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A RELATION BETWEEN THE CYLINDRIC FLUID MEMBRANES
AND THE MOTIONS OF PLANAR CURVES
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Presented by Ivaïlo M. Mladenov

Abstract. We observe a relation between the mKdV equation and the cylindrical

equilibrium shapes of fluid membranes. In our setup mKdV arises from the study

of the evolution of planar curves.

1. Introduction

The goal of this paper is to unify and extend the results presented in [5] and [8]. It

also shows a connection between two problems that appear unrelated.

The first problem comes from the study of equilibrium shapes of fluid membranes.

One starts with a functional proposed by Helfrich (see [2], [8]) and studies the

corresponding Euler-Lagrange equation. The equilibrium shapes are given as the

extremals of the functional

F =
kc
2

∫
S

(2H + Ih)2dA+ kG

∫
S

KdA+ λ

∫
S

dA+ p

∫
dV. (1)

Notice that F is closely related to the Willmore energy functional. The Euler-

Lagrange equation associated with F is as follows

2kcΔSH + kc(2H + Ih)(2H2 − IhH − 2K)− 2λH + p = 0. (2)

Here H and K are the mean and Gauss curvatures respectively, kc and kG - bend-

ing and Gaussian constant rigidity of the membrane, Ih is spontaneous curvature

constant, p and λ - Lagrange multipliers corresponding to fixed volume and total

membrane area and ΔS is the surface Laplacian on the interface of the membrane.

The nature of this equation is complex as it involves the surface Laplacian of the

mean curvature which makes it a fourth-order non-linear PDE. However, as al-

ways, the symmetry of the problem reduces the equation and in the special case of

cylindrical membranes it becomes the ordinary differential equation

2
d2κ

ds2
+ κ3 − μκ− σ = 0. (3)
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Here κ = κ(s) is a curvature of a planar curve and σ, μ are physical parameters,

more precisely

μ = Ih2 +
2λ

kc
, σ = −

2p

kc
·

This curve is the directrix of the cylindrical fluid membrane we look at. The equa-

tion (3) can be integrated once and we get(
dκ

ds

)2

= P (κ) (4)

where P (κ) is a fourth degree polynomial in κ with zero cubic term. The above

equation is solved for all cases of interest depending on the roots of P (κ) in [8].

Obviously, the roots add up to zero.

The key observation in the present paper is that (4) appears in the study of the

motion of curves in the plane and the modified KdV (mKdV) equation. In [6] the

soliton approach gives the dynamics of the curvature of an elastic rod, which yields

the mKdV hierarchy while [5] focuses on general motion of a planar curve, which

gives raise to the same considerations presented in [6]. Following [6] we consider

the general evolution of a curve in the plane, which is given by

dx

ds
= Ut+Wn

where x = x(s, t) is the position vector in the plane, nandt are the unit normal

and the unit tangent to the curve at given time t and U,W are certain velocities that

are determined by the curvature of the curve. The evolution of the curvature itself

is given and derived by the equation

∂κ

∂t
=

∂2W

∂s2
+ κ2W +

∂κ

∂s

∫
kWds ≡ RW. (5)

These considerations for the evolution of the curvature yield the mKdV equation

(see [5], [6], [7]) yeld
∂κ

∂t
−

∂3κ

∂s3
−

3

2
κ2

∂κ

∂s
= 0. (6)

We get the mKdV by setting W to be ∂κ
∂s

assuming that κ(s, t) is the curvature of

the members of a family of evolving planar curves.

Setting κ = κ(s − λt), we get immediately an ODE, which after two integrations

becomes (4). Therefore the ODE version of (6) is the same as the symmetric ver-

sion of the Euler-Lagrange equation for the elastic membranes. Some preliminary

calculations for the most simple cases of the roots of P (κ) are presented in [5].
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Here we will carry out the calculations in all relevant cases. From [8] or [7] we get

formulas to represent the solutions and in the main section of this paper we will

derive the analytical solutions of (4) in order to get all planar motions of the family

of evolving curves. The relation between the Gardner equation and the traveling

wave solutions of the mKdV curve flow is studied in [7]. This is an evidence that

a relation of this nature appears frequently.

