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Abstract. Following the tradition of the nano and picosecond optics, the basic

theoretical studies continue to investigate the processes of propagation of femtosec-

ond and attosecond laser pulses through the corresponding envelope equation for

narrow-band laser pulses, working in paraxial approximation. We should point out

here that this approximation is not valid for large band pulses. In air due to the

small dispersion the wave equation as well as the 3D + 1 amplitude equation de-

scribe more accurate the pulse dynamics. New exact localized solutions of the linear

wave and amplitude equations are presented. The solutions discover non-paraxial

semi-spherical diffraction of single-cycle and half-cycle laser pulses and a new class

of spherically symmetric solutions of the wave equation. The propagation of large

band optical pulses in nonlinear vacuum is investigated also in the frame of a system

of nonlinear wave vector equations. We obtained exact vector solution with its own

angular momentum in the form of a shock wave.

1. Introduction

With the progress of laser innovations it is very important to study the localized

waves, especially pulses which admit only few cycles under the envelope and

pulses in half-cycle regime. One important experimental result is that even in fem-

tosecond region, the waist (transverse size) of an initially non modulated laser pulse

continues to satisfy the Fresnel’s law of diffraction. The parabolic diffraction equa-

tion governing Fresnel’s evolution of a monochromatic wave in continuous regime

(CW regime) is suggested for first time by Leontovich and Fock [5, 12, 13]

∂2w

∂x2
+

∂2w

∂y2
+ 4ik0

∂w

∂z
= 0. (1)

The solutions of equation (1) possess circular fundamental Gaussian mode [3] as

well as higher-order modes, such as Laplace-Gauss [1,9,17], Helmholtz-Gauss and

Bessel-Gauss [2, 6, 7, 9] beams. On the other hand the optics of laser pulses, espe-

cially in the femtosecond (fs) region operates with strongly polychromatic waves
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and their spectral width Δkz can reach values of order of the main wave number k0.

There are additional possibilities if we consider a fs pulse to admit approximately

equal size in x, y and z directions (Light Bullet or LB), or relatively large trans-

verse and small longitudinal size (Light Disk or LD). The evolution of so generated

LB and LD in linear or nonlinear regime is quite different from the propagation of

light beams and this has drawn the researchers’ attention with an unexpected dy-

namical behavior. In [11] we have found new exact solution of the wave equation

considering initial form of Gaussian light bullet having semi-spherical, non parax-

ial diffraction in air in the case when the pulse admits few cycles only under the

envelope. We suggest a simple Courant - Hilbert ansatz in form

E(x, y, z, t) = V (x, y, z, t) exp (ik0(z − vt)) (2)

applied to the wave equation

ΔE −
1

v2
∂2E

∂t2
= 0. (3)

The corresponding diffraction equation of the amplitude function V is than

−2ik0

(
∂V

∂z
+

1

v

∂V

∂t

)
= ΔV −

1

v2
∂2V

∂t2
(4)

where v is the phase velocity (or the group velocity in air when the second order

of dispersion is neglected). The latest developments in spectroscopy of dielectrics

and semiconductors allow optical pulses with non oscillating nature, so called Half-

Cycle Pulses (HCP’s) [8, 18]. In terms of our ansatz (2) this implies, that for the

HCP’s the longitudinal spatial Δz or temporal Δt shape of the amplitude envelope

V should be shorter than the main wavelength λ0 = 2π/k0 or time period T0 =
2π/ω0.

In this paper we have obtained a class of spherically symmetric analytical solutions

of the wave (3) and amplitude (4) equations. The main result is that the solutions

strongly depend on their initial localization. When the initial pulse is localized near

one plane wave two kind of unidirectional wave propagation are found: paraxial

and non-paraxial. When the initial localized wave is spherically symmetric the

diffraction is radial with formation of inside and outside fronts. In all cases the

propagation of light pulses is not stable - enlargement and decrease of the ampli-

tude is observed. In order to find stable pulse propagation we investigate mainly

large band pulses propagating in two types homogenous media - air and nonlinear

vacuum. In air a scalar stable Lorentz type soliton was obtained [10] while in non-

linear vacuum we have obtained a vector solution with its own angular momentum.
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2. Linear Regime of Optical Pulses

The experiments with ultrashort fs and attosecond pulses as well as the numerical

calculations [16] point out the main problem in the diffraction theory: namely,

whether it is possible to build such a 3D+1 diffraction (and dispersion) model that

corresponds to the following experimental results: a) at one diffraction length the

spot of any spectrally limited laser pulse satisfies the Fresnel’s diffraction and b) at

several diffraction lengths one or two cycle optical pulses diffract semi-spherically.

