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Abstract. In this paper, we consider the integrability of generalized almost contact
and contact manifolds after conformal changes. We also study conditions under
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1. Introduction

The notion of a generalized complex structure, introduced by Hitchin [3], is a ge-
ometric framework that unifies both complex and symplectic structures. Gualtieri
has developed the theory of generalized complex structures and introduced gener-
alized Kähler structures which come with additional conditions [2].

Vaisman introduced the odd-dimensional analog of these structures, generalized
almost contact structures, and had defined generalized Sasakian structures from the
viewpoint of generalized Kähler structures [7, 8]. He has also defined conformal
changes of generalized complex structures and investigated invariant generalized
geometry under conformal changes [6]. Poon and Wade have studied integrability
conditions of generalized almost contact structures. This framework unifies almost
contact, contact and cosymplectic structures [4, 5]. Even more, there is a more
general context of generalized contact bundle that is introduced by Vitagliano and
Wade [10], in which contact structures do not possess any global contact one-form.

Although Poon-Wade’s generalized contact structures are special cases of general-
ized contact bundles, there are a lot of gaps that can be filled in many special cases,
which definitely provide new ideas in more general cases.

In this paper, we consider integrability and normalization of a conformal change
of odd-dimensional generalized structures.
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This paper is divided into four sections. In the next Section, we recall the needed
background including definitions and theorems about generalized structures. In
Section 3, we characterize generalized almost contact and contact manifolds to
become integrable after a conformal change and we give an example of a general-
ized contact manifold which remains invariant under a nonhomothetic conformal
change. In Section 4, we carry out a detailed study of geometric properties of nor-
mal generalized contact structures. We give geometric conditions expressing the
normalization of a generalized almost contact structure. Then we use them to char-
acterize the conformal changes of generalized almost contact and normal general-
ized contact structures. Also we give an example of a normal generalized contact
structure which remains invariant under a nonhomothetic conformal change.

2. Preliminaries

Let M be a smooth manifold and consider the big tangent bundle TM = TM ⊕
TM∗. A natural inner product on TM = TM ⊕ TM∗ is defined by

〈X + α, Y + β〉 =
1

2
(β(X) + α(Y ))

and the Courant bracket by

[[X + α, Y + β]] = [X,Y ] + £Xβ −£Y α−
1

2
d(iXβ − iY α)

where X,Y ∈ TM and α, β ∈ TM∗. A subbundle of TM ⊕ TM∗ is said to be
involutive if its sections are closed under the Courant bracket.

A generalized almost complex structure on M is an endomorphism J of TM ⊕
TM∗ such that J +J ∗ = 0 and J 2 = −Id . Since J 2 = −Id , J has eigenvalues
±i. Let E ⊂ TM ⊗ C be the i eigenbundle of J , E is maximal isotropic with
respect to 〈 , 〉 and it satisfies E ∩ Ē = 0. Conversely, any such maximal isotropic
subbundleE of TM⊗C defines an almost generalized complex structure onM . J
is called a generalized complex structure (or, J is integrable) if E is involutive [2].
The integrability of J amounts the nullity of the Nijenhuis tensor of J , i.e., for
any X + α, Y + β ∈ Γ(E), we have

NJ (X + α, Y + β) =[[J (X + α),J (Y + β)]] + J 2[[X + α, Y + β]]

− J [[X + α,J (Y + β)]]− J [[J (X + α), Y + β]] = 0.

