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Abstract. Adler had showed that the Toda system can be given a coadjoint or-
bit description. We quantize the Toda system by viewing it as a single orbit of a
multiplicative group of lower triangular matrices of determinant one with positive
diagonal entries. We get a unitary representation of the group with square integrable
polarized sections of the quantization as the module . We find the Rawnsley coher-
ent states after completion of the above space of sections. We also find non-unitary
finite dimensional quantum Hilbert spaces for the system. Finally we give an ex-
pression for the quantum Hamiltonian for the system.
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1. Introduction

The connection between finite Toda system and coadjoint orbits was first explored
by Adler [1]. We summarize the introduction to the Toda system as in [1]. The
Hamiltonian considered is H = 1

2

∑n
i=1 y

2
i +

∑n
i=1 exi−xi+1 , x0 = xn+1. The

Hamiltonian equations of motion are
·
xi= yi,

·
yi= exi−1−xi−exi−xi+1 , i = 1, ..., n.

Define

ai =
1

2
e

1
2

(xi−xi+1), i = 1, ..., n− 1, bi =
1

2
yi, i = 1, ..., n.

Note that ai > 0 for i = 1, ..., n− 1.

Adler showed that the Hamiltonian equation of motion corresponds to a Lax equa-
tion and gave explicit expression for the integrals of motion which Poisson com-
mute w.r.t. the following Poisson bracket

{f, g} =
·∑

(ai−1gai−1 − aigai)fbi+
·∑
ai(gbi − gbi+1

)fai

where ·means that terms with undefined elements, i.e., terms involving a0, an, bn+1.
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(Note: In page 222 of [1], there is a misprint in the formula for the Poisson bracket.
The correct formula for the Poisson bracket, as written above, is given on page 225
in the same paper).

Adler goes on to show that the same system has a coadjoint orbit description of the
group of lower triangular matrices of non-zero diagonal. In fact, one can restrict the
action to that of lower triangular triangular matrices of determinant 1 and positive
diagonal elements. The system is homeomorphic to R+

n−1 × Rn−1, just described
by ai > 0, i = 1, ..., n− 1 and bi, i = 1, ..., n such that b1 + b2 + ...+ bn = c, c a
constant.

We describe this precisely and show that the Toda system corresponds to a single
orbit. We explore it further to geometrically quantize the Toda system. This is
possible since the orbit has a symplectic structure whose induced Poisson bracket
corresponds exactly to the Poisson bracket mentioned above.

In two famous papers [3], [4], Kostant describes the Kostant-Souriau quantization
in general and for coadjoint orbits in particular. Using his construction, we were
able to construct an infinite dimensional Hilbert-space of polarized sections of the
quantum bundle (which is trivial in our case). The polarized sections are square
integrable functions of ai, i = 1, ..., (n− 1) only. In this construction we modified
the usual volume (given by the symplectic form) by an exponential decay. The
group of lower triangular matrices with determinant 1 and positive diagonal entries
acts on this Hilbert space giving in fact a unitary representation. By Kostant’s result
on general coadjoint orbits, [3], [4], this exactly corresponds to the Hilbert space
of geometric quantization of the orbit and hence the Toda system.

Next, we construct Rawnsley’s coherent states [5], of the Toda system correspond-
ing to this quantization. There is another definition of coherent states for orbits.
The coherent states are obtained by moving any “vacuum” vector by the group ac-
tion. We show for orbit quantization, these two notions of coherent states coincide.

We also construct (in the last section) finite dimensional representations which are
not unitary.

The general reference we have followed about geometric quantization is the book
by Woodhouse [9]. It would be interesting to relate this quantization with other
quantizations of the Toda system [8] which are relevant to physics.

The quantization of Toda systems using geometric methods has already been worked
out by Reyman and Semenov-Tian-Shansky [6,7] and Kharchev and Lebedev [2].
The coherent states have not been considered in this context as far as the authors
know.
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It would be interesting to see if the same idea of geometric quantization goes
through for KdV type systems. The symplectic structure in this case has been
derived by Adler [1].

