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VECTOR DECOMPOSITIONS OF ROTATIONS

DANAIL BREZOV, CLEMENTINA MLADENOVA AND IVAÏLO MLADENOV

Presented by Ivaïlo M. Mladenov

Abstract. Here we derive analytic expressions for the scalar parameters which

appear in the generalized Euler decomposition of the rotational matrices in R3. The

axes of rotations in the decomposition are almost arbitrary and they need only to

obey a simple condition to guarantee that the problem is well posed. A special

attention is given to the case when the rotation is decomposable using only two

rotations and for this case quite elegant expressions for the parameters were derived.

In certain cases one encounters infinite parameters due to the rotations by an angle π
(the so called half turns). We utilize both geometric and algebraic methods to obtain

those conditions that can be used to predict and deal with various configurations

of that kind and then, applying l’Hôpital’s rule, we easily obtain the solutions in

terms of linear fractional functions. The results are summarized in two Tables and

a flowchart presenting in full details the procedure.
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List of Symbols and Notations

x, x̃, c̊1, c̊2, c̊3 non-zero vectors in R
3

ĉ1, ĉ2, ĉ3, n̂ unit vectors in R
3

c, c̃, c1, c2, c3 vector parameters of rotations

x⊗ zt dyadic product of vectors in R
3

× cross product of vectors

(· , ·) dot product of vectors

εijk the Levi Civita symbol

c× skew-symmetric matrix

I the identity matrix

Pα, P⊥
α projectors

R(c) = R, R(ck) = Rk rotational matrices

O(n̂), O(ĉk) = Ok half turns

λk the eigenvalues ofR(c)
μ the multiplicity of − 1 in

the set of eigenvalues {λk}
u, v, w, τ scalar parameters

ψ1, ψ2, ψ3 the generalized Euler angles

ϕ, φ, θk, βk, γij other angles

κij = (ĉi, ĉj) elements of the Gramm matrix

σij = (ĉi,R(c)ĉj) matrix elements of R(c)
ρk = (n̂, ĉk), εijk ρ̃k = (ĉi×ĉj , n̂) direction cosines

ω = (ĉ1, ĉ2 × ĉ3) volume elements

ξk = τρk projections of c

1. Introduction

Decomposing an arbitrary rotational motion into two or three successive rotations

about initially given axes is a problem, that has been present both in mathematics

and the applications for centuries and yet it appears far from being trivial, espe-

cially in the case when the chosen axes are non-orthogonal [5].

The necessity of such decomposition is dictated by the practical needs of industry

and engineering sciences. It is worth mentioning that the factorization of orthogo-

nal matrices plays an important role in modern navigation and control of aircrafts,

submarines, and communication satellites [21], crystallography and diffractome-

try [6], nuclear magnetic resonance [30], digital image processing [14] and op-

tics [27]. In any of these areas it is necessary to perform several successive dis-

placements in order to obtain the desired settings.
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There are many partial results in the literature, based on different techniques, but

none of them seems to cover the subject extensively. Here we present a simple and

yet powerful technique that resolves also the “pathological” cases, consistently

avoided by other authors.

The starting point we chose for the present article is a theorem due to Euler, stating

that each orthogonal transformation in odd dimensional real space has an invariant

axis. Among its many proofs, one particularly simple resorts on the fact that the

eigenvalues of orthogonal operators lie on the unit circle U(1). It is quite easy to

verify this with the help of the exponential map and the well known result that

the eigenvalues of skew-symmetric matrices that constitute the Lie algebra of the

orthogonal group, are purely imaginary numbers. In other words, all zeroes of the

polynomial

det (R− λI) = 0 (1)

are of modulus one.

Since R acts as automorphism of R2m+1, the above polynomial is of degree 2m+1
and must have at least one real root since the complex ones come in pairs (all

coefficients being real) and therefore it has to be either +1 or −1. In the case of

only one real root, that is the generic case in R
3, we have pure rotation if the sign is

plus, and the corresponding eigenvector determines the axis of that rotation. In the

case λ1 = −1, we are dealing with a composition of rotation and reflection, and

the eigenvector is interpreted as normal to the plane of reflection. More generally,

both +1 and −1 may be multiple roots as in the case of symmetric orthogonal

matrices where all eigenvalues are real. Then R represents a special orthogonal

transformation, or pure rotation, only if the multiplicity μ of −1 is even, since

detR = (−1)μ.

In this article we focus entirely on the three dimensional case, starting with μ = 0.

Then R is either the identity operator if λ1 = λ2 = λ3 = 1, or a generic rotation

with λ1 = 1, λ2 = λ̄3 ∈ U(1), whose axis is given by the unit eigenvector n̂,

corresponding to λ1. The actual rotation by an angle ϕ �= kπ, k ∈ Z takes place

in the plane α, perpendicular to n̂.

