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Abstract. We explain that the action-angle duality between the rational Ruijsena-

ars-Schneider and hyperbolic Sutherland systems implies immediately the maximal

superintegrability of these many-body systems. We also present a new direct proof

of the Darboux form of the reduced symplectic structure that arises in the ‘Ruijse-

naars gauge’ of the symplectic reduction underlying this case of action-angle dual-

ity. The same arguments apply to the BCn generalization of the pertinent dual pair,

which was recently studied by Pusztai developing a method utilized in our direct

calculation of the reduced symplectic structure.

1. Introduction

The subject of superintegrability can be regarded as an offspring of the Kepler

problem, which is ‘more integrable’ than motion in an arbitrary spherically sym-

metric potential due to the existence of the extra conserved quantities provided by

the Runge-Lenz vector. Recently we witnessed intense studies of superintegrable

dynamical systems motivated partly by interesting examples and partly by the nat-

ural goal to classify systems with nice properties. See, for example, [2, 7, 17] and

references therein.

Let us briefly recall the relevant notions of integrability for a Hamiltonian sys-

tem (M,ω,H) living on a 2n-dimensional symplectic manifold. Such a system is

called Liouville integrable if there exist n independent functions hi ∈ C∞(M),
i = 1, . . . , n that are in involution with respect to the Poisson bracket and the

Hamiltonian can be written as H = H(h1, ..., hn) through some smooth function

H of n variables. Importantly, one has to require also that the flows of the hi are all

complete. A Liouville integrable system (M,ω,H) is termed maximally superinte-
grable if it admits n−1 additional constants of motion, say fj ∈ C∞(M), such that

h1, . . . , hn, f1, . . . , fn−1 are functionally independent1. The generic trajectories

of (M,ω,H) are then given by the connected components of the one-dimensional

1Below the term superintegrable will always mean maximally superintegrable.
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joint level surfaces of the 2n − 1 constants of motion. As a consequence, those

trajectories of (M,ω,H) that stay inside some compact submanifold of M are

necessarily homeomorphic to the circle, since they are connected and compact

one-dimensional manifolds. This implies that Liouville integrable systems hav-

ing compact Liouville tori are rarely superintegrable, because their trajectories are

usually not closed. On the other hand, it is a common knowledge, supported by

rigorous results [6], that systems describing repulsive interactions of particles are

superintegrable. Concretely, the scattering data provided by the asymptotic parti-

cle momenta and differences of their conjugates yield sufficiently many constants

of motion. More abstractly [18], the classical wave maps furnish symplectomor-

phisms to obviously superintegrable free systems.

The aim of this contribution is to explain the superintegrability of the celebrated

rational Ruijsenaars-Schneider [15] and hyperbolic Sutherland systems [3,16] in a

self-contained manner. Since these one-dimensional many-body systems support

factorizable scattering [14], their superintegrability is not surprising. However, we

shall not use any scattering theory argument, which usually requires non-trivial

analysis of the dynamics. Instead of scattering theory, we shall directly rely on

special features of the ‘action-angle maps’ of these Liouville integrable systems.

Indeed, it is known that these two systems form a dual pair in the sense that they

live on symplectomorphic phase spaces, and the particle-positions of each one of

the two systems serve as action-variables of the other system. The duality prop-

erty was discovered by Ruijsenaars [14] in his direct construction of ‘action-angle

maps’ that realize the introduction of action-angle variables. More recently [5],

this duality has been fitted into the geometric framework of symplectic reduc-

tion [9, 11], which we shall utilize for showing superintegrability.

In Section 2, based on [1], we recall the elementary observation that Liouville inte-

grable systems admitting global action-angle maps of maximally non-compact type

are maximally superintegrable. Then, in Section 3, we explain how the geomet-

ric picture behind the rational Ruijsenaars-Schneider and hyperbolic Sutherland

systems permits to see easily that their action-angle maps are the inverses of each

other and are of maximally non-compact type. In Section 4, we point out that this

mechanism applies also to the generalized Ruijsenaars-Schneider and Sutherland

systems that are associated with the BCn root system. The BCn generalization of

the pertinent dual action-angle maps was recently developed by Pusztai [12,13]. In

the Appendix, we take the opportunity to apply his ideas for improving the previ-

ous (correct but not self-contained) calculation of the reduced symplectic structure

given in [5].
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2. Action-Angle Maps of Maximally Non-Compact Type

In scattering systems the canonical conjugates of the actions run over the line.

Later we shall exhibit interesting examples where the canonical transformation

to these Darboux variables represents an action-angle map of maximally non-

compact type as defined below.

