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Abstract. A formulation of quantum mechanics on spaces of constant curvature

is studied by quantizing the Noether momenta and using these to form the quantum

Hamiltonian. This approach gives the opportunity of studying a superintegrable

quantum system. It is shown there are three different ways of obtaining a Hilbert

space of common eigenstates. Three different orthogonal coordinate systems are

determined, one for each case. It is shown how the Schrödinger equation can be

rendered separable in each of the cases.
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1. Introduction

The study of a quantum free particle in Euclidean space leads to the straightforward

conclusion that the solutions are plane-wave states that are in fact eigenfunctions

of the linear momentum operator. Plane waves are therefore simultaneous eigen-

functions of energy and linear momentum. As soon as the problem is thought of in

a space with curvature, the analysis becomes much more complicated [11, 14, 15].

First of all, the canonical momenta do not in general coincide with the Noether

momenta. Secondly, the Noether momenta do not Poisson commute classically,

so the corresponding self-adjoint quantum operators do not commute. A plane-

wave is more of a Euclidean concept, and its meaning needs to be clarified in a

curved space. The approach taken here is mainly suited for discussing questions

which arise in applications of nonrelativistic quantum mechanics. For example,

a two-dimensional application of quantum mechanics arises in condensed matter

physics. This is the existence of Landau levels for the motion of a charged particle

under perpendicular magnetic fields. This problem and its application to the quan-

tum Hall effect has been studied before in the case of non-Euclidean geometries.
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There has been a renewed interest in submanifold quantum mechanics, especially

with regard to applications of quantum motion on a submanifold under the gen-

eralized Dirac theory of second-class constraints [10, 16]. In [12], an algebraic

definition of submanifold quantum mechanics is given, which is free from any ap-

proximation theories. The essentials of submanifold quantum mechanics is given

from an algebraic point of view. An extensive discussion of the area of quantiza-

tion on curved manifolds appears in [13]. Here one particular curvature dependent

approach will be introduced and a quantization is utilized which results in a sepa-

rable Schrödinger equation. It is the objective to look at the mathematical structure

of the separability of this equation. This type of model has been considered previ-

ously [4, 7], and after some classical aspects of the model are presented [1, 9], the

superintegrability of the model not touched on in [2, 3] is investigated in detail.

Curvature is introduced as a constant parameter in the metric to describe the space

in such a way that, for different sign choices, one of the following three spaces

(S2
κ,R

2, H2
κ) of constant curvature κ is obtained. Spherical dynamics results when

κ > 0 and hyperbolic dynamics holds in the case κ < 0, so the case κ = 0 is

Euclidean space. These spaces can be collectively referred to as the manifold M 2
κ .

In fact, this approach can be initiated in a way that makes calculation practical by

defining the metric to have a certain structure. The main intent is to investigate

closely a method under which the quantization of the system can be done in gen-

eral and then to take a close look at the separability of the resulting Schrödinger

equation. It is interesting to find in this approach that there are three different

sets of compatible observables, and therefore, three different ways of obtaining a

Hilbert space of common eigenstates. Three different orthogonal coordinate sys-

tems will be determined explicitly in each of the three cases. The separation of the

Schrödinger equation is carried out in detail for each one. It should be quite clear

at each step what is occurring with regard to the physics of the problem. In fact, it

will be shown that multiple separability can be demonstrated and the existence of

multiple separability is a property which is directly related with what has come to

be known as the superintegrability of a system.

2. Metric and Noether Symmetries

The manifold M2
κ is given the following metric

g =
1

1− κr2
((1−κy2) dx⊗dx+(1−κx2) dy⊗dy+κxy dx⊗dy+κxy dy⊗dx).

(1)
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The tensor g in (1) can also be put in the form

g =
1

1− κr2
(dx⊗ dx+ dy ⊗ dy − κ(x dy − y dx)2), r2 = x2 + y2. (2)

Define a vector field X on M 2
κ in terms of functions f and g as

X = f(x, y)
∂

∂x
+ h(x, y)

∂

∂y
· (3)

The unknown functions f and h will be determined such that the Lie derivative of

metric g with respect to X vanishes

LXg = 0. (4)

The like terms in (4) are collected together and (4) will be satisfied provided that

each of the tensor coefficients vanishes. This yields a system of three independent

partial differential equations in terms of the functions in X .

