,...,p is a basis of W, hence W has
indeed the form (10).

If instead W′′ 6= {0}, we build a basis (vj)j∈J of W′′ extracted from the basis
(vj)j=1,...,n of G (made of eigenvectors of T ), as follows. For any x ∈W, there is
a unique pair y(x) = PF(x) ∈ F, z(x) = PG(x) ∈ G such that

x = y(x) + z(x). (24)

Since (vj) is a basis of G, we can decompose z(x) uniquely on the basis (vj)j=1,...,n,
so

z(x) =
∑
j∈J(x)

zj(x) vj , zj(x) 6= 0 for j ∈ J(x). (25)

(Note that J(x) can be empty, which occurs iff z(x) = 0.) By a very similar
argument, also using Lemma 7, to that developed around equation (22), we see
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that (24) and (25) imply that vj ∈ W if j ∈ J(x). Hence vj ∈ W′′ if j ∈ J(x),
since W ∩G ⊂W′′ from (23). Then define

J :=
⋃
x∈W

J(x). (26)

Note that we have by construction J ⊂ {1, ...n}. We claim that the finite family
(vj)j∈J is a basis of W′′. Indeed, consider any z′′ ∈W′′. From (23), there is some
y′′ ∈ F such that

x := y′′ + z′′ ∈W. (27)

Hence we have y′′ = y(x) and z′′ = z(x) from the uniqueness of the decomposi-
tion (24), so that from (25)

z′′ =
∑
j∈J(x)

zj(x) vj . (28)

Thus the family (vj)j∈J does generate W′′, and being a free family as an extracted
family from the basis (vj)j=1,...,n, it is indeed a basis of W′′. Since we showed that
ui ∈W (i = 1, ..., p) and that vj ∈W (j ∈ J), it is clear that

W ⊃ Span{(ui)i=1,...,p ; (vj)j∈J}. (29)

Conversely, note that in the decomposition (24) of any x ∈W, we have y(x) ∈W′

from (21) and z(x) ∈W′′ from (23). Hence the reverse inclusion follows from the
fact that (ui)i∈{1,...,p} is a basis of W′ and that (vj)j∈J is a basis of W′′. This
completes the proof of Lemma 5. �
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