The case μ = 1 corresponds to either pure reflection (if λ2 = λ3 = 1) with respect

to α, or a composition of reflection and rotation by ϕ �= kπ if λ2 = λ̄2 ∈ U(1).

When μ = 2 (λ1 = 1, λ2 = λ3 = −1) we deal with non-trivial symmetric

orthogonal operators, also called “half turns” since they rotate by an angle π in

α. Note that these operators turn to pure reflections when multiplied by −1, so

they share some common properties with reflections, which is certainly true to a

lower extent for all orthogonal transformations since they are in fact compositions

of reflections. In this context, the remaining case λ1 = λ2 = λ3 = −1 can be
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thought of as corresponding to three consecutive reflections with respect to the

coordinate planes.

Note that in the special orthogonal case, when the rotation axis is determined,

the problem is reduced to a two-dimensional rotation. Thus, in order to study the

action on a generic nonzero vector in x ∈ R
3, it would be convenient to decompose

into parallel and perpendicular to α components. We do so by introducing the

projectors

P⊥
α = n̂⊗ n̂t, Pα = I − n̂⊗ n̂t

where (n̂⊗ n̂t)ij = n̂in̂j stands for the usual dyadic (tensor) product of vectors.

Then we have x = xα + x⊥
α with xα = Pαx and x⊥

α = P⊥
α x respectively and

the action of R is decomposed as well, since the orthogonal component remains

unaltered, i.e.,

x̃ = Rx = x̃α + x⊥
α =

(
RαPα + P⊥

α

)
x.

Here Rα is the restriction of R to α, which is a two-dimensional rotation, that in a

suitably chosen basis can be simply expressed in terms of trigonometric functions

of the angle ϕ. It requires no more than high school trigonometry to show that

Rαxα = cosϕxα + sinϕ n̂× x

where the vector n̂ × x = n̂ × xα actually completes the basis - it is normal to

both n̂ and xα, and the orientation agrees with the direction of rotation.

If we want to describe the action on x in operator form, it is convenient to use the

Hodge duality between R
3 vectors and skew-symmetric rank two tensors

∗ : c → c×, c×x = c× x, x ∈ R
3.

Using the symbol of Levi-Civita and Einstein convention for summation over re-

peated indices, we can easily write this in components as (c×)ij = εiljcl, or in

coordinates

c× =

⎛⎝ 0 −c3 c2
c3 0 −c1

−c2 c1 0

⎞⎠ · (2)

Combining the above results, we end up with

x̃ = Rx =
(
P⊥
α + cosϕPα + sinϕ n̂×

)
x

and the expression in the brackets can be easily converted into the form

R(n, ϕ) = cosϕ I + (1− cosϕ) n̂⊗ n̂t + sinϕ n̂× (3)
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which is the famous Rodrigues’ formula we use extensively in our construction.

Note that the above may be used in both directions: on the one hand, it determines

the rotation as a function of n̂ and ϕ while on the other, if R is explicitly given from

empirical data or by the Gram-Schmidt procedure for example, one may easily

derive from it both the axis n̂ and the angle ϕ.

For the axis it suffices to take the skew-symmetric part of the rotational matrix

A = 1
2(R−Rt), then use (2) to find the direction of n̂ and normalize. If ϕ = π

or close, sinϕ is close to zero and it is either impossible or numerically incorrect

to determine n̂ in that way. Instead, one may use that (3) reduces to

O(n̂) = R(n̂, π) = 2 n̂⊗ n̂t − I
for ϕ = π. Then, finding the components of n̂ is by no means more difficult, al-

though in this case the vector is determined only up to a sign (as it should be, since

rotating by an angle π in the clockwise and counterclockwise direction is one and

the same thing). We usually start with the diagonal elements, choose the compo-

nent with greatest square, use it to divide the off-diagonal entries etc. If ϕ is only

close to 0 or π, one could work with the symmetric part S = 1
2(R+Rt) instead,

and use the fact that cosϕ = 1
2(TrR − 1). In order to determine ϕ completely,

one may retrieve sinϕ again from the skew-symmetric part of R, using the com-

ponents of n̂.

