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Abstract. We consider some aspects of the geometry of surfaces of revolution

in three-dimensional Minkowski space. First, we show that Clairaut’s theorem,

which gives a well-known characterization of geodesics on a surface of revolution

in Euclidean space, has an analogous result in three-dimensional Minkowski space.

We then illustrate the significant differences between the two cases which arise in

spite of their formal similarity.

1. Introduction

The relationship between Euclidean and Minkowskian geometry has many intrigu-

ing aspects, one of which is the manner in which formal similarity can co-exist

with significant geometric disparity. There has been considerable interest in the

comparison of these two geometries, as we see from the lecture notes of López [3].

In particular, aspects of surfaces of revolution in Minkowski space have been con-

sidered, e.g. in [2]. There is an elegant characterization of godesics on surfaces of

revolution due to Clairaut–see, for example, Pressley’s differential geometry text-

book [7], which is a valuable tool in the study of such surfaces in the Euclidean

context [1, 4–6]. Our purpose here is to see how this characterization carries over

to Minkowski space, and how it can be used to investigate the difference between

the two situations.

2. Euclidean Geometry

We begin by recalling the situation in Euclidean space, the better to see how closely

the situation in Minkowski space parallels this one.

Let Σ be a surface of revolution, obtained by rotating the profile curve x = ρ(u),
y = 0, z = h(u) about the axis of symmetry, where we assume that ρ > 0 and

doi: 10.7546/jgsp-28-2012-105-112 105



106 Anis Saad and Robert J. Low

that ρ′(u)2 + h′(u)2 = 1. Then Σ is parameterized by

x(u, v) =

⎡⎣ ρ(u) cos(v)
ρ(u) sin(v)

h(u)

⎤⎦
so that

xu =

⎡⎣ ρ′(u) cos(v)
ρ′(u) sin(v)

h′(u)

⎤⎦ = nu

where nu is the unit vector pointing along meridians of Σ and

xv =

⎡⎣ −ρ(u) sin(v)
ρ(u) cos(v)

0

⎤⎦ = ρ

⎡⎣ − sin(v)
cos(v)
0

⎤⎦ = ρnv

where nv is the unit vector pointing along parallels of Σ.

The first fundamental form of Σ is

I =

[
xu.xu xu.xv

xv.xu xv.xv

]
=

[
1 0
0 ρ(u)2

]
.

Since nu.nv = 0, the two form an orthonormal basis, and any unit vector t tangent

to Σ is of the form nu cos θ + nv sin θ where θ is the angle between t and nu.

First let γ(s) be a geodesic on Σ, parameterized by arc length, and given by u(s)
and v(s), so that

γ(s) =

⎡⎣ ρ(u(s)) cos(v(s))
ρ(u(s)) sin(v(s))

h(u(s))

⎤⎦ .

From the first fundamental form, we have the Lagrangian

u̇2 + ρ2v̇2

and so the Euler-Lagrange equations, whose solutions are arc-length parameterised

geodesics, are

ü = ρρ′v̇2

d

ds

(
ρ2v̇

)
= 0.

But we also have

γ̇ = u̇xu + v̇xv = u̇nu + ρv̇nv = nu cos θ + nv sin θ
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where θ is the angle between γ̇ and a meridian.

Equating the components of nv in the latter two expressions, we see that ρv̇ =
sin θ, so that ρ2v̇ = ρ sin θ, and hence the second Euler-Lagrange equation is

equivalent to ρ2 sin θ being a constant along γ.

Conversely, suppose that γ is a unit speed curve with ρ sin θ constant, so that the

second Euler-Lagrange equation is satisfied, and with u̇ �= 0. Then since

u̇2 + ρ2v̇2 = 1

we have

u̇ü+ ρρ′u̇v̇2 + ρ2v̇v̈ = 0

Substituting into this the second Euler-Lagrange equation

2ρρ′u̇v̇ + ρ2v̈ = 0

and dividing by u̇ yields

ü = ρρ′v̇2

which is the first Euler-Lagrange equation.

We see, then, that curve which is parameterized by arc length and has u̇ �= 0 is a

geodesic if and only if ρ2 sin(θ) is constant. This establishes Clairaut’s theorem,

and we observe in passing that all meridians are geodesics.

3. Clairaut’s Theorem in Minkowski Space

We now consider the situation of a surface generated by a curve rotated about the

t-axis in Minkowski space, which we take to have the usual coordinates (x, y, t)
with metric

ds2 = dx2 + dy2 − dt2.

So let the generating curve be given by x = ρ(u) > 0, y = 0, t = h(u), and we

assume that ρ′(u)2−h′(u)2 = −1, so that the curve is timelike, and parameterised

by proper time.

We then find that the surface Σ is parameterised by

x(u, v) =

⎡⎣ ρ(u) cos(v)
ρ(u) sin(v)

h(u)

⎤⎦
giving

xu =

⎡⎣ ρ′(u) cos(v)
ρ′(u) sin(v)

h′(u)

⎤⎦ and xv =

⎡⎣ −ρ(u) sin(v)
ρ(u) cos(v)

0

⎤⎦
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and resulting in the first fundamental form

I =

[
xu.xu xu.xv

xu.xv xv.xv

]
=

[−1 0
0 ρ(u)2

]
which gives a Lorentz metric on Σ.

We also note that xu = nu is a unit timelike vector pointing along the meridians,

while xv = ρnv, where nv is a unit spacelike vector pointing along the parallels.

Again, nu.nv = 0, so we have an orthonormal basis, and hence a unit timelike

vector t tangent to Σ can be written nu cosh θ+nv sinh θ where θ is the hyperbolic

angle between t and nu.