Consider a Liouville integrable Hamiltonian system (M,ω,H) possessing the n
Poisson commuting, independent constants of motion hi ∈ C∞(M), i = 1, . . . , n.

Let us assume that globally well-defined action-variables with globally well-defined

canonical conjugates exist. By definition, this means that there exists a phase space

(M̂, ω̂) of the form

M̂ = Cn × R
n = {(p̂, q̂) ; p̂ ∈ Cn, q̂ ∈ R

n} (1)

with a connected open domain Cn ⊆ R
n and canonical symplectic form

ω̂ =
n∑

i=1

dq̂i ∧ dp̂i (2)

which is symplectomorphic to (M,ω) and permits identification of the Hamilto-

nians hi as functions of the action-variables p̂j . More precisely, we assume the

existence of a symplectomorphism

A : M → M̂ (3)

such that the functions hi ◦A
−1 do not depend on q̂ and

Xi,j :=
∂hi ◦A

−1

∂p̂j
(4)

yields an invertible matrix X(p̂) at every p̂ ∈ Cn. As in [1], the map A is referred

to as a global action-angle map of maximally non-compact type. The target (M̂, ω̂)
of A is often called the action-angle phase space of the system (M,ω,H).

To clarify our conventions, note that for any real function F ∈ C∞(M̂) the Hamil-

tonian vector field XF is here defined by

dF = ω̂( · , XF ) (5)

and the Poisson bracket of two functions F1, F2 reads

{F1, F2}M̂ = dF1(XF2
) = ω̂(XF2

, XF1
). (6)

In particular, we have

{p̂j , q̂k}M̂ = δj,k, {p̂j , p̂k}M̂ = {q̂j , q̂k}M̂ = 0. (7)
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If a global action-angle map of maximally non-compact type exists, then one can

introduce functions fi ∈ C∞(M) (i = 1, . . . , n) by the definition

(fi ◦A
−1)(p̂, q̂) :=

n∑
j=1

q̂jX(p̂)−1
j,i with

n∑
j=1

X(p̂)i,jX(p̂)−1
j,k = δi,k. (8)

By using that A is a symplectomorphism, one obtains the Poisson brackets

{hi, fj}M = δi,j , {fi, fj}M = 0. (9)

Indeed, the first one of the above Poisson bracket relations is immediate from {hi ◦

A−1, fj ◦ A
−1}

M̂
=

∑n
k=1

∂hi ◦A
−1

∂p̂k

∂fj◦A
−1

∂q̂k
, and the second relation is also

easily checked. Together with {hi, hj}M = 0, (9) implies that the 2n functions

h1, . . . , hn, f1, . . . , fn are functionally independent at every point of M .

It is plain that the choice of any of the 2n functions h1, . . . , hn, f1, . . . , fn as the

Hamiltonian yields a maximally superintegrable system. For example, the 2n − 1
independent functions h1, . . . , hn, f1, . . . , fn−1 Poisson commute with hn. Under

mild conditions, it can be shown [1] that the generic Liouville integrable Hamilto-

nian of the form H = H(h1, . . . , hn) is also maximally superintegrable.

3. Hyperbolic Sutherland and Rational RS Systems

We below explain that the hyperbolic Sutherland system and the rational Ruijsena-

ars-Schneider system admit global action-angle maps of maximally non-compact

type, which implies their maximal superintegrability through the simple construc-

tion presented in the previous section. Remarkably, the pertinent two action angle-

maps are the inverses of each other.

3.1. Definition of the Systems

The hyperbolic Sutherland system [3, 16] lives on the phase space

M := Cn × R
n = {(q, p) ; q ∈ Cn, p ∈ R

n } (10)

with the domain

Cn = {q ∈ R
n ; q1 > q2 > . . . > qn}. (11)

The symplectic form is the canonical one

ω =
n∑

j=1

dpj ∧ dqj . (12)
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A family of n independent commuting Hamiltonians is given by

hk(q, p) := tr(L(q, p)k), k = 1, . . . , n (13)

where L(q, p) is the n× n Hermitian Lax matrix having the entries

L(q, p)j,k := pjδj,k + i(1− δj,k)
κ

sinh(qj − qk)
(14)

using a non-zero real parameter κ. The flows of the hk are complete, and the main

Hamiltonian of interest is

H(q, p) :=
1

2
h2(q, p) =

1

2

n∑
k=1

p2k +
∑

1≤j<k≤n

κ2

sinh2(qj − qk)
· (15)

Thus qi (i = 1, . . . , n) can be interpreted as the positions of n interacting particles

moving on the line, restricted to the domain Cn by energy conservation.