A generalized Riemannian metric G is an automorphism

G : TM ⊕ TM∗ −→ TM ⊕ TM∗
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which is self-adjoint (symmetric) operator, i.e., G∗ = G, and squares to identity,
i.e., G2 = Id such that G is positive definite metric [2]. It turns out that a gen-
eralized Riemannian metric is equivalent with a pair (γ, ψ) where γ is a classical
Riemannian metric on M and ψ ∈ Ω2(M). More exactly

G =

(
A γ]

σ[ A∗
)

where A ∈ End(TM), ψ = −γ[A and σ[ = γ[ ◦ (Id − A2). The condition
G2 = Id implies that A is skew-symmetric with respect to both metrics γ and σ,
i.e., σ(AX,Y ) = −σ(X,AY ) and γ(A∗α, β) = −γ(α,A∗β) [2].
The analog of generalized almost complex structure for odd-dimensional spaces
is generalized almost contact structure. We mention here the definition of these
geometric structures. But first, it will be worthwhile to recall the formal definition
of geometric structures for odd-dimensional spaces on a manifold to use them in
generalized cases.

Let M2n+1 be a smooth manifold with a one-form η such that η ∧ (dη)n 6= 0,
then the one-form η is a contact structure or a contact one-form. Given a contact
one-form, there is a unique vector field ξ such that η(ξ) = 1 and iξdη = 0.
This vector field is known as the Reeb vector field of the contact form η. Other
geometric structures for odd-dimensional spaces that is associated with the contact
and generalized structures are cosymplectic structures. In terms of tensors, an
almost cosymplectic structure (η, θ) is equivalent to the choice of a one-form η and
a two-from θ such that η∧ θn 6= 0 at every point of the manifold. Subsequently, an
almost cosymplectic structure (η, θ) is a cosymplectic structure if it is integrable
or equivalently, if both η and θ are closed. It is immediate that contact forms
constitute a subclass of almost cosymplectic structures with θ = dη [5].

An almost contact metric structure on M is given by tensors (ϕ, ξ, η, g) where ϕ
is a (1, 1)-tensor field, ξ is a vector field and η is a one-form on M , satisfying the
following conditions

ϕ2 = −Id + η ⊗ ξ, η(ξ) = 1

and where g is a Riemannian metric compatible with almost contact structure, that
means

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y )

for vector fields X and Y . We can use the Riemannian metric g and ϕ to construct
the fundamental two-form Θ(X,Y ) = g(ϕX, Y ). Then an almost contact metric
structure (ϕ, ξ, η, g) is called a contact metric structure iff Θ = dη. Furthermore
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an almost contact metric structure on M is normal if the Nijenhuis tensor of ϕ

Nϕ(X,Y ) = ϕ2[X,Y ]− ϕ[X,ϕY ]− ϕ[ϕX, Y ] + [ϕX,ϕY ]

satisfies Nϕ = −2ξ ⊗ dη [1]. Now, we are ready to return to the definition of
generalized structures on odd-dimensional spaces.

Using the definition given in [5], for an odd-dimensional manifold M , a pair
(Φ, F + η) is called generalized almost contact structure iff

Φ + Φ∗ = 0, Φ2 = −Id + F � η
η(F ) = 1, Φ(F ) = 0 and Φ(η) = 0 (1)

where Φ is an endomorphism of TM⊕TM∗, and F+η is a section of TM⊕TM∗
and F � η(X + α) := η(X)F + α(F )η, for any X + α ∈ Γ(TM).

Given a generalized almost contact pair (Φ, F + η), define

E(1,0) = {X + α− iΦ(X + α) ; X + α ∈ kerη ⊕ kerF}
E(0,1) = {X + α+ iΦ(X + α) ; X + α ∈ kerη ⊕ kerF}.

The endomorphism Φ is linearly extended to the complexified bundle TM ⊗C. It
has three eigenvalues, namely, λ = 0 and λ = i and λ = −i. The corresponding
eigenbundles are LF ⊕ Lη, E(1,0) and E(0,1), where LF and Lη are the complex
vector bundles of rank 1 generated by F and η, respectively. Define

L := LF ⊕ E(1,0), L∗ := Lη ⊕ E(0,1)

L̄ := LF ⊕ E(0,1), L̄∗ := Lη ⊕ E(1,0).

We say that the generalized almost contact pair (Φ, F + η) is a generalized contact
structure or (Φ, F + η) is integrable if L is involutive.