This time the Lagrangian is

−u̇2 + ρ2v̇2

giving Euler-Lagrange equations

ü = −ρρ′v̇2

d

dt

(
ρ2v̇

)
= 0.

Now let γ be a timelike geodesic on Σ, parameterized by proper time, and again

given by u(s), v(s). Then as before we have

γ̇ = u̇xu + v̇xv = u̇nu + ρv̇nv.

In the Minkowski setting, however, this gives

γ̇ = nu cosh θ + nv sinh θ

where θ is now the hyperbolic angle between γ̇ and nu, i.e., between γ̇ and the

meridian.

We then see that the second Euler-Lagrange equation is equivalent to ρ sinh θ being

constant.

Conversely, let γ be a proper-time parameterized timelike curve such that ρ sinh θ =
ρ2v̇ is constant. Since γ is timelike, it necessarily follows that u̇2 > 1, and so

u̇ �= 0. We then have

u̇2 − ρ2v̇2 = 1 and ρ2v̇ = constant.

Differentiating this gives

u̇ü− ρρ′u̇v̇2 − ρ2v̇v̈ = 0

2ρρ′u̇v̇ + ρ2v̈ = 0.
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Multiplying the second equation by v̇ and substituting into the first gives

u̇ü+ ρρ′u̇v̇2 = 0

and since u̇ �= 0 we have

ü = −ρρ′v̇2

which is the second Euler-Lagrange equation. It follows that the curve γ is a time-

like geodesic.

We thus see that Clairaut’s theorem has a Minkowski space analogue with ρ sinh θ
replacing ρ sin θ as the quantity conserved along a timelike geodesic. As before,

we can immediately deduce that all meridians are geodesics.

We note in passing that for small values of θ, sin(θ) ≈ sinh(θ) and hence the

geodesics will be close to those for the Euclidean case.

4. Comparison of Geodesics

Let us now examine an explicit example, to investigate the difference between the

two cases. We consider the simplest non-trivial case: the surface of revolution

generated by a straight line, given by z = 2x in the Euclidean, and t = 2x in the

Minkowski case, restricted to positive values of x.

In this case the surface of rotation is actually flat. Nevertheless, the geodesics

display distinct quantitative and qualitative behaviour, as we now see.

First, we find the equation of an arc-length parameterized geodesic in the Euclidean

case.

An arc-length parameterization of the generator is given by x = u/
√
5, t =

2u/
√
5, which gives the metric

ds2 = du2 +
u2

5
dv2

and so the Lagrangian

L = u̇2 +
u2

5
v̇2.

A geodesic is then completely determined by the value of u2v̇ = Ω and the condi-

tion that L = 1. Subtsituting for Ω in L gives

u̇2 = 1− Ω2

5u2

and hence
u̇2

v̇2
=

u2

Ω2

(
u2 − Ω2

5

)
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so that the differential equation

du

dv
= ± u

Ω

√
u2 − Ω2/5

describes the curve in the (v, u) plane which gives a geodesic in Σ.

In the Minkowskian case, we have

ds2 = −du2 +
u2

3
dv2

and

L = −u̇2 +
u2

3
v̇2.

The analogous calculation with L = −1 then gives

du

dv
= ± u

Ω

√
u2 +Ω2/3.

We are interested in timelike geodesics, for which ds2 < 0 and thus we must have

du2 >
u2

3
dv2

or, equivalently (
du

dv

)2

>
u2

3
·

We can therefore ensure that a geodesic is timelike by insisting that its initial value

of du/dv satisfy this criterion.

An immediate qualitative difference is that in the Euclidean case, all geodesics

except the generators can be continued for arbitrarily large positive or negative

values of the parameter, have a closest point of approach to the origin determined

by Ω, and are symmetric about this point. This is a consequence of the fact that

since ρ sin θ is constant, and sin θ is bounded above by one, there is a minimum

possible value of ρ. In the Minkowskian case, we have u̇ > 0, so a timelike

geodesic cannot bounce away from the origin: but since there is no upper bound

on sinh θ, the radial distance ρ can become arbitrarily small. Hence all timelike

geodesics approach the origin arbitrarily closely, and can be continued only a finite

amount of proper time into the past.

To illustrate this behaviour, we consider geodesics starting at v = 0, u = 1 with

initial gradient du/dv = −1, so that the Minkowskian geodesic is timelike. In the

Euclidean case, we obtain Ω =
√
5/6, and in the Minkowski case, Ω =

√
3/2.
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Figure 1. Geodesic in E3.
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Figure 2. Geodesic in M2,1.

The geodesics cannot be obtained in an instructive closed form, but can be found

numerically. The results are shown in Figures 1 and 2.

We see in Figure 1 how the downward geodesic in the Euclidean case has a min-

imum value of u at u = 1/
√
6 and after this it proceeds back up, with the sign

changed in the differential equation.

By contrast, Figure 2 shows that in the Minkowskian case, the geodesic passes

down arbitrarily close to the origin.

It is clear that this difference is generic. In any surface of revolution (other than the

cylinder) there will be geodesics in the Euclidean case which bounce away from

regions of sufficiently small ρ; on the other hand, in the Minkowskian case, since

u̇2 − ρ(u)2v̇2 = 1, it follows that |u̇| > 1, so no such bouncing can take place,

and timelike geodesics will generally reach every value of u in the domain of the

generating curve.

5. Conclusion

The characterisation of geodesics in surfaces of revolution looks formally identical

in the Euclidean and Minkowskian case: in each case geodesics are completely

characterized by ρ2v̇ being a conserved quantity. In spite of this, the difference in

signature results in entirely different qualitative behaviour of the geodesics in these

surfaces.
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