The rational Ruijsenaars-Schneider (RS) system [15] lives on the same phase space,

but for later purpose we now denote the phase space points as pairs (p̂, q̂). That is,

the RS phase space is the symplectic manifold (M̂, ω̂) with2

M̂ := Cn × R
n = {(p̂, q̂) ; p̂ ∈ Cn, q̂ ∈ R

n }, ω̂ =
n∑

j=1

dq̂j ∧ dp̂j . (16)

Now a basic set of Liouville integrable Hamiltonians is provided by ĥl ∈ C∞(M̂)
for l = 1, . . . , n, where we define

ĥl(p̂, q̂) := tr(L̂(p̂, q̂)l) for all l ∈ Z. (17)

Here, L̂ is the (positive definite) RS Lax matrix having the entries

L̂(p̂, q̂)j,k := uj(p̂, q̂)

[
2iκ

2iκ+ (p̂j − p̂k)

]
uk(p̂, q̂) (18)

where the R+-valued functions uj(p̂, q̂) are given by

uj(p̂, q̂) := e−q̂jzj(p̂)
1

2 with zj(p̂) :=
n∏

m=1
(m�=j)

[
1 +

4κ2

(p̂j − p̂m)2

] 1

2

. (19)

2The notation anticipates that (M̂, ω̂) is the action-angle phase space of the Sutherland system
(M,ω,H).
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In our convention, the principal RS Hamiltonian Ĥ = 1
2(ĥ1 + ĥ−1) reads

Ĥ(p̂, q̂) =
n∑

k=1

(cosh 2q̂k)
n∏

j=1
(j �=k)

[
1 +

4κ2

(p̂k − p̂j)2

] 1

2

, k = 1, . . . , n (20)

and can be viewed as describing n interacting ‘particles’ with positions p̂k.

3.2. Dual Gauge Slices in Symplectic Reduction

Ruijsenaars [14] discovered an intriguing duality relation between the pertinent

two integrable many-body systems, which he called action-angle duality. Next we

recall the geometric interpretation of this duality, nowadays also called ‘Ruijse-

naars duality’, following the joint work of Klimčík with one of us [5].

Let G denote the real Lie group GL(n,C) and identify the dual space of the cor-

responding real Lie algebra g := gl(n,C) with itself using the invariant bilinear

form

〈X,Y 〉 := �tr(XY ) for all X,Y ∈ g. (21)

Consider the minimal coadjoint orbit Oκ of the group U(n) given as a set by

Oκ := {iκ(vv† − 1n) ; v ∈ C
n, |v|2 = n}. (22)

Here v is viewed as a column vector, we identified u(n) with its dual by the restric-

tion of the scalar product (21), and shall also use the notation

ζ(v) := iκ(vv† − 1n). (23)

Trivializing T ∗G by means of left-translations, we introduce the ‘extended cotan-

gent bundle’

P ext := T ∗G×Oκ ≡ G× g×Oκ = {(g, J, ζ) ; g ∈ G, J ∈ g, ζ ∈ Oκ}. (24)

The symplectic form of P ext can be written as

Ωext = d〈J, g−1dg〉+ΩOκ (25)

where ΩOκ is the standard (Kirillov-Kostant-Souriau) symplectic form of Oκ.

Our basic tool is symplectic reduction of (P ext,Ωext) by the group

K := U(n)×U(n) (26)

acting via the symplectomorphisms

ΨηL,ηR(g, J, ζ) := (ηLgη
−1
R , ηRJη

−1
R , ηLζη

−1
L ) for all (ηL, ηR) ∈ K. (27)
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The momentum map Φ : P ext → u(n) ⊕ u(n) that generates this action is given

by

Φ(g, J, ζ) = ((gJg−1)u(n) + ζ,−Ju(n)) (28)

where Xu(n) =
1
2(X−X†) is the anti-Hermitian part of any X ∈ g. The reduction

is defined by setting the momentum map to zero. The associated reduced phase

space

P red := Φ−1(0)/K (29)

turns out to be a smooth symplectic manifold, with reduced symplectic form Ωred.

The point is that the K-orbits in the ‘constraint surface’ Φ−1(0) admit two global

cross sections that give rise to natural identifications of the reduced phase space

(P red,Ωred) with the Sutherland phase space (M,ω) and the RS phase space

(M̂, ω̂), respectively.