Approximating up to second order of dispersion the linear Diffraction - Dispersion

Equation (DDE) governing the propagation of the pulse is [11]

−2ik0

(
∂A

∂z
+

1

v

∂A

∂t

)
= ΔA−

1 + β

v2
∂2A

∂t2
(5)

where β = k′′k0v
2 is a number giving the influence of the second order of disper-

sion. In dispersionless media is also obtained the following Diffraction Equation

−2ik0

(
∂V

∂z
+

1

v

∂V

∂t

)
= ΔV −

1

v2
∂2V

∂t2
· (6)

In air β  2.1× 10−5  0, and hence DDE (5) is equal to the differential equation

(6), and till hundred diffraction lengths exist only diffraction problems. This means

that we can use the approximation β  0 and we can investigate the differential

equation (6) within these distances. As it was mentioned in the Introduction the

differential equation (6) can be obtained directly from the wave equation using the

ansatz (2). Thus, solving the amplitude equation (6) and multiplying with the main

phase, we can obtain exact solution of the wave equation.

DDE (5) and DE (6) are solved by applying the spatial Fourier transform to the

components of the amplitude functions A and V . The fundamental solutions of the

Fourier images Â and V̂ in (kx, ky, kz, t) space are correspondingly

Â(kx, ky, kz, t) = Â(kx, ky, kz, 0)

× exp

(
iv

β + 1

(
k0 ±

√
k20 + (β + 1)

(
k2x + k2y + k2z − 2k0kz

))
t

)
(7)

V̂ (kx, ky, kz, t) = V̂ (kx, ky, kz, 0)

× exp
(
iv
(
k0 ±

√
k2x + k2y + (kz − k0)2

)
t
)
. (8)
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In the case when β  0 the fundamental solution (7) is equal to (8) and therefore

we shall investigate only (8). The exact solution of equation (6) can be obtained

by applying the backward Fourier transform

V = F−1
[
V̂ (kx, ky, kz, 0) exp

(
iv
(
k0 ±

√
k2x + k2y + (kz − k0)2

)
t
)]

(9)

or in detail

V =
1

(2π)3

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

V̂ (kx, ky, kz, 0)

× exp
(
iv
(
k0 ±

√
k2x + k2y + (kz − k0)2

)
t
)

× exp (−i(xkx + yky + zkz)) dkxdkydkz. (10)

Substituting kz − k0 = k̂z in (10) the latter takes the form

V =
1

(2π)3
exp (ik0vt)

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

V̂ (kx, ky, k̂z + k0, 0)

(11)

× exp

(
±ivt

√
k2x + k2y + k̂2z

)
exp

(
−i(xkx + yky + zk̂z)

)
dkxdkydk̂z.

We can solve the backward Fourier transform in (11), if there is the possibility the

initial Fourier image V̂ (kx, ky, k̂z + k0, 0) to be presented as a function of kind

f(k0)V̂
∗(kx, ky, k̂z, 0). Thus (11) becomes

V =
1

(2π)3
exp (ik0vt) f(k0)

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

V̂ ∗(kx, ky, k̂z, 0)

(12)

× exp

(
±ivt

√
k2x + k2y + k̂2z

)
exp

(
−i(xkx + yky + zk̂z)

)
dkxdkydk̂z

where the whole integrand in (12) depends on the same translated wave number k̂z
and can be solved analytically.