2. The Orbit Corresponding to Toda System

A Toda system [1] is characterized by a upper triangular matrix of the form

A =


b1 a1

b2 a2

. . . . . .
bn−1 an−1

bn

 (1)

where the trace is constant and each ai is positive a and all other matrix elements
are zero.

The space of upper triangular matrix is the dual lie algebra of multiplicative of
group of lower triangular matrix. There is an coadjoint action. Since Toda matrices
are upper triangular we attempt to find its orbit structure. The orbit structure is
described in the following proposition.

Proposition 1. The Toda space described above is a codajoint orbit of the multi-
plicative group of lower triangular matrix with positive diagonals.

Proof: In general the coadjoint action of l invertible and lower triangular on an
upper triangular matrix u described in [1] is given by

l(u) = [lul−1]+ (2)

where [ ]+ mean projection to the upper triangular part.

We find the orbits of the following matrices Cii+1 where only (Cii+1)ii+1 > 0 and
rest of the terms are zero. Let L be any invertible lower triangular matrix given by
L = (Lij) then the matrix LC12L

−1
+ is given by

([LC12L
−1]+)11 = −L21

L22
c

([LC12L
−1]+)12 =

L11

L22
c (3)

([LC12L
−1]+)22 =

L21

L22
c
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where c is the only nonzero entry of C12 that is (C12)12 = c. All other terms of the
above matrix is zero.

Now if L21
L22

and L11
L22

are allowed to vary freely we will get a two dimensional
manifold. Proceeding further by induction we can prove that the orbit of C with
diagonal entries zero, all (i, i + 1) entry greater than zero and rest entries zero is
2(n − 1) dimensional. The inductive argument is presented in the lemma bellow.
If the Toda matrix is T then

T = D + C (4)

where D is diagonal and C is a matrix of the type described above. The action
of the invertible lower triangular matrices with positive diagonals will fix D and
take the C to a 2(n − 1) dimensional manifold. Since the orbit map from G to
the Toda space is of constant rank then by constant rank theorem the image (the
orbit) is a manifold of dimension equal to the constant rank of the differential of
the orbit map. Since each image is a 2(n − 1) dimensional manifold, the rank
of the differential is 2(n − 1). Since the Toda space is 2(n − 1) dimensional the
differentials are surjections. So by submersion theorem local open sets of G map
surjectively by the orbit map to open sets of Toda space. Thus the orbits are open.

Since by above orbits are open each orbit is open and closed. This is because if we
take an orbit O, it is open by the above argument and its complement is open as it
is the union of other orbits. We have the set O is open and so is its complement,
making it an open and closed set.

Since the Toda system is a connected set there will be only one orbit corresponding
to it. �

Lemma 2. The coadjoint orbit of the matrix of type C is of dimension 2(n− 1).

Proof: We proceed by induction. We first try to understand the case C12 + C23

([L(C12 + C23)L−1]+)11 = −L21

L22
c1, ([L(C12 + C23)L−1]+)12 =

L11

L22
c1

([L(C12 + C23)L−1]+)22 =
L21

L22
c1 −

L32

L33
c2 (5)

([L(C12 + C23)L−1]+)23 =
L22

L33
c2, ([L(C12 + C23)L−1]+)33 =

L32

L33
c2.

Here c1 and c2 are the values of non zero entries of C12 and C23 that is (C12)12 =
c1 and (C23)23 = c2 . All other terms of the above matrix is zero. Now for fixing
a value of L32

L33
c2 the first row entries are unaffected so restriction of the orbit for
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fixed L32
L33

c2 has at least two dimensions. Now as we change L32
L33

c2 we get one more
dimension and thus the orbit will be at least three dimensional and since orbits are
symplectic and hence even dimensional, this orbit will be at least four dimensional.

Now assuming the induction hypothesis that orbit C12 + . . .+Ckk+1 is at least 2k
dimensional. Since the orbit of Ck+1k+2 (which is similar to C12 case discussed
above) is two dimensional, we can show C12 + . . .+ Ckk+1 + Ck+1k+2 will have
orbit at least 2(k + 1) dimensional (following the same line of argument as in the
4-d case.)