Since Φ has a matrix form as

Φ =

(
ϕ π]

θ[ −ϕ∗
)

one sees that a generalized almost contact pair is equivalent to a quintuplet (ϕ, π],

θ[, F, η) where F is a vector field, η a one-form, ϕ a (1, 1)-tensor field, π a bivector
field, and θ a 2-form that according to (1), they satisfy the following relations

i) ϕ2 + π]θ[ = −Id + F ⊗ η, ii) ϕ∗2 + θ[π] = −Id + η ⊗ F (2)

i) θ(ϕX, Y ) = θ(X,ϕY ), ii) π(α,ϕ∗β) = π(ϕ∗α, β) (3)

i) η ◦ ϕ = 0, ii) η ◦ π] = 0, iii) iFϕ = 0, iv) iF θ = 0, v) iF η = 1. (4)

In this classical form, the integrability conditions of (ϕ, π], θ[, F, η) are stated in
following Theorem.
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Theorem 1 ([11]) . A generalized almost contact pair corresponding to the quintu-
plet (ϕ, π], θ[, F, η) is integrable if and only if the following relations are satisfied:

A1)
1

2
[π, π] = F ∧ (π] ⊗ π])dη, [F, π] = −F ∧ π]£F η

A2) ϕ∗{α, β}π = £π]αϕ
∗β −£π]βϕ

∗α− dπ(ϕ∗α, β)

A3) Nϕ(X,Y ) + dη(ϕX,ϕY )F = π](iX∧Y dθ)

A4) dθϕ(X,Y, Z) = dθ(ϕX, Y, Z) + dθ(X,ϕY,Z) + dθ(X,Y, ϕZ)

A5) £Fϕ = 0, £F θ = 0

where the bracket is the Schouten-Nijenhuis bracket as explained in [9], {α, β}π =

£π]αβ −£π]βα− dπ(α, β), iX∧Y dθ = £Xθ
[(Y )−£Y θ

[(X)− dθ(X,Y ), and
θϕ(X,Y ) = θ(ϕX, Y ).

In a generalized almost contact structure, if both L and L∗ be involutive, the pair
(Φ, F + η) is called a strong generalized contact structure. The strong generalized
contact structure (Φ, F + η) is called a normal generalized contact structure if
£F η = 0 [7]. A generalized almost contact metric structure (Φ, F + η,G) is a
generalized almost contact structure with a generalized Riemannian metric G that
satisfies

−ΦGΦ = G− F ⊗ F − η ⊗ η.

3. Conformal Integrable Structures

Consider the automorphism Cτ : TM −→ TM defined in [6]

Cτ (X,α) := (X, eτα), τ ∈ C∞(M).

There Vaisman called it a conformal change of TM because it produces a confor-
mal change of the natural inner product 〈 , 〉 such that

〈Cτ (X + α),Cτ (Y + β)〉 = eτ 〈X + α, Y + β〉.
Furthermore if τ is locally constant the change will be called a homothety [6]. Ap-
plying the conformal change on Φ and G in a generalized almost contact structure
(Φ, F + η,G), resultes

Φ 7→ Φ̃ = C−τ ◦ Φ ◦ Cτ , G 7→ G̃ = C−τ ◦G ◦ Cτ .
Accordingly, one gets

Φ̃ =

(
ϕ eτπ]

e−τθ[ −ϕ∗
)
, G̃ =

(
A eτγ]

e−τσ[ A∗

)
.

It follows that if G is related to (γ, ψ), then G̃ is related to (e−τγ, e−τψ).
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Remark 2. One can see that if (Φ, F+η,G) is a generalized almost contact metric
structure, then (Φ̃, F̃ + η̃, G̃) is a generalized almost contact metric structure too,
where F̃ = e−

τ
2F and η̃ = e

τ
2 η.

In [6] Vaisman had considered also the conditions under which conformal changes
of generalized almost complex structures and almost Hermitian structures became
integrable and Kähler structure, respectively. We give an analog consideration for
the integrability of generalized almost contact structure after conformal changes.