2.1. Gaussian Light Bullet

We can begin with a solution obtained for first time in [11] in order to illus-

trate in detail the method of finding localized solution of the differential equation

(6) and the wave equation (3) possessing a finite energy. The convolution prob-

lem (8) was solved for initial Gaussian light bullet of the kind V (x, y, z, 0) =
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exp
(
−(x2 + y2 + z2)/2r20

)
. In this case the 3D backward Fourier transform (11)

becomes

V =
1

(2π)3
exp

(
−
k20r

2
0

2
− ik0 (z − vt)

)
×

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

exp

(
−
(k2x + k2y + k̂2z)r

2
0

2

)
× exp

(
±ivt

√
k2x + k2y + k̂2z

)
× exp

(
−i(xkx + yky +

(
z − ir20k0

)
k̂z)

)
dkxdkydk̂z (13)

which in spherical coordinates can be presented in the following way

V =
1

2π2r̂
exp

(
−
k20r

2
0

2
− ik0 (z − vt)

)
×

∫
∞

0
k̂r exp

(
−
k̂2rr

2
0

2

)
exp

(
±ivtk̂r

)
sin

(
r̂k̂r

)
dk̂r (14)

where k̂r =
√
k2x + k2y + k̂2z and r̂ =

√
x2 + y2 + (z − ir20k0)

2.

The corresponding amplitude solution is

V (x, y, z, t) =
i

2r̂
exp

(
−
k20r

2
0

2
− ik0(z − vt)

)
×

(
i(vt+ r̂) exp

(
−

1

2r20
(vt+ r̂)2

)
erfc

(
i

√
2r0

(vt+ r̂)

)
(15)

−i(vt− r̂) exp

(
−

1

2r20
(vt− r̂)2

)
erfc

(
i

√
2r0

(vt− r̂)

))
.

Multiplying (15) with the main phase we find actually an exact solution of the wave

equation (3)

E(x, y, z, t) =
i

2r̂
exp

(
−
k20r

2
0

2

)
×

(
i(vt+ r̂) exp

(
−

1

2r20
(vt+ r̂)2

)
erfc

(
i

√
2r0

(vt+ r̂)

)
(16)

−i(vt− r̂) exp

(
−

1

2r20
(vt− r̂)2

)
erfc

(
i

√
2r0

(vt− r̂)

))
.

Substituting the time variable t = 0 in equation (16) the initial solution of the wave

equation is E(x, y, z, 0) = exp(ik0z) exp
(
−(x2 + y2 + z2)/2r20

)
. All analytical



72 Lubomir M. Kovachev and Daniela A. Georgieva

and numerical solutions of the wave equation (3) obtained from the initial condi-

tions of kind E(x, y, z, 0) = exp(ik0z)V (x, y, z, 0), where V (x, y, z, 0) is a three

dimensional localized smooth function, produce an unidirectional propagation in

z direction. The wave equation (3) is of hyperbolic type, while the amplitude

equation (6) is of parabolic type and a initial value problem (11) can be solved.

One method for finding spherically symmetric solutions of the wave equation ap-

pears hire. Now, let the initial amplitude function V of the amplitude equation is a

product of a three dimensional localized function, multiplied by a plane wave with

opposite direction

V (x, y, z, 0) = exp(−ik0z)V
∗(x, y, z, 0) (17)

where V ∗ is a spherically symmetric function. Then the corresponding initial am-

plitude function of the wave equation becomes E(x, y, z, 0) = V ∗(x, y, z, 0) and

by solving initial value problem (6) with initial conditions of kind (17), we can find

exact spherically symmetric solutions of the wave equation (3).

2.2. Spherically Symmetric Finite Energy Solutions of the Wave Equation

One watchful analysis of the solution of the amplitude function V in equation (11)

reveals that all functions under the integral depend on the translated wave number

k̂z , except the Fourier image of the initial function V̂ (kx, ky, k̂z + k0, 0). We can

use the Transition theorem from the Fourier optics to present the above mentioned

function V̂ (kx, ky, k̂z + k0, 0) as a function only of the translated wave number

k̂z: f(k0)V̂
∗(kx, ky, k̂z, 0). Formally, this corresponds to the use of the initial

conditions in the form

V (x, y, z, 0) = V ∗(x, y, z, 0) exp (−ik0z) . (18)

Applying the Transition theorem to (18), we obtain the following expression of the

Fourier image

F [V (x, y, z, 0)] = V̂ (kx, ky, kz − k0, 0) = V̂ ∗(kx, ky, k̂z, 0). (19)

Thus, all functions in the backward Fourier transform (11) depend only on trans-

lated wave number k̂z

V =
1

(2π)3
exp (ik0 (vt− z))

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

V̂ ∗(kx, ky, k̂z, 0)

(20)

× exp

(
±ivt

√
k2x + k2y + k̂2z

)
exp

(
−i(xkx + yky + zk̂z)

)
dkxdkydk̂z.
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In this paper we shall consider spherically-symmetric functions of kind

V ∗(x, y, z, 0) = V ∗(r, 0)

where r =
√
x2 + y2 + z2.