So the orbit of the matrix C in the Toda equation (4) above is at least 2(n − 1)
dimensional and since it lies in the Toda system which is 2(n−1) dimensional and
the orbit of C is exactly 2(n− 1) dimensional. �

3. The Symplectic Form

We summarize the description of the symplectic form if the coajoint orbit as in [1].
We also provide a formula for it. It is important to note that it corresponds to the
Poisson bracket of the Toda system (given in page 225, [1]). This has been shown
in the same paper.

Let G be the group of lower triangular matrices with non-zero diagonal entries. Its
Lie algebra L is the lower triangular matrices.

As in [1], we may identify the dual of L, namely L∗ , with the upper triangular
matrices, using the pairing 〈A,B〉 = Tr(AB). g ∈ G acts on L via conjugation.
By duality, it acts on l∗ ∈ L∗ g : l∗ → [g−1l∗g]+ , where [· , ·]+ denotes the
projection operator of setting all terms below the diagonal equal to zero, [1]. This
is the coadjoint representation of G. The orbit of this action is through l∗ ∈ L∗

is θl∗ = {[g−1l∗g]+ ; g ∈ G}. The tangent space of θl∗ at l∗ is described by
Tl∗θl∗ = {[l∗, l]+ ; l ∈ L}. The Kostant-Kirillov two-form ω associated with the
orbit space θl∗ is

ω([l∗, l1]+, [l∗, l2]+)(l∗) = 〈l∗, [l1, l2]〉 = 〈[l∗, l1]+, l2〉.

When one writes l∗1 = [l∗, l1]+ and l∗2 = [l∗, l2]+ and solves for the symplectic
form, one gets that the symplectic form is

ω =
∑n−1

i=1
1
ai

d(ai) ∧ d(
∑i

j=1 bj).

This form is of integral cohomology class, because it is exact.
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Also, the symplectic form can be written in a standard form by a change of coor-
dinates. Recall ai > 0 for i = 1, ..., n − 1. Let qi = log(ai) and pi =

∑i
j=1 bj .

Then the symplectic form is the standard symplectic form on R2(n−1), namely,∑n−1
i=1 d(qi) ∧ d(pi).

4. Polarization of the Complexified Lie Algebra

Here we descibe the notion of polarization in a Lie algebra as in Kostant [4]. A
polarization at g of an element of the dual lie algebra of a group G is a complex
subalgebra h ⊂ gC (the complexification of g) which satisfies the following condi-
tions

1) the subalgebra is is stable under Ad Gg

2) dimC(gCh ) = n

3) 〈g, [h, h] >= 0 and

4) h + h̄ is a subalgebra of gC.

If we restrict our self to the group G1 of lower triangular matrices with non-
negative diagonal entries and determinant one then its Lie-algebra g is the lower
triangular matrices with trace zero.

Proposition 3. The lie subalgebra of gC , h of complex lower triangular matrices
with diagonal zero is a polarization at any g in Toda space.

This involves trivial checking.

4.1. Quantization

Here we recall the notion of geometric quantziation as in Woodhouse [9]. A clas-
sical system is given by a pair (M,ω) where M is a symplectic manifold and ω a
symplectic form. Suppose that the cohomology class of ω is integral then geomet-
ric pre-quantization is the construction of a line bundle L over M whose curvature
ρ(∇) (of a certain connection of L with covariant derivative ∇), is proportional to
ω. The connection is given by a symplectic potential i.e., a one form θ such that
ω = d(θ) locally. The construction of the line bundle is always possible as long as
the cohomology class of ω is proportional to an integral class. The Hilbert space
of prequantization is the completion of the space of square integrable sections of
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L. The Hilbert space of prequantization described above is too large for most pur-
poses. Geometric quantization involves construction of a polarization (a certain
type of distribution) of the symplectic manifold such that we now take polarized
sections (depending on the above distribution) of the line bundle, yielding a finite
dimensional Hilbert space in most cases.