Definition 3. A generalized almost contact structure (Φ, F + η) is called con-
formal integrable, if there exists a conformal change Cτ such that (Φ̃, F̃ + η̃) is
integrable in which Φ̃ = C−τΦCτ , F̃ = e−

τ
2F and η̃ = e

τ
2 η.

Proposition 4. The generalized almost contact structure (ϕ, π], θ[, F, η) is con-
formal integrable, if there exists a function τ ∈ C∞(M) such that$ = dτ satisfies
the conditions

B1) [π, π]− 2F ∧ (π] ⊗ π])dη = −2π]$ ∧ π and

[F, π] + F ∧ π]£F η = −$(F )π

B2) ϕ∗{α, β}π − (£π]αϕ
∗β −£π]βϕ

∗α− dπ(ϕ∗α, β))

= −π(α, β)ϕ∗$ + π(ϕ∗α, β)$

B3) Nϕ(X,Y ) + dη(ϕX,ϕY )F − π](iX∧Y dθ)

= θ(X,Y )π]$ −$(X)π]θ[(Y ) +$(Y )π]θ[(X)

B4) dθϕ(X,Y, Z)−
∑

cycle(X,Y,Z)

dθ(ϕX, Y, Z)

= −
∑

cycle(X,Y,Z)

($ ∧ θϕ + ($ ◦ ϕ) ∧ θ)(X,Y, Z)

B5) 2(£Fϕ) = −ϕ∗($)⊗ F, and (£F θ
[) = −$(F )θ[.

Proof: Let (ϕ, π], θ[, F, η) be a generalized almost contact structure and
(ϕ, π̃], θ̃[, F̃ , η̃) its conformal change by Cτ , which is integrable. Then the first
part of condition A1) is satisfied and we have [π̃, π̃] = 2F̃ ∧ (π̃] ⊗ π̃])dη̃, on the
other hand, we get

[π̃, π̃] =D(eτπ ∧ eτπ)− 2D(eτπ) ∧ (eτπ)

= e2τ [π, π] + 2e2τ ((π ∧ π)($)− π]($) ∧ π)

= e2τ ([π, π] + 2(π]($) ∧ π))
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where D is the generalized divergence which generates the Schouthen bracket.
Also we have F̃ ∧ (π̃] ⊗ π̃])dη̃ = e2τF ∧ (π] ⊗ π])dη. Comparing these two
relations we get the first part of B1). Similarly, by the second part of A1) we have
[F̃ , π̃] = −F̃ ∧ π̃]£F̃ η̃, then since

[F̃ , π̃] =D(e
τ
2F ∧ π)−D(e

−τ
2 F ) ∧ (eτπ)−D(eτπ) ∧ (e

−τ
2 F )

= e
τ
2 [F, π] +

e
τ
2

2
((F ∧ π)($) + F ($) ∧ π − π]($) ∧ F )

= e
τ
2 ([F, π] +$(F )π)

and F̃ ∧ π̃]£F̃ η̃ = e
τ
2F ∧ π]£F η, we get the second part of B1). Also by A2) we

have ϕ∗{α, β}π̃ = (£π̃]αϕ
∗β − £π̃]βϕ

∗α − dπ̃(ϕ∗α, β)), then a straightforward
calculation gives B2). Furthermore by A3), Nϕ(X,Y ) = −dη̃(ϕX,ϕY )F̃ +

π̃](iX∧Y dθ̃), then from dη(ϕX,ϕY )F = dη̃(ϕX,ϕY )F̃ , we get

Nϕ(X,Y ) =− dη(ϕX,ϕY )F + π̃](£X θ̃
[(Y )−£Y θ̃

[(X)− dθ̃(X,Y ))

=− dη(ϕX,ϕY )F + π](£Xθ
[(Y )−£Y θ

[(X)− dθ(X,Y ))