Proposition 1. The Lie derivative of metric (1) vanishes if and only if the following
system of coupled partial differential equations for f and h is satisfied

(f
∂

∂x
+ h

∂

∂y
)(
1− κy2

1− κr2
) + 2

1− κy2

1− κr2
∂f

∂x
+ 2

κxy

1− κr2
∂h

∂x
= 0

1− κy2

1− κr2
∂f

∂y
+
1− κx2

1− κr2
∂h

∂x
+

κxy

1− κr2
(
∂f

∂x
+
∂h

∂y
)+(f

∂

∂x
+h

∂

∂y
)

κxy

1− κr2
= 0 (5)

(f
∂

∂x
+ h

∂

∂y
)
1− κx2

1− κr2
+ 2

1− κx2

1− κr2
∂h

∂y
+ 2

κxy

1− κr2
∂f

∂y
= 0.

Moreover, there exists a general solution to (5) for the functions f and h which is

f(x, y) = C2y + C1

√
1− κr2, h(x, y) = −C2x+ C3

√
1− κr2.

A single solution will suffice, so the arbitrary constants can be selected to be

(C1, C2, C3)= (−1, 0, 0), (0, 0, 1), (0,−1, 0). A particular solution for the three

independent vector fields Xj is then given by

X1(κ) = −
√
1− κr2

∂

∂x
, X2(κ) =

√
1− κr2

∂

∂y
, Xj = x

∂

∂y
− y

∂

∂x
· (6)

By means of long calculation aided by the use of symbolic manipulation [8], it can

be verified that the commutator brackets of the vector fields in (6) satisfy

[X1(κ), X2(κ)] = κXJ , [X1(κ), XJ ] = −X2(κ), [X2(κ), XJ ] = X1(κ).
(7)
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The Lie algebra corresponding to the brackets closes according to the sign of the

curvature κ as the Lie algebra of isometries of spherical, Euclidean and hyperbolic

spaces.

From the physical point of view, the geodesic motion on M 2
κ is determined by a La-

grangian L which consists of a κ-dependent kinetic term T (κ) without a potential

term

L(κ) =
1

2

1

1− κr2
(v2x + v2y − κ(xvy − yvx)

2) (8)

and the parameter κ may take on both positive and negative values. In the spherical

case, when κ > 0, the function and associated dynamics has a singularity at 1 −
κr2 = 0. In this event, the study of the dynamics is restricted to r2 < 1/κ so

that the kinetic energy function is positive definite. This free-particle Lagrangian

is invariant under the action of the three vector fields (6) in the sense that if X t
j ,

j = 1, 2, 3 denotes the natural lift to the tangent bundle or phase space of vector

field Xj , the Lie derivative of L(κ) with respect to X t
j will vanish.

A Lagrangian for the problem is naturally defined by means of the metric (1)

L(κ) =
1

2
gijv

ivj .

The momenta px, py are obtained by differentiation of the Lagrangian

px =
1

1− κr2
(vx+κ(xvy−yvx)y), py =

1

1− κr2
(vy−κ(xvy−yvx)x). (9)

Solving for vx, vy from (9), we get

vx = (1− κx2)px − κxypy, vy = (1− κy2)py − κxypx. (10)

The Legendre transformation leads to the following expression for the κ-dependent

Hamiltonian based on the metric (1)

H =
1

2
(p2x + p2y − κ(xpx + ypy)

2) (11)

and the Noether momenta take the form

P1(κ) =
√
1− κr2 px, P2(κ) =

√
1− κr2 py, J = xpy − ypx. (12)

The quantities in (12) satisfy the following Poisson brackets

{P1(κ), P2(κ)} = κJ, {P1(κ), J} = −P2(κ), {P2(κ), J} = P1(κ). (13)

Solving (12) for px and py, the Hamiltonian (11) can be transformed into the

Noether momenta (12) as follows

H(κ) =
1

2
(P 2

1 + P 2
2 + κJ2). (14)
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In fact, H(κ) is just the Casimir for the Poisson algebra given by (13).