Polarizations on the Manifold are complex involutory distributions F of dim n
such that

1) ω(FpFp) = 0 at all p ∈ X and

2) F + F̄ is an involutory distribution of constant dimension on M . Polarized
sections are sections satisfying∇X̄s = 0 where X lies in F .

The following method of quantization developed by Kostant and Souriau, assigns
to function f ∈ C∞(M), an operator, f̂ = ∇Xf + 2πif acting on the Hilbert
space of prequantization described above. Here∇ is the covariant derivative of the
connection θ of the bundle and Xf is the Hamiltonian vector field with respect to
the symplectic form ω.

Functions mapping polarized sections to polarized sections are the ones which
survive quantization. A sufficient condition for a function f to do this is that its
Hamiltonian vector field Xf involutes with the polarization. This can be seen from
the following formula

∇X̄ f̂ s = f̂(∇X̄s) +∇[X̄,Xf ]s (6)

in which X lies in the polarization and s is a polarized section [9].

4.2. Polarization of the Complexified Lie Algebra and that on the Manifold

We have discussed two polarizations. One on the complexified lie algebra and
the the other on the manifold through involutory distributions. When there is a
Hamiltonian group action on the manifioldM of a groupG the fundamental vector
fields are Hamiltonian and thus yielding functions. When M is a Hamiltonian-G
space the assignment is a lie agebra homomorphism. In case of codajoint orbits
lie algebra polarisation (described above) induces a polarisation in the manifold
through fundamental vector fields. In such a case whole lie algebra gC maps to
polarized functions thus giving representation of the lie algebra to the space of
polarized sections, [4].

Since the Toda space T is a coadjoint orbit from what proved above there is a
Hamiltonian group action of G1 the group of invertible lower triangular matrices
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with non-negative diagonal entries of determinant one. It can be checked that re-
stricting to G1 does not reduce the orbit since G = DG1 where D are scalar
matrices matrices which lies in stabilizer of the coadjoint action on the Toda space.
Since our polarization comes from a lie algebra polarization h (lower triangular
matrix with diagonal zero) which satisfies certain criterions (Section 4), the polar-
ized sections will be a module of a representation of gC. Exponentiating this action
we get a representation of the group [4]. (More details in Section 6).

5. Polarized Sections

When the manifold M is a coadjoint orbit the Hamiltonian functions due to fun-
damental vector fields can be evaluated easily. The Hamiltonian function for a
polarized fundamental vector fields is given by

H(l∗) = Trace(ll∗) (7)

where l ∈ h, as discussed above. Since in our case diagonal elements of l ∈ h are
zero and restricting to real matrices we have

H(l∗) =
∑
i=1

n−1
l1+1il

∗
ii+1. (8)

Going to ai and bi coordinates we get

H(l∗) =
∑
i=1

n−1
l1+1iai. (9)

Recall that the symplectic form is

ω =

n−1∑
i=1

1

ai
d(ai) ∧ d(

i∑
j=1

bj).

Substituting

pi =
∑
j=1

i
bj (10)

we have ω =
∑n−1

i=1
1
ai

d(ai) ∧ d(pi). So from above

XH =
∑
i=1

n−1
aili+1i∂pi. (11)
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Thus the polarisation is given by the fields ∂pi . Choosing the symplectic potential
(or the connection form) as

θ =
∑
i=1

n−1 d(ai)

ai
pi

the polarized sections will coinside with the solutions to the following PDE

(d(s)(X)) + iθ(X)s) = 0

in which the section s is just a smooth function due to triviality of the bundle and

X =
∑
i

yi(a, p)∂pi

while yi are arbitrary and

(a, p) = (a1, a2, ...an−1, p1, .., pn−1).

Since
θ(X) = 0, s = s(a, p)

solves the equation ∑
i=1

n−1
yi(a, p)∂pis(a, p) = 0. (12)

This is because X = X in this case. Since ω is exact and the Toda space is
contractible, we have a trivial bundle and the sections are functions and from the
above, the polarised functions depend only on ai.