− π]($(X)θ[(Y )−$(Y )θ[(X)− θ(X,Y )$)

and B3) is proved. Considering A4) for θ̃, a straightforward calculation gives B4).
By the first part of A5) we have £F̃ϕ = 0, Using (4) we get

0 = (£F̃ϕ)X = £F̃ϕX − ϕ(£F̃X) = [e−
τ
2F,ϕX]− ϕ[e−

τ
2F,X]

= e−
τ
2 (([F,ϕX]− ϕ[F,X]) +

1

2
$(ϕX)F ) = e−

τ
2 (£Fϕ)X +

1

2
$(ϕX)F )

that gives the first part of B5). Finally by the second part of A5) and (4ii), we get

0 = (£F̃ θ̃)X = £F̃ θ̃
[X − θ̃[(£F̃X)

= i
e−

τ
2 F
◦ d(e−τθ[)X + d ◦ i

e−
τ
2 F

(e−τθ[)X − e−τθ[([e−
τ
2F,X])

= e
−3τ
2 ((iF ◦ d)θ[(X) +$(F )θ[(X) + d ◦ iF θ[(X)− θ[(£FX))

= e
−3τ
2 ((£F θ

[)X +$(F )θ[(X))

and this completes the proof. �

Now, we will investigate a necessary and sufficient condition under which (Φ̃, F̃ +
η̃), the conformal change of generalized contact structure (Φ, F + η), is a general-
ized contact structure.
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Theorem 5. Let (M,Φ, F + η) be a generalized contact manifold, dimM > 3

and (Φ̃, F̃ + η̃) its conformal change by Cτ . Assume that (Φ, F + η) satisfies one
of the following conditions

(1)- rank π > 2 and (2)-ϕx has no real eigenvalue, for all x ∈M . Then (Φ̃, F̃+η̃)
is a generalized contact structure if and only if the conformal change is homothety.

Proof: By assumption (Φ, F + η) is integrable, thus (Φ̃, F̃ + η̃) is integrable too
if and only if the right hand side of the equalities B1)-B5) vanishes. Considering
(2ii), the vanishing of the second part of B1) and the first part of B5), results in

θ[π]$ = −$. (5)

Furthermore condition π]$ ∧ π = 0 which is obtained from the vanishing of the
first part of B1) holds, if and only if either rank π = 2 or π]$ = 0, then in case
(1), we must have π]$ = 0. Thus by using (5), we get dτ = $ = 0.

To discuss case (2), assume that dxτ 6= 0 on a neighborhood Ux. Since B2) holds
for every one-form β, its vanishing resultes (ϕ∗$)Xπ](α) = $(X)π](ϕ∗α) for
a vector field X on Ux. since dxτ 6= 0, it yields fπ](α) = ϕxπ

](α) in which
f = ϕ∗$xX

$xX
∈ C∞(TM). Thus, replacing α by a one-form θ[(Y ) for any arbitrary

vector field Y and using (2) and (4), we see that ϕ |Ux satisfies

ϕ3 − fϕ2 + ϕ− f(I + η ⊗ F ) = 0

and therefore ϕ must have a real eigenvalue. Thus the hypothesis of case (2)
implies dτ = $ = 0. �

Let η be a contact structure on M with ξ the corresponding Reeb vector field, then
−[(X) := iXdη − η(X)η is an isomorphism from the tangent bundle TM to the
cotangent bundle TM∗. Thus by defining a bivector field [5]

π(α, β) := dη([−1(α), [−1(β))

where α, β ∈ T ∗M , we have a generalized contact structure (Φ, F + η) in which

Φ =

(
0 π]

dη[ 0

)
, F = ξ.

Thus by Proposition 4, the conformal integrability conditions are reduced to

a1) 2π]$ ∧ π = 0, and $(F )π = 0

a2) dη(X,Y )π]$ −$(X)π]dη[(Y ) +$(Y )π]dη[(X) = 0

a3) $(F )dη[ = 0.