The first cross section is the so-called ‘Sutherland gauge slice’ S ⊂ Φ−1(0) defined

by

S := { (eq, L(q, p), ζ(v0)) ; (q, p) ∈M } (30)

where q := diag(q1, . . . , qn) and every component of v0 ∈ C
n is equal to one. In

fact, S intersects every K-orbit in Φ−1(0) precisely once, and with the tautological

embedding ιS : S → P ext it satisfies

ι∗S(Ω
ext) =

n∑
k=1

dpk ∧ dqk = ω. (31)

By its very definition (30), S can be identified with M , and the last equation per-

mits to view (M,ω) as a model of the reduced phase space (P red,Ωred).

An alternative model of (P red,Ωred) is furnished by the following ‘Ruijsenaars

gauge slice’

Ŝ := { (L̂(p̂, q̂)
1

2 , p̂, ζ(v(p̂, q̂))) ; (p̂, q̂) ∈ M̂ } (32)

where p̂ = diag(p̂1, . . . , p̂n) and v(p̂, q̂) is the vector of squared-norm n given by

v(p̂, q̂) := L̂(p̂, q̂)−
1

2u(p̂, q̂) (33)

using the Lax matrix L̂ and the vector u introduced in equations (18-19). In fact,

Ŝ also intersects every K-orbit in Φ−1(0) precisely once, and with the tautological

embedding ι
Ŝ
: Ŝ → P ext it verifies

ι∗
Ŝ
(Ωext) =

n∑
k=1

dq̂k ∧ dp̂k = ω̂. (34)
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Thus, identifying Ŝ (32) with M̂ , we see that (M̂, ω̂) also represents a model of

the reduced phase space (P red,Ωred). It will be clear shortly that the two gauge

slices S and Ŝ are dual to each other in the sense that they geometrically engender

Ruijsenaars’ action-angle duality between the Sutherland and the RS systems.

The equality (31) goes back to [8] and equality (34) was first proved in [5]. The

proof presented in [5] uses the ‘external information’ that the eigenvalues of L̂
form an Abelian Poisson algebra under the Darboux structure ω̂. A completely

self-contained direct proof of (34) will be given in the appendix of the present

communication.

3.3. Action-Angle Duality and Superintegrability

In the previous subsection we described the equivalences

(M,ω)↔ (S, ι∗S(Ω
ext))↔ (P red,Ωred)↔ (Ŝ, ι∗

Ŝ
(Ωext))↔ (M̂, ω̂). (35)

By composing the relevant maps, we obtain a symplectomorphism A : M → M̂ ,

A∗(ω̂) = ω. It follows easily from the geometric picture that the map A operates

according to the rule

A : (q, p) �→ (p̂, q̂) (36)

characterized the property

(L̂(p̂, q̂)
1

2 , p̂, ζ(v(p̂, q̂))) = (ηeqη−1, ηL(q, p)η−1, ηζ(v0)η
−1) (37)

where η is a (q, p)-dependent element of U(n), which is uniquely determined up

to right-multiplication by a scalar matrix.

Now we are ready to harvest consequences of the above construction. When doing

so, we view qi, pi and p̂i, q̂i as evaluation functions on M and on M̂ , respectively.

The following statements are readily checked:

• First, the particle-positions p̂i of the RS system are converted by the map A
into action-variables p̂i ◦ A of the Sutherland system, and at the same time

the canonical momenta q̂i of the RS system are converted into the corre-

sponding non-compact ‘angle-variables’ q̂i ◦ A. This statement holds since

(p̂i ◦ A)(q, p) are just the ordered eigenvalues of the Sutherland Lax ma-

trix L(q, p). In short, the RS particle-positions and their conjugates play the

roles of Sutherland action-variables and their conjugates.

• Second, since the functions e2qi ◦A−1 on M̂ are just the ordered eigenvalues

of the RS Lax matrix L̂, we see that the Sutherland particle-positions qi are
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converted by A−1 into action-variables qi ◦ A
−1 of the RS system, and the

Sutherland momenta pi are converted into the non-compact angle-variables

pi ◦ A
−1 of the RS system. That is, the Sutherland particle-positions and

their conjugates play the roles of RS action-variables and their conjugates.

• Third, the maps A and A−1 are global action-angle maps of maximally non-

compact type in the sense defined in Section 2.

To verify the third property for the map A, one has to consider the commuting

Hamiltonians hk of equation (13), which on the action-angle phase space M̂ take

the form

(hk ◦A
−1)(p̂, q̂) =

n∑
l=1

p̂kl . (38)

It is easily found from the Vandermonde-determinant formula that

det

(
∂hk ◦A

−1

∂p̂j

)
= n!