There is a measure on R
2 that is invariant under the action of the set of vector fields

{X1, X2, J} and up to a constant factor, it is given by

dμκ =
1

√
1− κr2

dx ∧ dy. (15)

3. Quantization of the Hamiltonian and Schrödinger Equation

The operator Hamiltonian is now defined so that it is self-adjoint in the Hilbert

space L2
κ(dμκ). To carry this out, consider the operators P̂1, P̂2 which represent

the quantum version of the Noether momenta P1, P2 in (12) that are self-adjoint in

the space L2(dμκ). They are given by

P̂1 = −i�
√
1− κr2

∂

∂x
, P̂2 = −i�

√
1− κr2

∂

∂y
· (16)

Substituting operators (16) into Hamiltonian (14), the quantum Hamiltonian Ĥ(κ)
is given as

Ĥ(κ) = −
�
2

2m

(
(1− κr2)

∂2

∂x2
− κx

∂

∂x

)
−

�
2

2m

(
(1− κr2)

∂2

∂y2
− κy

∂

∂y

)
(17)

−κ
�
2

2m

(
x2

∂2

∂y2
+ y2

∂2

∂x2
− 2xy

∂2

∂x∂y
− x

∂

∂x
− y

∂

∂y

)
.

Clearly, this Hamiltonian admits the following decomposition

Ĥ(κ) = Ĥ1 + Ĥ2 + κĴ2. (18)

and since the separability of this problem will be studied, the components of (18)

will be given explicitly

Ĥ(κ) = −
�
2

2m

(
(1− κr2)

∂2

∂x2
− κx

∂

∂x

)
(19)

Ĥ2(κ) = −
�
2

2m

(
(1− κr2)

∂2

∂y2
− κy

∂

∂y

)
(20)

Ĵ2 = −
�
2

2m

(
x2

∂2

∂y2
+ y2

∂2

∂x2
− 2xy

∂2

∂x∂y
− x

∂

∂x
− y

∂

∂y

)
. (21)

By means of computer calculation, it can be shown that the total Hamiltonian Ĥ in

(18) commutes with all of the related operators in (19)-(21) for any κ

[Ĥ(κ), Ĥ1(κ)] = 0, [Ĥ(κ), Ĥ2(κ)] = 0, [Ĥ(κ), Ĵ2] = 0. (22)
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The vanishing of these brackets means that the κ-dependent Hamiltonian Ĥ(κ)
describes a superintegrable quantum system. This property was well known in the

Euclidean case, and appears in a slightly different form in the case M 2
κ because of

the Ĵ2 term.

4. Schrödinger Equation and Its Separability

These results offer the possibility of studying separability of the eigenvalue prob-

lems which are relevant to the operators (19)-(21). The Schrödinger equation cor-

responding to (18) is

ĤΨ = EΨ. (23)

By means of the same type of calculations that produced the brackets in (8), the

operators in (19)-(21) are found to satisfy the following brackets

[Ĥ1, Ĥ2 + κĴ2] = 0, [Ĥ1 + κĴ2, Ĥ2] = 0, [Ĥ1 + Ĥ2, Ĵ
2] = 0. (24)

This justifies the earlier claim that there are three different sets of compatible

observables, hence three different ways of obtaining a Hilbert space of common

eigenstates. These three descriptions are a direct consequence of the κĴ2 term in

the kinetic part of the Hamiltonian. The metric g is not diagonal in the (x, y) coor-

dinates and Schrödinger equation (23) is not separable in these due to this κ-term.

However, the classical Hamilton-Jacobi equation, which is(
∂S

∂x

)2

+

(
∂S

∂y

)2

− κ

(
x
∂S

∂x
+ y

∂S

∂y

)2

= 0 (25)

and the quantum Schrödinger equation are separable in three different orthogonal

coordinate systems. It is the purpose here to show how these coordinate systems

can be determined explicitly. and to give a well-defined procedure for diagonal-

izing these operators. Before looking at each of the three cases, let us obtain a

general transformation by first considering the pair of differentiable functions

x = s(r, ϕ), y = t(r, ϕ). (26)

By means of the chain rule, the basis {∂r, ∂ϕ} can be expressed in terms of the set

{∂x, ∂y}, and by solving, {∂x, ∂y} can be expressed in terms of {∂r, ∂ϕ} as well

∂

∂x
=

1

W

(
∂t

∂r

∂

∂ϕ
−

∂t

∂ϕ

∂

∂r

)
,

∂

∂y
=

1

W

(
∂s

∂ϕ

∂

∂r
−

∂s

∂r

∂

∂ϕ

)
(27)

where

W =
∂s

∂ϕ

∂t

∂r
−

∂s

∂r

∂t

∂ϕ
·
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Let us go through each of the three cases presented in (24) in detail.