Therefore, with the help of the hypotheses of Theorem 5, we have the next result.
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Proposition 6. The generalized contact manifold (M,Φ, F + η), dimM > 3,
associated to a classical contact one-form η is conformal integrable if and only if
the conformal change is homothety.

Proof: Since Φ is full rank on kerη and Φ =

(
0 π]

dη[ 0

)
, then π] is also full rank

on kerη. From dimM > 3, we have rank π > 2 and by Theorem 5, (Φ, F + η) is
conformal integrable if and only if the conformal change is homothety. �

The following example shows that when dimM = 3, the conformal change need
not be homothety.

Example 7. LetM = SU(2) on the Lie algebra su(2) and choose a basis {X1, X2,
X3} and a dual basis {σ1, σ2, σ3} such that [Xi, Xj ] = −Xk, thus dσi = σj ∧σk
for cyclic permutations of {i, j, k}. We know from [5] that one can construct a
generalized contact structure associated to a classical contact one-form η = σ3 by
taking

F = X3, θ = dσ3 = σ1 ∧ σ2, π = X1 ∧X2 and Φ =

(
0 π]

θ[ 0

)
then L = span{X3, X1 − iσ2, X2 + iσ1}. Now, we consider integrability of con-
formal change (Φ̃, F̃ + η̃) for nonconstant function τ such that dτ = εσ1 for a
real constant ε. Let L̃ be the conformal changes of L by Cτ , then

L̃ = span{e−τ/2X3, X1 − e−τ iσ2, X2 + e−τ iσ1}.

Then the Courant brackets give

[[e−τ/2X3, X1 − e−τ iσ2]] = −e−τ/2(X2 + e−τ iσ1) +
εe−τ/2

2
X3

[[e−τ/2X3, X2 + e−τ iσ1]] = e−τ/2(X1 − e−τ iσ2)

[[X1 − e−τ iσ2, X2 + e−τ iσ1]] = −X3.

Thus (Φ̃, F̃ + η̃) is a generalized contact structure too.

4. Conformal Normal Structures

Wade [11] has already described the integrability of generalized almost contact
structures. Now, we will continue her computational method and describe geomet-
ric conditions expressing the normalization of generalized almost contact structure.
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Theorem 8. A generalized almost contact pair (Φ, F + η) corresponding to the
quintuplet (ϕ, π], θ[, F, η) is normal if and only if it satisfies conditions A1)-A5),
and £F η = 0, and the following relations hold

C1) £π]αη = 0

C2) dη(ϕX, Y )− dη(ϕY,X) = 0.

Proof: Let (Φ, F + η) be a generalized almost contact pair on M . Then by defi-
nition, M is normal if and only if both L and L∗ be involutive and £F η = 0. It is
known that L is involutive if and only if conditions (A1)-(A5) are satisfied. Now,
we prove that L∗ is involutive if and only if (C1) and (C2) are satisfied. Given
any one-form α on M , we denote eα = α + iΦα = iπ]α + (α − iϕ∗α). Then
[[η, eα]] ∈ Γ(L∗) if and only if Φ[[η, eα]] = −i[[η, eα]]. Since we have

[[η, eα]] = [[η, iπ]α+ (α− iϕ∗α)]] = i£π]αη

condition Φ[[η, eα]] = −i[[η, eα]] can be expressed as

iπ](£π]αη)− iϕ∗(£π]αη) = −(£π]αη).

Thus [[η, eα]] ∈ Γ(L∗) if and only if £π]αη = 0. Now, let X be a section of kerη,
and eX := X + iΦX = (X + iϕX) + iθ[(X). We have

[[η, (X + iϕX) + iθ[(X)]] = −£Xη − i£ϕXη

thus [[η, eX ]] ∈ Γ(L∗) if and only if Φ[[η, eX ]] = −i[[η, eX ]]. This condition can be
expressed as

ϕ∗(£Xη) = −(£ϕXη)

or equivalently, for any section Y and by using (4i), we get

(£Xη)ϕY =− (£ϕXη)Y

⇒ X.η(ϕY )− η[X,ϕY ] = −ϕX.η(Y ) + η[ϕX, Y ]

⇒ dη(ϕY,X) = dη(ϕX, Y ).