∏
1≤i<j≤n

(p̂j − p̂i). (39)

This never vanishes on the domain Cn, proving the claim. As for A−1, notice from

(17) and (37) that

(ĥk ◦A)(q, p) =
n∑

l=1

e2kql for all k = 1, . . . , n. (40)

It follows that

det

(
∂ĥk ◦A

∂qj

)
= 2nn!

n∏
k=1

e2qk
∏

1≤i<j≤n

(e2qj − e2qi) (41)

and this expression is non-zero for every q ∈ Cn.

The fact that A : M → M̂ is an action-angle map for the Sutherland system

(M,ω,H) and A−1 : M̂ →M is an action-angle map for the RS system (M̂, ω̂, Ĥ)
is expressed by saying that these two many-body systems enjoy ‘action-angle du-

ality’ relation [14]. In particular, each lives on the action-angle phase space of the

other and the position-variables of any of the two systems become action-variables

of the other system under the action-angle map.

The general argument of Section 2 now implies directly that any of the commuting

Hamiltonians h1, . . . , hn, and in particular the Sutherland Hamiltonian H = 1
2h2,

is maximally superintegrable. Similarly, any of the commuting Hamiltonians ĥk,
k = 1, . . . , n of the RS system is maximally superintegrable. The principal RS
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Hamiltonian Ĥ = 1
2(ĥ1 + ĥ−1) can be expressed as a polynomial in terms of

ĥ1, . . . , ĥn, and one can use this to establish its superintegrability as well [1].

At first sight the above reasoning is independent of scattering theory that also could

be used to establish maximal superintegrability of the repulsive interactions en-

coded by H (15) and Ĥ (20). This is somewhat an illusion, however, since the

action-angle maps A and A−1 are closely related to the scattering wave maps of

the systems under consideration [14]. Nevertheless, an advantage of our arguments

is that they do not require any analysis of the large time asymptotic of the dynam-

ics, which is needed in scattering theory. Instead, our reasoning is based on the

elegant geometry of the underlying symplectic reduction.

3.4. Explicit Extra Constants of Motion in the RS System

The key equation (37) leads to an algebraic algorithm for constructing the maps

A and A−1 in terms of diagonalization of the Lax matrices L and L̂. However,

explicit formulae of these action-angle maps are not available. Thus non-trivial

effort is required to find extra constants of motion in explicit form both for the

rational RS and for the hyperbolic Sutherland system. In the former case, this

problem was solved in [1].

The work reported in [1] was inspired by Wojciechowski’s paper [19] that explic-

itly established the superintegrability of the rational Calogero Hamiltonian. In the

RS case, since the Lax matrix L̂ (18) is positive definite, one can define the smooth

real functions

ĥj(p̂, q̂) := tr(L̂(p̂, q̂)j), ĥ1k(p̂, q̂) := tr(L̂(p̂, q̂)kp̂) for all j, k ∈ Z. (42)

It turned out that these functions satisfy the following Poisson algebra:

{ĥk, ĥj}M̂ = 0, {ĥ1k, ĥj}M̂ = jĥj+k, {ĥ1k, ĥ
1
j}M̂ = (j − k)ĥ1k+j . (43)

The relations (43) were proved in [1] utilizing the symplectic reduction described

in Subsection 3.2.

The basic reason for which the (first two) relations of (43) are useful in inves-

tigating superintegrability is as follows. Take an arbitrary Liouville integrable

Hamiltonian

Ĥ = H(ĥ1, . . . , ĥn). (44)

Observe that this Hamiltonian Poisson commutes not only with all the ĥj , but also

with all functions of the form

CĤ
j,k := ĥ1k{ĥ

1
j , Ĥ}M̂ − ĥ1j{ĥ

1
k, Ĥ}M̂ for all j, k ∈ Z. (45)
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Then one should select n−1 functions out of this set so that together with ĥ1, . . . , ĥn
they imply the maximal superintegrability of Ĥ . To show functional independence,

the selection must use the concrete form of the functions that appear.