6. Unitary Representation

6.1. Induced Representations

Let us recall the definition of induced representation. Suppose G is a topological
group and H is a closed subgroup of G. Suppose π is a representation of H over
the vector space V . Then G acts on the product G× V as follows

g′.(g, v) = (g′g, v)

where g and g′ are elements of G and v ∈ V .

Define on G× V the equivalence relation

(g, v) ∼ (gh, π(h−1)(v)) for all h ∈ H.
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Note that this equivalence relation is invariant under the action ofG. Consequently,
G acts on (G×V )/ ∼ . The latter is a vector bundle over the quotient space G/H
with H as the structure group and V as the fiber. Let W be the space of sections of
this vector bundle. This is the vector space underlying the induced representation
IndGHπ. The group G acts on W as follows

(g.φ)(k) = g.
(
φ(g−1k)

)
for g ∈ G, φ ∈W, k ∈ G/H.

6.2. Unitary Representation of G on the Space Of Sections

We refer to the theory developed in [3] and [4]. When M is a coadjoint orbit
of a group G and g ∈ M from theorem 5 in [4] we have a bijection between
Lc(M,ω) and Lg, (notation as in [4]). Here Lg is the set of characters from
stabilizer group Gg to the unit circle at the fiber at the point g of the corresponding
element l ∈ Lc(M,ω). Calling the character ηl we get a induced representation of
the whole group on the space of sections [4].

6.2.1. Prequantization

For prequantization, in the definition of induced representation we take G = G1,
H = GT , the stabilizer subgroup of T in the dual of the Lie algebra. T is a point
on the coadjoint orbit G/GT . The representation of H is given by the character
ηl. As mentioned in Theorem 5 in [4], the unitary representations of G defined by
exponentiation of γl o λ is indGηl. Recall that here λ(x)(T ) = 〈T, x〉, which, in
our case, is Tr(xT ) where x is in the Lie algebra and T in its dual, both are given
by matrices. Also γl(φ)s = (∇ζφ + 2πiφ)s, s is a section of the prequantum line
bundle and φ is a smooth function on the coadjoint orbit.

6.2.2. Quantization

We refer to the last paragraph of [4]. We chose our polarization h which satis-
fied the criterion of Kostant’s polarization (see section 4). Then, the representation
ind(ηl, h) of G corresponds to the unitary representation obtained from exponenti-
ation of γlF (h) o λ. (Notation as in [4]).

6.2.3. Unitary Representation

The space of polarized sections of the Toda system are functions depending on
variables ai. The action of the induced representation on the inner product is given
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by∫
T
|g∗s(a1 . . . an−1)|2|h(x)|2d(V )=

∫
T
|s(a1 . . . an−1)|2|h(gx)|2g∗(d(V )) (13)

where g ∈ G1 and T and d(V ) is the orbit and its volume form respectively. In our
case T is the Toda space and d(V ) is its volume form induced by the symplectic
form and h the Hermitian structure compatible with the symplectic potential or the
connection form. From [3], and [4], a Hermitian structure h is α invariant if

2πi(α(s0)− ¯α(s0)) = d(log |h|2) (14)

where s0 is the section defining the trivialization. In our trivialization, α(s0) = θ
where θ is real and hence |h| is constant.

If we take d(V ) to be ωn−1 we have a g invariant volume since ω is g invariant.
But then square integrals of functions depending on ais will blow up since bis vary
over a unbounded domain. This will make the inner product to blow up. So we
multiply by a normalizing factor

d(V ) = e−
∑n−1
i=1 pi

2
(ω)n−1 (15)

where pi =
∑i

j=1 bj . The action of the groupG1 on the Toda space can be inferred
from the Section 2. The variables ai and bi transform in following way when an
element g acts on it

g(ai) =
Lii

Li+1i+1
ai. (16)

For i > 1

g(bi) = bi +
Lii−1

Lii
ai−1 −

Li+1i

Li+1i+1
ai. (17)

For i = 1

g(b1) = b1 −
L21

L22
a1 (18)

where gij = Lij . Substituting pi =
∑i

j=1 bj we have

g(pi) = pi −
Li+1i

Li+1i+1
ai, g∗(d(V )) = e

−
∑
i=1

n−1(pi−
Li+1i
Li+1i+1

ai)
2

ωn−1. (19)

So the inner product (gs, gs) is given by the following expression

∫ ∞
0
. . .