This means that the backward radial Fourier transform can be written as

V =
1

2π2r
exp (ik0 (vt− z))

×

∫
∞

0
k̂rV̂

∗(k̂r, 0) exp
(
±ivtk̂r

)
sin

(
rk̂r

)
dk̂r. (21)

So, now the method of finding finite energy spherically symmetric solutions of

the wave equation becomes obvious. Using an initial condition in the form V =
V ∗ exp(−ik0z), where V ∗ is a localized function and V ∗(r) �→ 0 where r �→ ∞,

as a first step we find its Fourier image V̂ ∗(k̂r, 0). Then solving the backward

radial Fourier transform (21) we can find the solution of the corresponding the

differential equation (6). Multiplying the solution of the differential equation (6)

with the main phase (Courant-Hilbert ansatz (2)) we practically obtain an exact

solution of the wave equation (3).

2.2.1. Localized Algebraic Function of the Kind V ∗ = 1/
(
1 + r2/r20

)
We demonstrate here how through this method we can obtain a finite energy solu-

tion for initial algebraic localized function of the kind

V ∗ (x, y, z, t = 0) = 1/
(
1 + r2/r20

)
. (22)

The 3D Fourier expression of (22) in spherical variables is

V̂ ∗ (kr, t = 0) =
π

2kr
exp (−r0kr) . (23)

Hence, after solving the spectral kernels (21) of (6) the corresponding solution of

the amplitude equation is

V (x, y, z, t) = exp (−ik0(z − vt))

(
r2

r20
+

(
1 +

ivt

r0

)2
)−1

. (24)

Then again by multiplying with the main phase, the corresponding finite energy

solution of the wave equation (3) becomes

E (x, y, z, t) =

(
r2

r20
+

(
1 +

ivt

r0

)2
)−1

. (25)
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2.2.2. Localized Algebraic Function of the Kind V ∗ = 1/
(
(1 + r2/r20)

2
)

The function

V ∗(r) = 1/(1 + r2/r20)
2

has a Fourier image

V̂ ∗ (kr) =
1

4
πr0 exp (−r0kr) .

Hence, the corresponding solution of the amplitude equation is

V (x, y, z, t) = exp (−ik0(z − vt))

(
2(r0 + itv)

(r2 + (r0 + itv)2)2

)
(26)

and the corresponding wave solution is

E(x, y, z, t) =
2(r0 + itv)

(r2 + (r0 + itv)2)2
· (27)

2.2.3. Localized Algebraic Function of the Kind V ∗ = 1/
(
(1 + r2)4

)
The Fourier image of the function

V ∗(r) = 1/
(
(1 + r2)4

)
is the following expression

V̂ ∗ =
1

96
π
(
3 + k2r + 3kr

)
exp (−kr) .

The solution V of the differential equation (6) becomes

V (x, y, z, t) = 6 exp (−ik0(z − vt))

×

(
(8 + 29itv) + tv(−r2 + t2v2)(−ir2 + tv(8 + itv))

(r2 + (1 + itv)2)4

−
2tv(−3ir2 + tv(20 + 13itv))

(r2 + (1 + itv)2)4

)
(28)

and the corresponding wave solution is

E(x, y, z, t) = 6

(
(8 + 29itv) + tv(−r2 + t2v2)(−ir2 + tv(8 + itv))

(r2 + (1 + itv)2)4

(29)

−
2tv(−3ir2 + tv(20 + 13itv))

(r2 + (1 + itv)2)4

)
.
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2.2.4. Localized Algebraic Function of the Kind V ∗ = 24(1− r2)/(1 + r2)4

The function

V ∗(r) = 24(1− r2)/(1 + r2)4

has a Fourier image
1

2
πk2r exp(−kr).

Hence, the solution V of the differential equation (6) is

V (x, y, z, t) =
3i

4πr
exp (−ik0(z − vt))

(30)

×

(
1

(vt+ r − i)4
−

1

(−vt+ r + i)4

)
and the corresponding wave solution is

E(x, y, z, t) =
3i

4πr

(
1

(vt+ r − i)4
−

1

(−vt+ r + i)4

)
. (31)

2.2.5. Localized Algebraic Function of the Kind V ∗ = 2r(3− r2)/(1 + r2)3

The function

V ∗(r) = 2r(3− r2)/(1 + r2)3

has a Fourier image
1

2
πkr exp(−kr).