Hence [[η, eX ]] is a section of L∗ if and only if dη(ϕX, Y )− dη(ϕY,X) = 0. �

Definition 9. A generalized almost contact structure (Φ, F + η) is conformal nor-
mal, if there exists a conformal change by Cτ such that (Φ̃, F̃ + η̃) is normal.

Now that all pieces are in place for expressing normal conditions after a conformal
change.
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Proposition 10. The generalized almost contact structure (ϕ, π], θ[, F, η) is con-
formal normal, if there exists a function τ ∈ C∞(M) such that $ = dτ satisfies
the conditions B1)-B5) and

D1) 2(£F η) = −($ ∧ η)F

D2) 2(£π]αη) = π($,α)η

D3) 2{dη(ϕX, Y )− dη(ϕY,X)} = −(ϕ∗$ ∧ η)(X,Y ).

Proof: Let (ϕ, π], θ[, F, η) be some generalized almost contact structure and
(ϕ, π̃], θ̃[, F̃ , η̃) its conformal change by Cτ , which is normal. Then £F̃ η̃ = 0.
Thus we get

0 = (£F̃ η̃) = i
e
−τ
2 F
◦ d(e

τ
2 η) + d ◦ i

e
−τ
2 F

e
τ
2 η

= i
e
−τ
2 F

(
e
τ
2

2
$ ∧ η + e

τ
2 dη) + d ◦ iF η =

1

2
($ ∧ η)F + £F η.

Also by C1), we have £π̃]αη̃ = 0, then by using (4ii), we have

0 = (£π̃]αη̃) = ieτπ]α ◦ d(e
τ
2 η) + d ◦ ieτπ]αe

τ
2 η

= ieτπ]α(
e
τ
2

2
$ ∧ η + e

τ
2 dη) + e

3τ
2 d ◦ iπ]αη

=
e

3τ
2

2
($ ∧ η)(π]α) + e

3τ
2 £π]αη = e

3τ
2 (−1

2
απ]($)η + £π]αη).

Finally by C2), we have dη̃(ϕX, Y )− dη̃(ϕY,X) = 0, then by using (4i), we get

0 = dη̃(ϕX, Y )− dη̃(ϕY,X) = d(e
τ
2 η)(ϕX, Y )− d(e

τ
2 η)(ϕY,X)

= (
e
τ
2

2
$ ∧ η + e

τ
2 dη)(ϕX, Y )− (

e
τ
2

2
$ ∧ η + e

τ
2 dη)(ϕY,X)

=
e
τ
2

2
{$(ϕX)η(Y )−$(ϕY )η(X)) + dη(ϕX, Y )− dη(ϕY,X)}

this completes the proof. �

Theorem 11. Let (M,Φ, F + η) be a normal generalized contact manifold such
that dimM > 3. If one of the following conditions is satisfied: 1) - rank π > 2,
2) - ϕx has no real eigenvalue, for all x ∈ M , then the conformal change Cτ of
M , (Φ̃, F̃ + η̃), is normal if and only if the conformal change is a homothety.

Proof: By the above Proposition and Theorem 5, one can simply deduce the proof.
�

The following example shows that if none of the conditions (1) and (2) of the above
theorem is satisfied, then the conformal change is not necessarily a homothety.
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Example 12. Let M = R5 and choose a local frame {X1, X2, X3, X4, X5} and
its dual local frame {σ1, σ2, σ3, σ4, σ5} such that

[X5, X1] = X4, [X5, X2] = −X3, [X5, X3] = −X2

[X5, X4] = X1, [Xi, Xj ] = 0.