As a special case, it was found in [1] that for any fixed j ∈ {1, . . . , n} the functions

C
ĥj

j,k = jĥ1kĥ2j − jĥ1j ĥj+k, k ∈ {1, . . . , n} \ {j} (46)

that commute with ĥj form an independent set together with ĥ1, . . . , ĥn. Further-

more, a set of ‘extra constants of motion’ that explicitly shows the superintegrabil-

ity of the RS Hamiltonian Ĥ = 1
2(ĥ1 + ĥ−1) is provided by

F̂j := ĥ1j (ĥ2 − n)− ĥ11(ĥj+1 − ĥj−1), j = 2, . . . , n. (47)

It is worth noting that the quantities ĥ1k are useful not only for constructing the

constants of motion (45), but also since their time development along the solutions

x(t) = (p̂(t), q̂(t)) of the system (M̂, ω̂, Ĥ), for any Hamiltonian (44), is espe-

cially simple. Namely, since {{ĥ1k, Ĥ}, Ĥ}M̂ = 0 follows from (43), we obtain

that

ĥ1k(x(t)) = ĥ1k(x(0)) + t{h1
k, Ĥ}M̂ (x(0)) (48)

is linear in time. In this way, ĥk and ĥ1k (k = 1, . . . , n) linearize the dynam-

ics. This is similar to the linearization provided by the non-compact analogues

of action-angle variables, with the distinctive feature that ĥk and ĥ1k are explicitly
given functions on the phase space.

4. Conclusion

In this paper we explained that the hyperbolic Sutherland and the rational RS

systems are both maximally superintegrable since Ruijsenaars’ duality symplec-

tomorphism [14] between these two systems qualifies as a global action-angle map

of maximally non-compact type, and every Liouville integrable system that pos-

sesses such action-angle map is maximally superintegrable. Although these results

are certainly known to experts, we hope that our self-contained exposition based

on the geometric interpretation of the duality [5] may be useful, especially since it

can be applied to other examples as well.
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Indeed, essentially the same arguments can be applied to the BCn generalizations

of the Sutherland and RS systems, which are encoded by the Hamiltonians

HBC(q, p) =
1

2

n∑
c=1

p2c +
∑

1≤a<b≤n

(
g2

sinh2(qa − qb)
+

g2

sinh2(qa + qb)

)

+
n∑

c=1

(
g21

sinh2 qc
+

g22
sinh2(2qc)

) (49)

and

ĤBC(p̂, q̂) =
n∑

c=1

(cosh 2q̂c)

[
1 +

ν2

p̂2c

] 1

2

[
1 +

χ2

p̂2c

] 1

2

×
n∏

d=1
(d�=c)

[
1 +

4μ2

(p̂c − p̂d)2

] 1

2

[
1 +

4μ2

(p̂c + p̂d)2

] 1

2

+
νχ

4μ2

n∏
c=1

(
1 +

4μ2

p̂2c

)
−

νχ

4μ2
·

(50)

The BCn Sutherland system (49) was introduced by Olshanetsky and Perelomov

[10], while the BCn variant of the RS system (50) is largely due to van Diejen [4].

In a recent work [13], Pusztai proved by using a suitable symplectic reduction

that these two systems are in action-angle duality if their respective 3 coupling

parameters are related according to

g2 = μ2, g21 =
1

2
νχ, g22 =

1

2
(ν − χ)2 (51)

with arbitrary μ2 > 0, ν > 0 and χ ≥ 0. The duality symplectomorphism is again

given by the natural map between two gauge slices, and it yields action-angle maps

of maximally non-compact type analogously to the An−1 case.

Finally, we remark that BCn analogues of the extra constants of motion presented

in Subsection 3.4 are still not known, so it could be worthwhile to search for such

constants of motion, and to search also for explicit constants of motion in the hy-

perbolic Sutherland systems.

A. Reduced Symplectic Form in the Ruijsenaars Gauge

The goal of this appendix is to give a self-contained proof of formula (34), which

describes the reduced symplectic structure in terms of the Ruijsenaars gauge slice



Superintegrability of Rational Ruijsenaars-Schneider Systems and . . . 39

Ŝ (32). A rather roundabout proof was presented in [5]. Here, we adopt the method

of Pusztai [12].

We identify the reduced phase space P red (29) with the global gauge slice Ŝ,

whereby the reduced symplectic form becomes

Ωred ≡ ι∗
Ŝ
(Ωext). (52)

Then, by means of the parametrization of Ŝ in (32), we regard the components of p̂

and q̂ as coordinates on Ŝ. Let us denote the Poisson bracket of arbitrary functions

F red
1 , F red

2 ∈ C∞(Ŝ) determined by means on Ωred as {F red
1 , F red

2 }. We wish to

find the Poisson brackets

{p̂α, p̂β}, {p̂α, q̂β}, {q̂α, q̂β}. (53)

As a preparation, we introduce the following functions ϕm, ψk ∈ C∞(P ext)K

ϕm(g, J, ζ) =
1

2m
tr(Jm + (J†)m)

(54)

ψk(g, J, ζ) =
1

2
tr((Jk + (J†)k)g†Z(ζ)g)

where m ≥ 1, k ≥ 0 are integers and

Z(ζ) := (iκ)−1ζ + 1n for all ζ ∈ Oκ. (55)

It is easily seen that these functions are indeed invariant under the K-action (27).