Hence, the solution V of the differential equation (6) is

V (x, y, z, t) =
1

r
exp (−ik0(vt− z))

(
1

(vt− r − i)3
−

1

(vt+ r − i)3

)
(32)

and the corresponding wave solution is

E(x, y, z, t) =
1

2π2r

(
1

(vt− r − i)3
−

1

(vt+ r − i)3

)
. (33)

The obtained above analytical solutions (25), (27), (29), (31) and (33) of the linear

wave equation (3) are spherically symmetric. Substituting the time variable t = 0
in these solutions the initial conditions of the wave equation become exactly the

corresponding localized smooth functions V ∗. In these cases the initial functions

decrease with the generation of outside and inside fronts and the energy densities

distribute over the whole space radially.
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3. Nonlinear Regime of Broad-Band Optical Pulses

3.1. Nonlinear Propagation of Broad-Band Pulses in Air. Lorentz Type Soliton

As it was mentioned in [10], after neglecting two small perturbation terms, the cor-

responding nonlinear amplitude equation of broad-band femtosecond pulses can

be reduced to

ΔC −
1

v2
∂2C

∂t2
+ γC3 = 0 (34)

where γ = C2
0k

2
0n2 is the nonlinear coefficient. equation (34) admits exact soliton

solution propagating in forward direction only. The soliton solution of equation

(34) is [10]

C =
sech(ln(r̃))

r̃
=

2

1 + r̃2
(35)

where γ = 2 and r̃ =
√
x2 + y2 + (z + ia)2 − v2(t+ ia/v)2. The main differ-

ence of the unstable solutions of the linear wave equation (3) and the amplitude

equation (6) is that the soliton solution of the nonlinear wave equation (34) pre-

serves its spatial and spectral shape in time. Thus, for the first time a photon-like

propagation is obtained as exact solution of the corresponding 3D + 1 nonlinear

wave equation (34). The stable soliton solution of the one-dimensional nonlin-

ear Schrödinger equation admits sech form, while the 3D + 1 soliton solution of

the nonlinear wave equation (34) has Lorentz shape with asymmetric kz spectrum.

All above results are obtained for the cases of optical media with local linear and

nonlinear response. Recently in [15] was demonstrated the existence of integrable

regimes in nonlocal nonlinear optics using paraxial approximation. One including

of the non-locality of the optical and magnetic response to a non-paraxial model

will be performed in a next paper.

3.2. Propagation of Broad-Band Pulses in Nonlinear Vacuum. Nonlinear Spher-
ical Wave

Our intention to find nonlinear solutions with angular momentum is a logical next

step. In 1935 Euler and Kockel [4] predict one intrinsic nonlinearity of the electro-

magnetic vacuum due to the electron-positron nonlinear polarization. This leads to

field-dependent dielectric tensor in the form

εik = δik +
7e4�

45πm4c7

(
2
(
| 
E|2 − | 
B|2

)
δik + 7BiBk

)
(36)
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where a complex form of the electrical Ei and magnetic Bi components is used.

Note that the term containing BiBk vanishes, when we investigate localized elec-

tromagnetic wave with only one magnetic component Bl. The dielectric response

relevant to such optical pulse is thus

εik = δik +
14e4�

45πm4c7

(
| 
E|2 − | 
B|2

)
δik. (37)

The magnetic field, rather than the electrical field, appears in the expression of

the dielectric response (37) and the nonlinear addition to the energy distribution

(effective mass density) of an electromagnetic wave in nonlinear vacuum can be

expressed in electromagnetic units as Inl =
(
| 
E|2 − | 
B|2

)
. In the case when the

spectral width of a pulse Δkz exceeds the values of the main wave-vector, i.e.,

Δkz  k0, the system of amplitude equations in nonlinear vacuum becomes

Δ 
E −
1

c2
∂2 
E

∂t2
+ γ

(
| 
E|2 − | 
B|2

)

E = 0

(38)

Δ 
B −
1

c2
∂2 
B

∂t2
+ γ

(
| 
E|2 − | 
B|2

)