Thus we have

dσ1 = σ4 ∧ σ5, dσ2 = −σ3 ∧ σ5, dσ3 = −σ2 ∧ σ5, dσ4 = σ1 ∧ σ5

and σ5 is closed. To construct a normal generalized contact structure, one takes
generalized almost contact structure components with ϕ = X2 ⊗ σ1 − X1 ⊗

σ2 + X4 ⊗ σ3 − X3 ⊗ σ4, Φ =

(
ϕ 0
0 −ϕ∗

)
, F = X5 and η = σ5, where

(ϕ∗α)X = α(ϕX) and X + α ∈ TM . One computes easily that

L = span{X5, X1 − iX2, X3 − iX4, σ
1 − iσ2, σ3 − iσ4}

L∗ = span{σ5, X1 + iX2, X3 + iX4, σ
1 + iσ2, σ3 + iσ4}.

For L, the relevant Courant brackets give

[[X5, X1 − iX2]] = i(X3 − iX4), [[X5, X3 − iX4]] = −i(X1 − iX2)

[[X5, σ
1 − iσ2]] = −i(σ3 − iσ4), [[X5, σ

3 − iσ4]] = i(σ1 − iσ2)

and the rest of the brackets are equal to zero. Similarly, for L∗ we compute
the Courant brackets and we see that all of them is equal to zero as well as
£X5σ

5 = dσ5(X5) = 0. Thus (Φ, F + η) is a normal generalized contact struc-
ture.
Now, we consider normality of conformal change (Φ̃, F̃ + η̃) for nonconstant func-
tion τ such that dτ = εσ5 for an arbitrary constant function ε . Then for L and
L∗, the Courant brackets give

[[F̃ ,X1 − iX2]] = ie−τ (X3 − iX4), [[F̃ ,X3 − iX4]] = −ie−τ (X1 − iX2)

[[F̃ , σ1 − iσ2]] = −ie−τ (σ3 − iσ4), [[F̃ , σ3 − iσ4]] = ie−τ (σ1 − iσ2)

and the others are equal to zero as well as

£F̃ η̃ = dσ5(X5) +
1

2
(dτ ∧ σ5)(X5) = 0.

Thus (Φ̃, F̃ + η̃) is a normal generalized contact structure.
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Let (ϕ, ξ, η) be a normal almost contact structure on a manifold M2n+1. It is
shown in [5] that we have a normal generalized contact structure (Φ, F + η) in
which

Φ =

(
ϕ 0
0 −ϕ∗

)
, F = ξ.

Therefore, by Proposition 10, it is conformal normal if and only if

($ ∧ η)F = 0

that means $ = $(F )η. Thus we have the following result.

Proposition 13. The normal generalized contact structure associated to a classi-
cal normal almost contact structure (ϕ, ξ, η) is conformal normal if and only if $
is a section of Lη.

Similar to what we recall for contact structure, let (η, θ) be a cosymplectic structure
with ξ the corresponding Reeb vector field, then −[(X) := iXθ − η(X)η is an
isomorphism from the tangent bundle TM to the cotangent bundle TM∗. Thus by
defining a bivector field

π(α, β) := θ([−1(α), [−1(β))

where α, β ∈ T ∗M , we have a normal generalized contact structure (Φ, F + η) in
which

Φ =

(
0 π]

θ[ 0

)
, F = ξ.

Therefore, by Proposition 10, the conditions for being conformal normal reduce to

b1) 2π]$ ∧ π = 0, and $(F )π = 0

b2) θ(X,Y )π]$ −$(X)π]θ[(Y ) +$(Y )π]θ[(X) = 0

b3) $(F )θ[ = 0, and b4) απ
]$ ⊗ η = 0.

Considering (2ii) and the vanishing of π]$ and $(F ) results in $ = 0. Thus we
have the following

Proposition 14. The normal generalized contact manifold (M,Φ, F + η) associ-
ated to a classical cosymplectic structure (η, θ) is conformal normal if and only if
the conformal change is homothety.
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