∫ ∞
0

∫ ∞
−∞

. . .

∫ ∞
−∞
|s(a1 . . . an−1)|2e

−
∑
i=1

n−1(pi−
Li+1i
Li+1i+1

ai)
2

ωn−1. (20)
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We first perform the pi-integrals. Since the pi coordinates range from (−∞,∞),
making a substitution yi = pi − Li+1i

Li+1i+1
ai we get

(gs, gs) = (s, s). (21)

This means g is a unitary representation. From last page of [4] we have this repre-
sentation is the exponential of the lie algebra representation defined through con-
nections and Hamiltonian functions described above. Since the pi parts of the
integral evaluates to constant the inner product is

(s, s) = c

∫ ∞
0

. . .

∫ ∞
0
|s(a1 . . . an−1)|2 d(a1) . . . d(an−1)

a1 . . . an−1
· (22)

Thus the Hilbert space of quantization, H, is the completion of smooth functions
of ai’s are such that the above integral is finite.

Remark 4. Since lower triangular matrices L with positive diagonal entries is
given by DG1 where G1 is the group of our representation and D scalar and since
D has a trivial action on coadjoint orbit our representations can be extended to
the whole group L.

7. Coherent States

7.1. Rawnsley Coherent States

In [5] Rawnsley defined coherent states corresponding to geometric quantization
of compact Kahler manifolds. We repeat the construction for our case (namely,
L2-completion of smooth functions).

In our case the pre-Hilbert space consists of sections which are smooth functions
of ai such that the integral in the above section is finite. After completing the space
w.r.t. the L2 norm we get a Hilbert space H. By substituting xi = log(ai) we find
that the Hilbert space lies in L2(Rn−1).

Consider the associated C∗ principal bundle L0 → M of L. Take an element
q ∈ L0 define a function ∆q on the pre-Hilbert of space sections described above
such that ∆q(s).q = s(πq).

Since we have a trivial bundle the smooth sections are smooth functions and ∆q(s)
is a constant times the evaluation map of s at π(q).

Lemma 5. The evaluation map at a point on square integrable smooth functions
in L2 norm is continuous.
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Proof: Suppose sn converge to s and sn and s smooth then sn converge point
wise. Suppose not implies there exist x such that sn(x) does not converge to s(x).
This implies there exist a sub sequence snk and an ε such that |s(x)− snk(x)| > ε.
Now s−1(x − ε

2 , x + ε
2) is an open set U of positive measure. So from the above

|s− snk |2 is greater than εm(U)
1
2 where m(U) is the Lebesgue measure of U and

|. . .|2 is the L2 norm. This contradicts L2 convergence of sn to s. �

Lemma 6. Any continuous linear functional f on a pre-Hilbert V space extends
to a continuous linear functional f̃ on a Hilbert space V .

Proof: This can be found in any standard functional analysis text book but we give
a proof for the reader’s convenience. Suppose we have a sequence sn in V which
converges to s in V then f(sn) converges to f̃(s) by definition. Now if we have a
sequence s̃n which converges to s where s̃n in V , then we can find sn ∈ V such
that |sn − s̃n|V < 1

n and |f(sn) − f̃(s̃n)| < 1
n . Since s̃n converge to s then sn

converge to s so by definition f(sn) converges to f̃(s). Since we have chosen sn
such that f̃(s̃n) and f(sn) converge to the same point we have f̃(s̃n) converges to
f̃(s). �

Corollary 7. The functional ∆q extend to continuous linear functional ∆̃q on the
completion.