B = 0

where γ =
7k2

0
e4�

90πm4c7
and 
E, 
B are the amplitude functions. Initially, we can write

the components of the electrical and the magnetic fields as a vector sum of circular

and linear components

Ez, Ec = iEx − Ey, Bl = −Bz. (39)

Thus (38) is transformed in the following system of scalar equations

ΔEz −
1

c2
∂2Ez

∂t2
+ γ

(
|Ez|

2 + |Ec|
2 − |Bl|

2
)
Ez = 0

ΔEc −
1

c2
∂2Ec

∂t2
+ γ

(
|Ez|

2 + |Ec|
2 − |Bl|

2
)
Ec = 0 (40)

ΔBl −
1

c2
∂2Bl

∂t2
+ γ

(
|Ez|

2 + |Ec|
2 − |Bl|

2
)
Bl = 0.

Let us now parameterize the 3D + 1 space-time through pseudospherical coordi-

nates (r, τ, θ, ϕ)

ct = r sinh(τ) x = r cosh(τ) sin(θ) cos(ϕ)

y = r cosh(τ) sin(θ) sin(ϕ) z = r cosh(τ) cos(θ)
(41)

where r =
√
x2 + y2 + z2 − c2t2.
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After calculations the corresponding d’Alambert operator in pseudospherical co-

ordinates becomes [14]

Δ−
1

c2
∂2

∂t2
=

3

r

∂

∂r
+

∂2

∂r2
−

1

r2
∂2

∂τ2
− 2

tanh τ

r2
∂

∂τ
+

1

r2 cosh2 τ
Δθ,ϕ (42)

where with Δθ,ϕ is denoted the angular part of the usual Laplace operator. The

system of equations (40) in pseudo-spherical then coordinates becomes

3

r

∂Ez

∂r
+

∂2Ez

∂r2
−

1

r2
∂2Ez

∂τ2
− 2

tanh τ

r2
∂Ez

∂τ

+
1

r2 cosh2 τ
Δθ,ϕEz + γ

(
|Ez|

2 + |Ec|
2 − |Bl|

2
)
Ez = 0

3

r

∂Ec

∂r
+

∂2Ec

∂r2
−

1

r2
∂2Ec

∂τ2
− 2

tanh τ

r2
∂Ec

∂τ
(43)

+
1

r2 cosh2 τ
Δθ,ϕEc + γ

(
|Ez|

2 + |Ec|
2 − |Bl|

2
)
Ec = 0

3

r

∂Bl

∂r
+

∂2Bl

∂r2
−

1

r2
∂2Bl

∂τ2
− 2

tanh τ

r2
∂Bl

∂τ

+
1

r2 cosh2 τ
Δθ,ϕBl + γ

(
|Ez|

2 + |Ec|
2 − |Bl|

2
)
Bl = 0.

The equations (43) are solved using the method of separation of the variables

Ei(r, τ, θ, ϕ) = R(r)Ti(τ)Yi(θ, ϕ), Bl(r, τ, θ, ϕ) = R(r)Tl(τ)Yl(θ, ϕ) (44)

where i = z, c. We use an additional constrain on the angular and “spherical” time

parts

|Tz|
2|Yz(θ, ϕ)|

2 + |Tc|
2|Yc(θ, ϕ)|

2 − |Tl|
2|Yl(θ, ϕ)|

2 = const. (45)

The condition (45) separates the variables. The nonlinear terms appear in the radial

part only. Thus the radial parts obey the equation

3

r

∂R

∂r
+

∂2R

∂r2
−

Ai

r2
R+ γ|R|2R = 0 (46)

where Ai, for i = z, c, l are separation constants. We look for solutions which

possess more clearly expressed localization than the scalar soliton solution

R =
sech (ln (rα))

r
(47)
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and where α, γ and the separation constants Ai, i = z, c, l satisfy the relations

α2 − 1 = Ai, 2α2 = γ. (48)