We also consider the corresponding reduced functions

ϕred
m := ι∗

Ŝ
(ϕm), ψred

k := ι∗
Ŝ
(ψk). (56)

These functions belong to C∞(Ŝ) and have the form

ϕred
m (p̂, q̂) =

1

m

n∑
j=1

p̂mj , ψred
k (p̂, q̂) =

n∑
j=1

p̂kj zj(p̂)e
−2q̂j (57)

with the vector z(p̂) defined in (19). If F red
i = ι∗

Ŝ
(Fi) for some Fi ∈ C∞(P ext)K

(i = 1, 2), then the definition of symplectic reduction implies

ι∗
Ŝ
({F1, F2}

ext) = {F red
1 , F red

2 } (58)

where the Poisson bracket on the left-hand-side is computed on (P ext,Ωext).

The idea is to extract the required Poisson brackets in (53) from equality (58)

applied to various choices of F1, F2 from the set of functions ϕm, ψk. Note that

{F1, F2}
ext = Ωext(XF2

, XF1
) with the corresponding Hamiltonian vector fields.
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An arbitrary vector field X on P ext (24) can be written as X = Δg ⊕ΔJ ⊕Δζ,

where at (g, J, ζ) ∈ P ext one has Δg ∈ TgG, ΔJ ∈ TJg  g and Δζ ∈ TζOκ.

Evaluation of the symplectic form (25) on two vector fields X and X ′ yields the

function

Ωext(X,X ′) =〈g−1Δ′g,ΔJ〉 − 〈g−1Δg,Δ′J〉

+ 〈[g−1Δ′g, g−1Δg], J〉 − 〈ζ, [Dζ , D
′
ζ ]〉

(59)

where in the last term we use Δζ = [Dζ , ζ] and Δ′ζ = [D′
ζ , ζ] with some u(n)-

valued Dζ and D′
ζ . It is not difficult to verify the following formulae of the Hamil-

tonian vector fields of ϕm and ψk

Xϕm
= gJm−1 ⊕ 0⊕ 0 and Xψk

= Δg ⊕ΔJ ⊕Δζ (60)

with components

Δg = g
k−1∑
j=0

J jg†Z(ζ)gJk−1−j (61)

ΔJ = −(J†)kg†Z(ζ)g − g†Z(ζ)gJk (62)

Δζ =
1

2iκ
[g(Jk + (J†)k)g†, ζ]. (63)

Note that for k = 0 the sum in (61) is vacuous and in this special case Δg = 0.

Lemma 1. We have {p̂α, p̂β} = 0 for all α, β = 1, . . . , n.

Proof: We readily derive from the above that {ϕm, ϕl}
ext = 0 for any m, l ∈ N,

which immediately results in {ϕred
m , ϕred

l } = 0. On the other hand, using only

the basic properties of the Poisson bracket such as bilinearity and Leibniz rule, we

obtain from the formula (57) of these functions that

{ϕred
m , ϕred

l } =
n∑

α,β=1

p̂m−1
α {p̂α, p̂β}p̂

l−1
β . (64)

Now let us introduce the n× n matrices Pα,β := {p̂α, p̂β} and

Vα,β := p̂β−1
α , α, β = 1, 2, . . . , n. (65)

Notice that V is a Vandermonde matrix and its determinant is non-zero (as p̂1 >
p̂2 > . . . > p̂n). Taking m, l from the set {1, . . . , n}, we can write (64) in matrix

form
n∑

α,β=1

p̂m−1
α {p̂α, p̂β}p̂

l−1
β =

n∑
α,β=1

Vα,mPα,βVβ,l = (V †PV )m,l. (66)
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Because this expression must vanish and V is invertible, it follows that P = 0, i.e.,

{p̂α, p̂β} = 0 for all α, β = 1, . . . , n. �

Lemma 2. We have {p̂α, q̂β} = δα,β for all α, β = 1, . . . , n.