Case 1. The first problem to be studied is [Ĥ1, Ĥ2 + κĴ2] = 0. The objective

in specifying the functions in (26) more explicitly is to eliminate from Ĥ1 and

Ĥ2 + κĴ2 all mixed partial derivatives in transforming between the (x, y) and

(r, ϕ) systems. Denote for convenience by H̃2 and J̃ the operators in x and y but

omitting the physical constants in front

H̃2 = (1− κr2)
∂2

∂y2
− κy

∂

∂y
, J̃ = x

∂

∂y
− y

∂

∂x
, r2 = x2 + y2. (28)

The operator H̃2 + κJ̃2 is formed from the operators in (28). It is now required

to obtain a transformation of coordinates (26) such that no mixed derivatives occur

in the transformed operator. By a long calculation, it is found that an appropriate

transformation can be obtained in the form

x = s(r, ϕ) = r cosϕ, y = t(r, ϕ) =
1
√
κ
sinϕ. (29)

By direct calculation as well, the operator H̃2 + κJ̃2 is transformed into

H̃2 + κJ̃2 = tan2ϕ

(
(1− κr2)

∂2

∂r2
− κr

∂

∂r

)
+ κ(

∂2

∂ϕ2
− tanϕ

∂

∂ϕ
). (30)

Since y in (29) is proportional to sinϕ and r does not appear, (30) can be returned

to the y-variable by first introducing the new variable zx which is related to x and

defined as

zx = r =
x√

1− sin2 ϕ
=

x√
1− κy2

· (31)

To go from ϕ back to the y-variable, the following relations are required for the

derivatives

x

y
=

√
κr cotϕ, cot2 ϕ =

x2

κr2y2
=

1− κy2

κy2
, sinϕ =

√
κy.

Then the ϕ-derivatives can be expressed as follows

∂

∂ϕ
=

√
1− κy2
√
κ

∂

∂y
,

∂2

∂ϕ2
=

1

κ
(1− κy2)

∂2

∂y2
− y

∂

∂y
·

Substituting these results into the operators H̃1 and H̃2 + κJ̃2, it is found that

cH̃1 = (1− κz2x)
∂2

∂z2x
− κzx

∂

∂zx
(32)

H̃2 + κJ̃2 =
κy2

1− κy2

(
(1− κz2x)

∂2

∂z2x
− κzx

∂

∂zx

)
+ (1− κy2)

∂2

∂y2
− 2κy

∂

∂y
·
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Clearly, the problem has decoupled in the (zx, y) variables. In fact, substituting

H̃1 in (32) into the second operator, it takes the form

H̃2 + κJ̃2 =
κy2

1− κy2
H̃1 +

(
(1− κy2)

∂2

∂y2
− 2κy

∂

∂y

)
. (33)

These calculations show that the κ-dependent Schrödinger equation is in fact sepa-

rable in these new coordinates, and this two-dimensional problem has been decou-

pled into two one-dimensional problems. Since

Ĥ1 = −
�
2

2m
H̃1

the Schrödinger equation

Ĥ1Ψ = E1Ψ (34)

for the first partial Hamiltonian Ĥ1 leads to the following equation with zx deriva-

tives

(1− κz2x)Ψzxzx − κzxΨzx + μΨ = 0, μ =
2m

�2
E1. (35)

Substituting (34) into (33), the Schrödinger equation for the second partial Hamil-

tonian leads to the μ-dependent equation with y-derivatives

−
κy2

1− κy2
(μΨ) + (1− κy2)Ψyy − (2κy)Ψy + νΨ = 0, ν =

2m

�2
E2j . (36)

Now the function Ψ(zx, y) can be taken in the form

Ψ(zx, y) = Z(zx)Y (y). (37)

Then the pair of equations (35) and (36) separate and simplify to the following

form
(1− κz2x)Zzxzx − κzxZzx + μZ = 0

(1− κy2)Yyy − 2κyYy − μκ
y2

1− κy2
Y + νY = 0.