So by Riesz representation theorem there is a section eq such that ∆̃q(s)q =
(eq, s)q, where ( , ) is the inner product on the Hilbert space. For q and q1 in
the same fiber eq and eq1 differ by a multiplication by a constant. Thus we get a
map from the base to the projectivization of the Hilbert space. For every x in M
the projectivized state it maps to is what is called a Rawnsley coherent state.

Remark 8. Recall that the ∆q’s are evaluation maps on the space of smooth
square integrable functions (where q is the element one on the fiber above π(q)
corresponding to the global trivialization). Suppose sn is a sequence of smooth
sections (in our case functions) converging in L2 norm to s, then sn will converge
pointwise to a function s

′
. Because of the continuous extension of ∆q (which is just

the evaluation for the q we have chosen) we have s
′
(π(q)) = ∆̃q(s). Now since L2

convergence implies pointwise convergence of a subsequence outside a set of zero
measure, sn converge to s

′
in L2.

Though L2 space are not evaluative we can choose the function s
′

as a represen-
tative, i.e., the function s

′
(π(q)) = ∆̃q(s) where q is again the element one on the

fiber above π(q) with respect to the global trivialization, ∆̃q is the extension of ∆q,
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s is an element of L2 lying in completion and s
′

a representative of s described as
above. Hence taking these special s

′
we get an evaluation of elements of the com-

pletion. For defining coherent states, the particular choice of q does not matter,
since any two choices of q will differ by multiplication by a constant.

Since we have a trivial bundle the smooth sections are functions and from above
the Hilbert space H also consists of evaluative functions so that the inner product
with Rawnsley coherent vectors for the special q at x is just the evaluation of the
function at x. Now take an orthonormal basis of H, φi with i ∈ I for some index
set I . Then the dot product of φi with a function fx (denoting the coherent state
which evaluates at x) is φi(x). So the coherent state at x is represented by the
vector be fx =

∑
i∈I φi(x)φi.

7.2. Coherent States from Group Actions and the Relation to Rawnsley
Coherent States

Given the unitaryG action on the Hilbert space of sections, states of the formGψ0,
where ψ0 is the “vacuum” state, are also called coherent states.

Consider a generic section s of the bundle L on the manifold (coadjoint orbit in
our case) which is nonzero outside a set of zero measure. Let the set on which it
is nonzero be called U . Let x ∈ U , then s(x) ∈ L0 and so we can have es(x). So
from above we have

(es(x), s1) =
s1(x)

s(x)
· (23)

For any smooth section s1 in the Hilbert space. Now take es(x) and let g ∈ G act
on it. For ges(x) to be a Rawnsley’s coherent vector a good guess for its value will
be cegs(x). So we have

(ges(x), s1) = c
s1(gx)

s(gx)
(24)

but by unitarity of the action

(ges(x), s1) = (es(x), g
−1s1) =

g−1s1(x)

s(x)
· (25)

So by the above equations, for the two notions to agree, we should have

c
s1(gx)

s(gx)
=
g−1s1(x)

s(x)
· (26)

In general the coherent states obtained from group action may not be the same as
Rawnsley coherent states. But there are cases when they are the same.
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Let G be the group of translations acting on R2n with standard symplectic form.
Further let g ∈ G act by translation by w, let x = 0 and let s1s be represented by
the function Φ(z). Then it can be seen the left hand term of the above equation
with c = 1 is Φ(w) and right hand side is Φ((z − w) = 0) which is Φ(w). So the
two kinds of coherent states are same in case of the above group action.

We have the following proposition for geometric quantization of coadjoint orbits.

Proposition 9. For Kostant-Souriau quantization of coadjoint orbits, the two no-
tions of coherent states are the same.

Proof: In this case the representation module is the space of sections and the
representation is the induced representation of a character from stabilizer of an
element of the orbit to the fiber of the orbit. In this case case the two notions of
coherent states are the same as can be seen below.