Proof: Taking arbitrary

k = 0, 1, . . . , n− 1 and l = 1, . . . , n (67)

it can be checked that {ψk, ϕl}
ext = 2ψk+l−1 holds at all triples (g, J, ζ) for which

J = J†. Hence we must have

{ψred
k , ϕred

l } = 2ψred
k+l−1. (68)

Using the basic properties of the Poisson bracket and the statement of Lemma 1,

we can directly calculate this Poisson bracket as

{ψred
k , ϕred

l } =

n∑
α=1

p̂kαzαe
−2q̂α

n∑
β=1

{−2q̂α, p̂β}p̂
l−1
β . (69)

The comparison of the last two equations leads to

n∑
α=1

p̂kαzαe
−2q̂α

( n∑
β=1

{−2q̂α, p̂β}p̂
l−1
β − 2p̂l−1

α

)
= 0. (70)

By introducing the n× n matrix

Aα,β = zαe
−2q̂α

( n∑
γ=1

{−2q̂α, p̂γ}p̂
β−1
γ − 2p̂β−1

α

)
(71)

we can write (70) as (V †A)k+1,l = 0. Since V (65) is invertible, we conclude that

A = 0. Now if we collect the expressions {−2q̂α, p̂β} in the n×n matrix Bα,β :=
{−2q̂α, p̂β}, then the vanishing ofA can be re-stated as the matrix equation BV −
2V = 0. This entails that B = 21n, which is equivalent to {p̂α, q̂β} = δα,β for all

α, β. �

Lemma 3. We have {q̂α, q̂β} = 0 for all α, β = 1, . . . , n.

Proof: We now determine the reduced Poisson bracket

{ψred
k , ψred

l } for all k, l = 0, 1, . . . , n− 1 (72)
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in two ways. First we use {ψred
k , ψred

l } = {ψk, ψl}
ext◦ι

Ŝ
and obtain by calculating

the right-hand-side that

{ψred
k , ψred

l } =− 2(k − l)
n∑

α=1

p̂k+l−1
α z2αe

−4q̂α

− 16κ2
n∑

α,β=1
(α�=β)

p̂kαp̂
l
βzαzβe

−2(q̂α+q̂β)

(4κ2 + (p̂α − p̂β)2)(p̂α − p̂β)
·

(73)

Then direct calculation of {ψred
k , ψred

l }, utilizing basic properties of the Poisson

bracket together with the preceding lemmas, gives

{ψred
k , ψred

l } =2
n∑

α,β=1

[
p̂kαzα

∂p̂lβzβ

∂p̂α
− p̂kβzβ

∂p̂kαzα
∂p̂β

]
e−2(q̂α+q̂β)

+ 4
n∑

α,β=1

p̂kαp̂
l
βzαzβe

−2(q̂α+q̂β){q̂α, q̂β}.

(74)

Simple algebraic manipulations permit to spell this out more explicitly

{ψred
k , ψred

l } =− 2(k − l)
n∑

α=1

p̂k+l−1
α z2αe

−4q̂α

− 16κ2
n∑

α,β=1
(α�=β)

p̂kαp̂
l
βzαzβe

−2(q̂α+q̂β)

(4κ2 + (p̂α − p̂β)2)(p̂α − p̂β)

+ 4
n∑

α,β=1

p̂kαp̂
l
βzαzβe

−2(q̂α+q̂β){q̂α, q̂β}.

(75)

Comparing equations (73) and (75), we then find that

n∑
α,β=1

p̂kαp̂
l
βzαzβe

−2(q̂α+q̂β){q̂α, q̂β} = 0. (76)

Inspecting this equation using the non-degeneracy of the matrix V (65) and that

the functions zα never vanish, we find that {q̂α, q̂β}must vanish for all α and β. �

The three lemmas together prove the important formula (34), which was proved

in [5] by a less self-contained method.



Superintegrability of Rational Ruijsenaars-Schneider Systems and . . . 43

Acknowledgements

Support by the Hungarian Scientific Research Fund under the grant OTKA K77400

is hereby acknowledged. This publication was also supported by the European

Social Fund under the project number TÁMOP-4.2.2/B-10/1-2010-0012.

References

[1] Ayadi V. and Fehér L., On the Superintegrability of the Rational Ruijsenaars-
Schneider Model, Phys. Lett. A 374 (2010) 1913-1916.

[2] Ballesteros A., Enciso A., Herranz F. and Ragnisco O., Superintegrability on
N-Dimensional Curved Spaces: Central Potentials, Centrifugal Terms and
Monopoles, Ann. Phys. (N.Y.) 324 (2009) 1219-1233.

[3] Calogero F., Ragnisco O. and Marchioro C., Exact Solution of the Classi-
cal and Quantal One-Dimensional Many-Body Problems with the Two-Body
Potential Va(x) = g2a2/ sinh2(ax), Lett. Nuovo Cim. 13 (1975) 383-387.

[4] van Diejen J., Deformations of Calogero-Moser Systems and Finite Toda
Chains, Theor. Math. Phys. 99 (1994) 549-554.
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