(38)

Case 2. The second class is closely related to the first, and proceeds along exactly

the same lines and is concerned with the observables [Ĥ2, Ĥ1 + κĴ2] = 0. A

transformation of the form (26) is given as

x = s(r, ϕ) =
1
√
κ
cosϕ, y = t(r, ϕ) = r sinϕ. (39)

Then by direct calculation, the operator H̃1 + κJ̃2 ends in the form

H̃1 + κJ̃2 = cot2 ϕ

(
(1− κr2)

∂2

∂r2
− κr

∂

∂r

)
+ κ

(
∂2

∂ϕ2
+ cotϕ

∂

∂ϕ

)
. (40)
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Since x is proportional to cosϕ, (40) can be written in terms of the variable x by

introducing the new variable zy defined by

zy = r =
y√

1− cos2 ϕ
=

y
√
1− κx2

· (41)

Then it follows that

y

x
=

√
κrtanϕ, tan2ϕ =

y2

κx2r2
=

1− κx2

κx
, cosϕ =

√
κx.

The derivatives in ϕ transform as

∂

∂ϕ
= −

√
1− κx2
√
κ

∂

∂x
,

∂2

∂ϕ2
=

1

κ
(1− κx2)

∂2

∂x2
− x

∂

∂x
· (42)

Substituting these results into (40), it is found that

H̃1 + κJ̃2 =
κx2

1− κx2

(
(1− κz2y)

∂2

∂z2y
− κzy

∂

∂zy

)
+ (1− κx2)

∂2

∂x2
− 2κx

∂

∂x
·

(43)

Then the Hamiltonian Ĥ2 is given by

Ĥ2 = −
�
2

2m
H̃2, H̃2 = (1− κz2y)

∂2

∂z2y
− κzy

∂

∂zy
· (44)

The Schrödinger equation decouples in the new (x, zy) variables. The operator

H̃1 + κJ̃2 takes the following form

H̃1 + κJ̃2 =
κx2

1− κx2
H̃2 +

(
(1− κx2)

∂2

∂x2
− 2κx

∂

∂x

)
. (45)

The κ-dependent Schrödinger equation is in fact separable in these new coordi-

nates, and again, the two-dimensional problem has been decoupled into two one-

dimensional systems.

The equation Ĥ2Ψ = E2Ψ for the partial Hamiltonian Ĥ2 leads to the following

equation with derivatives in the variable zy

(1− κz2y)Ψzyzy − κzyΨzy + μΨ = 0, μ =
2m

�2
E2. (46)

The Schrödinger equation (Ĥ1 + κĴ2)Ψ = E1jΨ for the first partial Hamiltonian

leads to the following μ-dependent equation in the x derivatives

−
κx2

1− κx2
(μΨ)+

(
(1− κx2)Ψxx − 2κxΨx

)
+ νΨ = 0, ν =

2m

�2
E1j . (47)
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Suppose the wave function is written in separable form as

Ψ(x, zy) = X(x)Z(zy) (48)

the pair of equations in Z and X simplify to the following forms

(1− κz2y)Zzyzy − κzyZzy + μZ = 0

(1− κx2)Xxx − 2κxXx − κμ(
x2

1− κx2
)X + νX = 0.

(49)

Note that the (Z, Y ) equations in Case 1 are identical to the (Z,X) equations in

Case 2 after a minor relabelling.

Case 3. The third case can also be examined by means of the same type of trans-

formation. In fact, usual polar coordinates in (26) will suffice

x = r cosϕ, y = r sinϕ. (50)

Since the operators Ĥ1 and Ĥ2 can be expressed in the (x, y) system as

H̃1 = (1− κr2)
∂2

∂x2
− κx

∂

∂x
, H̃2 = (1− κr2)

∂2

∂y2
− κy

∂

∂y
· (51)

Transforming the sum H̃1 + H̃2 into polar coordinates, it is found that

H̃1 + H̃2 = (1− κr2)(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂ϕ2
). (52)