The corresponding τ - dependent part of the equations (43) are linear

cosh2 τ
d2Ti

dτ2
+ 2 sinh τ cosh τ

dTi

dτ
+
(
Ci −Ai cosh

2 τ
)
Ti = 0 (49)

where i = z, c, l and Ci are another separation constants connected with the an-

gular part of the Laplace operator Yi(θ, ϕ). Only the following solutions of the

equation (49) which satisfy the condition (45) exist

Tz = cosh τ, Tc = cosh τ, Tl = sinh τ (50)

with separation constants: for the electrical part Az = Ac = 3, Cz = Cc = 2
and for the magnetic part Al = 3, Cl = 0. Thus the magnetic part of the system

of equations (43) do not depend on the angular components, i.e., Yl(θ, ϕ) = 0, as

for the electrical part Yz(θ, ϕ), Yc(θ, ϕ) we have the following linear system of

equations
Δθ,ϕYi
Yi

= −2 (51)

where now i = z, c. There are only two solutions of the equation (51) which satisfy

the condition (45)

Yz = cos θ, Yc = sin θ exp(iϕ). (52)

Using the relation between the separation constants Ai and the real number α we

obtain

α2 = 4, α = ±2, γ = 8. (53)

Finally, we can write the explicit solution of the system of nonlinear equations (40)

which describes the propagation of a electromagnetic wave in nonlinear vacuum

Ez(r, τ, θ) =
sech

(
ln
(
r±2

))
r

cosh τ cos θ

Ec(r, τ, θ, ϕ) =
sech

(
ln
(
r±2

))
r

cosh τ sin θ exp(iϕ) (54)

Bl(r, τ) =
sech

(
ln
(
r±2

))
r

sinh τ.
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If we rewrite the solution in the Cartesian coordinates, it is not difficult to show

that the solution (54) of the system (40) admits finite energy and possesses its own

angular momentum l = 1

Ez(x, y, z, t) =
2z

r4 + 1

Ec(x, y, z, t) =
2(x+ iy)

r4 + 1
(55)

Bl(x, y, z, t) =
2ct

r4 + 1

where r =
√
x2 + y2 + z2 − c2t2 and r̂ =

√
x2 + y2 + z2. The intensity profile

of the solution now becomes

I(x, y, z, t) = | 
E|2 + | 
B|2 =
4(x2 + y2 + z2 + c2t2)(

(x2 + y2 + z2 − c2t2)2 + 1
)2 · (56)

This solution describes a nonlinear spherical shock wave.

4. Conclusions

In this paper the wave equation (3) is solved by using a simple form of the Courant-

Hilbert ansatz (2). In this way we reduce the equation (3) to a parabolic type

diffraction equation (6) for the envelope. The corresponding initial value problem

can be solved and different kind of finite energy exact solutions can be found of the

differential equation (6) as well as of the wave equation (3). The solutions spread

with the velocity of light and possess different evolution. In the laser optics a Gaus-

sian light bullet, or another kind of initial amplitude functions V (x, y, z, 0) are lo-

calized near one monochromatic wave E(x, y, z, 0) = exp(ik0z)V (x, y, z, 0) and

they are in fact a superposition of plane waves near one main wave-number. In the

case when such pulses have a lot of cycles under the envelope they broaden mainly

in transverse direction following the Fresnel’s law of diffraction. The evolution

is exactly identical with the laser pulse dynamics measured in the experiments.

The latest experimental [16] and theoretical [11] observations of a few, single and

half-cycle pulses reveal that at small diffraction lengths their intensity profile takes

parabolic or semi-spherical form, i.e., the paraxial optics does not work for few,

single and HCP’s waves. If the initial pulses are not localized near a plane wave

and are spherically symmetric the solutions of the wave equation (3) spread radi-

ally forming inside and outside wave fronts. These conclusions are based on the

exact analytical solutions of both the wave equation and the amplitude equation
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presented in the paper. The initially localized amplitude functions decrease and

the energy density of all obtained solutions distributes over whole space for a finite

time. In nonlinear regime we have solved nonlinear wave equation and a system of

nonlinear wave equations (40) governing propagation of broad-band optical pulses

in nonlinear vacuum. The main difference between the solutions of the linear wave

equation (3) and the amplitude equation (6), which spread in space, is that the soli-

ton solution of the nonlinear wave equation (34) preserves its spatial and spectral

shape in time. Thus, one photon-like propagation is obtained as an exact solu-

tion of the corresponding 3D + 1 nonlinear wave equation (34) [10]. The scalar

3D + 1 soliton solution of (34) has Lorentz shape with asymmetric kz spectrum.

The solution (54) of the nonlinear vacuum system of equations (40) has a strong

localization than scalar case and admits its own angular momentum.
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