In addition to the computations done here we also show the phase portrait for all

relevant cases for the roots of P (κ) which presents an interest of its own. For

example phase portraits are also shown in [1]. Both the computations and the

pictures presented in this paper are done by using Maple 8 software. Some flow

animation for the solutions of the mKdV equation was also done but naturally it

cannot be presented here.

Another important observation regarding this paper is that it also hints a relation

between the objects described above and the so called Euler elastica, where the

energy of the configuration in question is again given as the integral of the curvature

squared (see [10]).

2. Main Results

In this section we will present our main results. There are exactly three relevant

cases deserving consideration, depending on the roots of the polynomial P (κ). We

work in the case σ �= 0 (it can be done in the zero case too) and we use a formula

from [8], namely

x(s) =
2

σ

dκ(s)

ds
cos θ(s) +

1

σ
(κ2(s)− μ) sin θ(s)

z(s) =
2

σ

dκ(s)

ds
sin θ(s)−

1

σ
(κ2(s)− μ) cos θ(s).

(7)

Therefore we need the angle of inclination and curvature (also given in [8]).

Case 1. In the following calculations we assume that P (κ) has two real roots

α < β and a pair of complex roots γ, γ̄ which obey to (3α + β)(α + 3β) �= 0.

The roots must add up to zero. This is the case treated in [8], namely in the first

part of Theorem 1. Assuming σ �= 0 (one can do it for σ = 0 too but we need

to use different set of formulae from [8]) we get the angle on inclination and the

curvature in terms of the Jacobian elliptic functions as follows

κ1(s) =
Aβ +Bα− (Aβ −Bα) cn (us, k)

A+B − (A−B) cn (us, k)
(8)
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θ1(s) =
(Aβ −Bα) s

A−B
+

(A+B) (−β + α)

2u (A−B)
Π

(
sn (us, k) ,−

(A−B)2

4BA
, k

)
(9)

+
α− β

u

√
4 k2 + (A−B)2

BA

arctan

⎛⎝√k2 +
(A−B)2

4BA

sn (us, k)

dn (us, k)

⎞⎠ .

We use standard notation: sn(x, k), cn(x, k), dn(x, k) and Π(sn(x, k), n, k) are

the Jacobian elliptic functions and the elliptic integral of the third kind with elliptic

modulus k (one may look for details at [3]). It is convenient to introduce

A =
√
4η2 + (3α+ β)2, B =

√
4η2 + (α+ 3β)2, u = 1/4

√
AB

with η being the imaginary part of γ. Also, k is defined as

k =
1
√
2

√
1−

4 η2 + (3α+ β) (α+ 3β)

(4 η2 + (3α+ β) (α+ 3β))2 + 16 η2 (β − α)2
· (10)

Let us set

λ =

√
4 k2 +

(A−B)2

BA

sñ(s) = sn(us, k), cñ(s) = cn(us, k), dñ(s) = dn(us, k)

and

Π̃(s) = Π

(
sñ(s),−

(A−B)2

4BA
, k

)
·

Using this notation we compute the profile curve from (7). Let us set the derivative

and the square of the curvature to be respectively

A1 =
(Aβ −Bα)udñ(s)sñ(s)

A+B − (A−B) cñ(s)

−
(Aβ +Bα− (Aβ −Bα) cñ(s))u (A−B) dñ(s)sñ(s)

(A+B − (A−B) cñ(s))2
(11)

B1 =
(Aβ +Bα− (Aβ −Bα)cñ(s))2

(A+B − (A−B)cñ(s))2
·

Then we get the representation of the solution curve

x1(s) =
2

σ
A1 cos(θ1) +

1

σ
(B1 − μ) sin(θ1)

z1(s) =
2

σ
A1 sin(θ1)−

1

σ
(B1 − μ) cos(θ1).

(12)
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Figure 1. Solution curve (left) and phase portrait (right) for α = 0, β = 2,

γ = −1− i.