By definition of induced representation, (see Section 6.1), g−1.φ(k) = g−1.(gk, v′)
= (k, v′) where v′ is the representative of φ(gk) at gk when the section is pulled
back to G×V . Now let the element x be as described above and let Lx is the fiber
on which the character acts and let s1 = φ and k = x. So v′ = s1(gx)

s(gx) c
′ where c′

is the representative of s(gx) at gx and g−1s1(x) = v′ s(x)
c1

= s1(gx)
s(gx)

c′

c1
s(x) where

c1 is the representative of s(x) at x. Thus, g
−1s1(x)
s(x) = s1(gx)

s(gx)
c′

c1
. In the local trivi-

alization defined by s(x), one can always take c1 = c′ = 1. Thus in equation (7.4)
c = 1. �

8. Finite Dimensional Representations

We can have finite representations of the group G1

s(a1 . . . an−1) = (a1 . . . an−1)Pm(a1 . . . an−1) (27)

where Pm are polynomial in ais of degree m. It can be checked g(s(x)) =
s(g−1x) will keep the above space of sections invariant. But they are not square
integrable. When we normalize by e−

∑n−1
i=1 a

2
i we may loose unitarity. So we get

finite representations which are not necessarily unitary.

Remark 10. Normalization of volume is equivalent to changing the Hermitian
structure.

Suppose a non-zero section s locally trivializes a bundle (L,α) where α is a con-
nection in the associated line bundle L0. A Hermitian structure compatible with
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the connection is an Hermitian metric 〈〉 such that

ζ(〈s, s〉) = 〈∇ζs, s〉+ 〈s,∇ζs〉

and
〈∇ζs, s〉+ 〈s,∇ζs〉 = 2πi〈α(ζ)s, s〉 − 2πi〈s, α(ζ)s〉

where s is a section which locally trivializes the bundle.

From this we get (see Proposition 1.9.1 Kostant [3])

d〈s, s〉 = 2πi(α(s)− (α(s))).

In the case of a trivial bundle with s0 the section which gives the trivialization, if
the connection α(s0) is real, then we have d〈s0, s0〉 = 0.

Thus 〈s0, s0〉 = c, where c is a constant. Let us take c = 1.

Taking another section s = s
s0
s0 we have

〈s, s〉 = | s
s0
|
2
.

So in this setting we get a unitary character ηl and taking the volume form to be
ωn−1 (which is invariant under the group action), we get a unitary representation
on the space of square integrable sections .

In our case the polarized sections are not square integrable with ωn−1 as the vol-
ume form, but we do have a representation by virtue of the fact they are sections
and because of the polarization chosen. When we normalize the volume, we change
the Hermitian structure. However ηl may not be a compatible unitary character in
this Hermitian structure so we may not get unitary representation in general.

But in the case where we normalized by e−
∑n−1
i=1 p

2
i , we do get unitary representa-

tion.

9. The Quantum Hamiltonian of the Toda System

By substituting qi = log(ai), i = 1, ..., n − 1 and pi =
∑i

j=1 bj , i = 1, ..., n − 1
the Hamiltonian described in introduction is given by

H = 2
∑
i=1

n−1
(pi − pi−1)2 + 4

∑
i=1

n
e2qi (28)

with p0 = 0. Now quantizing pi and qi ( using the formula f̂ = ∇Xf + 2πif for
f = pi and qi respectively), we get p̂i = −i∂qi and q̂i = qi. Substituting in the
expression for the Hamiltonian H , we get
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Ĥ = −2∂q1
2 − 2

∑
i=2

n−1
(∂qi − ∂qi−1)2 + 4

∑
i=1

n−1
e2qi · (29)

Let qi = zi − zi+1 for i < n− 1 and qn−1 = zn−1.

Then
∂zi = ∂qi − ∂qi−1

for n− 1 ≥ i > 1 and

∂z1 = ∂q1, zi+1 − z1 = −
i∑

j=1

qj for n− 1 > i > 0.

Further

Ĥ = −2

n−1∑
i=1

(∂zi)
2 + 4(

n−2∑
i=1

e2(zi−zi+1) + e2zn−1). (30)

As in [2], [7], the eigenfunctions can possibly be related to Whittacker functions.
Also the spectrum needs to be found. This is work in progress.
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