It follows then that this system is described by the following pair of equations

(Ĥ1 + Ĥ2)Ψ = μ12Ψ, Ĵ2Ψ = νjΨ. (53)

where μ12 and νj are defined to be

μ12 = −
2m

�
E12, νj = −

2m

�2
Ej . (54)

In terms of differential operators, (53) assumes the form

(1− κr2)(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂ϕ2
)Ψ = μ12Ψ,

∂2Ψ

∂ϕ2
= νjΨ. (55)

An equation with only r derivatives can be obtained by putting the second equation

in (55) into the first. If it is then assumed that Ψ(r, ϕ) separates into the form

Ψ(r, ϕ) = R(r)U(ϕ) (56)

then the pair of equations in (55) takes the form

(1− κr2)(
∂2

∂r2
+

1

r

∂

∂r
)R(r) +

1

r2
(1− κr2)νjR(r) = μ12R(r)

(57)
∂2A(ϕ)

∂ϕ2
= νjA(ϕ).
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5. Resolution of Equations

Considerable effort could now be expended in studying the differential equations

which have resulted from this analysis, however, this will not be carried out here.

Since the equations obtained in the first two cases are identical up to a change

of notation, only an overview of what can be done in these two cases when κ is

negative will be presented.

First, consider the equation for Z in the hyperbolic region. Suppose a negative

value for κ is assumed so that κ = −|κ| < 0. Then the equation for Z takes the

form

(1 + |κ|z2x)Zzxzx + |κ|zxZzx + μZ = 0. (58)

Since zx → x as κ → 0, a form of Z that goes into a plane wave may be assumed

which has the form

Z = eiu(zx) (59)

where u(zx) is an unknown function to be determined. Substituting (59) into (58),

the following equation is obtained

(1 + |κ|z2x)uzxzx + i(1 + |κ|z2x)u
2
zx + κzxuzx − iμ = 0. (60)

There exists a solution to this equation of the form

u(zx) =

√
μ

|κ|
arcsinh(

√
|κ|zx). (61)

This is a well-defined function for all values of the variable zx and there are no

natural restrictions on the domain of zx. Since κ → 0 corresponds to the Euclidean

limit, and zx → x, the solution (61) satisfies the appropriate Euclidean limit

lim
κ→0

Z(zx) = Aeikxx +Be−ikxx.

This solution can be thought of as representing a κ-dependent hyperbolic deforma-

tion of the Euclidean plane wave solution.

The equations for Y and X have the same structure. Hence, it suffices to consider

the Y equation, which assumes the form

(1 + |κ|y2)Yyy + 2|κ|yYy + μ|κ|
y2

1 + |κ|y2
Y + νY = 0. (62)

A hypergeometric equation can be obtained from (62), but to do so, the following

factorization must be considered

Y (y) = p(y)(1 + |κ|y2)g/2. (63)
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Substituting (63) into (62), this leads to the constraint g2|κ| + μ = 0, hence g is

complex

g = i

√
μ

|κ|
= igκ.

This implies that a complex hypergeometric equation should result. Assuming the

complex factorization

Y (y) = P (y)(1 + |κ|y2)igκ/2, P (y) = p1(y) + ip2(y) (64)

then substituting Y (y) in (64) into (62), it is found that P (y) satisfies the following

equation

(1 + |κ|y2)Pyy + 2|κ|(1 + igκ)yPy + (ν + i|κ|gκ)P = 0. (65)

Equation (65) is a complex hypergeometric equation. Substituting the complex

form for P (y) in (64) into (65), it is easy to see that (65) can be expressed as a

system of two coupled real equations

(1 + |κ|y2)p1,yy + 2|κ|yp1,y + νp1 = |κ|gκ(2yp2,y + p2)

(66)
(1 + |κ|y2)p2,yy + 2|κ|yp2,y + νp2 = −|κ|gκ(2yp1,y + p1).

Both equations (62) and (65) satisfy the correct Euclidean limit, and each of them

could be solved by power series solution. In fact, there are no polynomial solutions

for real values of the quantum number ν. Consequently, the eigenvalues ν can take

on any positive value, and the spectrum for the energy is continuous, as in the

Euclidean case. In the hypergeometric case, both functions Y (y) and Z(zx) turn

out to be non-normalizable functions, so the hyperbolic case can be thought of as

more similar to the Euclidean case, rather than the spherical κ > 0 case.
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