Here is an example. Pick A =
√
8, B =

√
40, α = 0, β = 2, u =

√√
320 and

m =
√
190/20. These values (A, B, etc.) are obtained by picking γ = −1− i and

γ̄ = −1 + i. Notice that the condition α + β + γ + γ̄ = 0 is fulfilled, which was

necessary. The solution curve and the phase portrait corresponding to the above

example are depicted in Fig. 1. On the left is given the curve (x1(s), z1(s)) and on

the right is (κ1(s),
dκ1(s)
ds ).

Case 2. Next is the easiest case described in ([8], second part of Theorem 1). Here

the polynomial P (κ) has two real roots α < β and a pair of complex roots γ, γ̄
with (3α + β)(α + 3β) = 0. Let ξ = α if 3α + β = 0 and ξ = β otherwise.

Again we need the roots to sum up to zero. These two conditions actually imply

that σ �= 0. Now one has the following expressions for the curvature and the angle

κ2(s) = ξ − 4
ξ

1 + ξ2s2
, θ2(s) = ξ s− 4 arctan (ξ s) . (13)

Because σ �= 0 and following [8] we get the following representation for the direc-

trix using (7)

x2(s) =
2

σ
A2 cos(θ2) +

1

σ
(B2 − μ) sin(θ2)

z2(s) =
2

σ
A2 sin(θ2)−

2

σ
(B2 − μ) cos(θ2)

(14)

where

A2 = 16
ξ3s cos (ξ s− 4 arctan (ξ s))

σ (1 + ξ2s2)2

B2 =

(
ξ − 4

ξ

1 + ξ2s2

)2

.

(15)
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Figure 2. Solution curve (left) and the phase portrait (right) for α = γ = γ̄
= −1 and β = 3.

For example if the roots are {−1,−1,−1, 3} we have ξ = −1, μ = 3 and σ = 2
and we get the directrix depicted in Fig. 2. We get the flow corresponding to this

case if we substitute s− ct for s in (14). One can also get the phase portrait of this

case (see Fig. 2, right part).

Case 3. In the last case we will consider the polynomial P (κ) with four real roots

α < β < γ < δ. One possible solution (i.e., the curvature, angle and coordinate

functions for the directrix) is given below. The other one is described in [8] and

has very similar structure. For that one we will only give the angle and curvature

as is given in [8]. Again a phase portrait is given for a particular choice of values

for the roots of P (κ).

Let

p =
(γ − α)(δ − β)

4
, q =

√
(β − α)(δ − γ)

(γ − α)(δ − β)

cn̂(s) = cn (ps, q) , dn̂(s) = dn (ps, q) , sn̂(s) = sn (ps, q) .

Using this notation we get the two curvatures and the two angles corresponding to

this case

κ3(s) = δ − (δ − α) (δ − β)
(
δ − β + (β − α) sn̂2(s)

)−1
(16)

θ3(s) = δs− 4Π

(
sn̂(s),

β − α

β − δ
, q

)
(δ − α)(γ − α)−1/2(δ − β)−1/2 (17)

κ4(s) = β + (γ − β) (δ − β)
(
δ − β − (δ − γ) sn̂2(s)

)−1
(18)

θ4(s) = βs− 4Π

(
sn̂(s),

δ − γ

δ − β
, q

)
(β − γ)(γ − α)−1/2(δ − β)−1/2. (19)
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Figure 3. Solution curve (left) and phase portrait (right) for α=−4, β = −2,
γ = 0 and δ = 6.

Now, we apply again formula (7) for the solution curve to obtain x3(s) and z3(s).
Similarly one can get formula corresponding to κ4(s) and θ4(s). Again we assume

that σ �= 0. As in the previous cases we will set up two quantities A3 and B3.

A3 =
(δ − α) (δ − β)3/2 (γ − α)1/2 (β − α)(

δ − β + (β − α) sn̂2(s)
)2 sn̂(s)cn̂(s)dn̂(s)

B3 =
(
δ − (δ − α) (δ − β)

(
δ − β + (β − α) sn̂2(s)

)−1
)2

.

(20)

Lastly, we get the formulae for the profile curve in this case

x3(s) =
2

σ
A3 cos(θ3) +

1

σ
(B3 − μ) sin(θ3)

z3(s) =
2

σ
A3 sin(θ3)−

1

σ
(B3 − μ) cos(θ3).

(21)

One can get the solution curves corresponding to κ4(s), θ4(s) in a similar fashion

by plugging them into (7). Let us give an example in this case as well. Figure 3

represents the solution curve and the phase portrait for the case where P (κ) has

roots {−4,−2, 0, 6}. As in all presented cases we can substitute s with s − λt to

get the motion in the plane, which is described in [5]. Therefore we describe all

possible motions which come from the mKdV equation with x = s − λt. This is

an improvement of results [5] because we get analytical solutions for all possible

choices for the roots of P (κ).

In conclusion we want to summarize the above results. We establish a relation

between equilibrium shapes of fluid membranes and the traveling wave solutions
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of the mKdV equation. Both problems lead to the same ordinary differential equa-

tion. We present the solutions in analytical form for all relevant cases. Our con-

siderations unify and extend the work done in [5] and [8]. We also present the

corresponding phase portraits.

3. Further Developments

Let us try to generalize the ideas in the present paper for non-cylindrical surfaces

immersed in R
3. For simplicity instead of the Helfrich energy functional FS , we

use the Willmore functional for an immersed surface (smooth and orientable) S ⊂
R
3

WS ≡

∫
S

(H2 −K)dA =
1

4

∫
S

(κ1 − κ2)
2dA (22)

where κ1, κ2 are the principle curvatures of S and H = 1/2(κ1+κ2), K = κ1κ2.

Here we think of S as map from some two-dimensional manifold M into R
3.

The Euler-Lagrange equation for this energy functional is well known (e.g. see [9])

and is as follows

ΔSH + 2(H2 −K)H = 0 (23)

where ΔS is the Laplace-Beltrami operator on the surface S.

SettingMS ≡ ΔS +2(H2−K) = ΔS + (κ1−κ2)2

2 , equation (23) transforms into

MSH = 0. (24)

Now we give the definition of flow associated to WS . Let {S(t) ; t ≥ 0} be a

family of surfaces immersed in R
3. The Willmore flow is defined to be

∂S

∂t
=MS(t)Hξ (25)

where ξ(t) is the unit normal vector to S(t). Critical points for (25) are surfaces

solving (24). We will mention equation (25) later on.

In this paper we were looking at evolution of planar curves to relate it to a Willmore

type functional. To generalize, naturally we want to consider evolution of surfaces

immersed in R
3. The most studied one is the mean curvature flow. There is an

abundance of literature on the subject, for example one can look up [11]. Using

the above notation it is given by

∂S

∂t
= Hξ. (26)
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If we want to look for surfaces where the mean curvature has critical value we need

a formula for the evolution of H under this flow. We have the following result at

our disposal (see [11])

∂H

∂t
= ΔS(t)H + |A|2H ≡ LS(t)H. (27)

Here |A|2 = κ21 + κ22 is the norm of the second fundamental form on S(t). The

operator LS is the Jacobi operator coming from the second variation formula for

the area of S(t). This Jacobi operator appears in various setups, for example the

first author made use of it for problems in capillarity theory (see [4]). Looking for

critical points for the mean curvature we get

LS(t)H = 0. (28)

Note that for cylindrical surfaces equations (24) and (28) are identical up to a factor

of two. The above discussion suggests that we look for a another flow to describe

the general case. The condition we will would like to require on the flow is as

follows
∂H

∂t
=MS(t)H. (29)

In our view there are two natural candidates. Obviously, the first one to consider is

the Willmore flow (25). We need the compute the evolution of curvature to see if

it fits condition (29). Another candidate is hinted by the relation we have with the

mKdV equation. There we had an evolution of planar curves with normal velocity

equal to the derivative of curvature with respect to arc length. Therefore we can

consider the following flow
∂S

∂t
= Hνξ. (30)

Here Hν =<∇S(t)H, ξ>, where ∇S is the surface gradient. Again ∂H/∂t needs

to be computed to see if it resembles (29).

The above discussion also hints it might be worth studying evolutions ∂S/∂t =
Fξ, that satisfy ∂H/∂t = F . Possible approach for this would be finding examples

and conditions for existence before proceeding with studying other properties for

such flows.
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