Moreover, we could obtain another representation for R by using the well known

trigonometric Euler substitution τ = tan
ϕ

2
· With its help (3) becomes

R(n̂, ϕ) =
(1− τ2) I + 2τ2 n̂⊗ n̂t + 2τ n̂×

1 + τ2

and if we define the vector parameter of the rotation to be c = τ n̂, then we have

the representation

R(c) =
(1− c2) I + 2 c⊗ ct + 2 c×

1 + c2
(4)

that can be written in coordinates as

R(c) =
2

1 + c2

⎛⎝ 1 + c21 c1c2 − c3 c1c3 + c2
c1c2 + c3 1 + c22 c2c3 − c1
c3c1 − c2 c3c2 + c1 1 + c23

⎞⎠ − I.

Note that we no longer need to write two arguments - the angle is parameterized

by τ , which we refer to as scalar parameter and it is included in the definition of

the vector parameter c.
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There is a natural composition law for the vector parameters that comes quite handy

for our considerations. Namely, from the group properties of the SO(3) matri-

ces it can be derived that the vector parameter of the composition R(a)R(b) =
R(〈a,b〉) = R(c) is

c = 〈a,b〉 = a+ b+ a× b

1− (a,b)
· (5)

In the above formula “× ”, respectively (· , ·) denote the cross and dot products of

vectors in R
3. It is not so difficult to write a similar formula for the composition

of three rotations. In that case it can be shown that the vector parameter of the

rotation R(a)R(b)R(c) is

〈〈a,b〉, c〉 = a+ b+ c+ a× b+ a× c+ b× c+ (a× b)× c− (a ,b) c

1− (a ,b)− (a , c)− (b , c)− (a ,b× c)
·

(6)

Note that this operation is associative, but not commutative, unless the vectors are

parallel - a property which is inherited from the group composition.

We refer to [7] for details regarding the derivation of (5) and (6).

It is worth mentioning in this context that the vector-parameter is also known as

Gibbs’ or Rodrigues’ vector, while some authors call it “vector of finite rotations”.

The vector representation of rotations in three-dimensional space R
3 is a principal

subject of consideration in many papers and a far from exhaustive list includes [1],

[9], [12], [18], [25], [32] and references therein. Actually, Fedorov [7] explores

the vector-parametrization mainly in the context of problems related to the Lorentz
group, while two of the present authors are among the first who make use of it in

the classical [19] and quantum mechanics [15–17]. For more detailed discussion

on the historical and mathematical aspects of Euler’s theorem we refer to the paper

by Palais et al [23], and for physical viewpoint on the subject - to the book by

Goldstein [10].

The principal aim of the paper is to derive explicit formulas for the scalar param-

eters and the conditions under which certain decomposition is possible. These are

given in analytical and easy to use form, which we hope will be appreciated by peo-

ple, involved with practical applications of this problem. We left however aside the

question about the topological nature behind them as this subject is discussed in

depth in the papers by Stuelpnagel [31] and Perelyaev [24].

2. The Generic Case

Our starting data consist of the rotational matrix R and three nonzero vectors

c̊k, k = 1, 2, 3, possibly coplanar, but such that c̊2 is not parallel to any of the
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other two. After normalization, they will be used as rotational axes in our decom-

position

R(c) = R(c3)R(c2)R(c1) (7)

where c = τ n̂, |n̂| = 1 and τ = tan
ϕ

2
·

Our task is to find the scalar parameters u, v, w (sometimes called also generalized

Euler parameters) introduced via the relations

c1 = uĉ1, c2 = vĉ2, c3 = wĉ3.

In order to derive the values of u, v and w we use the defining relation (7) and

suitably chosen scalar products as proposed in [20]. Here we start with

(ĉ3,R(c) ĉ1) = (ĉ3,R(wĉ3)R(vĉ2)R(uĉ1) ĉ1) = (ĉ3,R(vĉ2) ĉ1)

and make use of the fact that ĉ1 is an eigenvector of R(c1) with eigenvalue equal to

one and so is ĉ3 for R(c3) independently of the values of their scalar parameters.

In combination with (4) this leads to a quadratic equation for v in the form

(σ31 + κ31 − 2κ12κ23) v
2 + 2ω v + σ31 − κ31 = 0 (8)

in which for simplicity we have used the notations

κij = (ĉi, ĉj) , σij = (ĉi,R(c)ĉj) , ω = (ĉ1, ĉ2 × ĉ3).

This equation has real solutions whenever its discriminant is non-negative, i.e.,

ω2 = det(κ) ≥ σ2
31 − κ231 − 2κ12κ23 (σ31 − κ31) .

Taking into account that κ is symmetric with diagonal elements equal to one, we

may easily write its determinant as

det(κ) = 1 + 2κ12κ23κ13 − κ212 − κ213 − κ223

which allows to express the above inequality as

Δ =

∣∣∣∣∣∣
1 κ12 σ31
κ21 1 κ23
σ31 κ32 1

∣∣∣∣∣∣ ≥ 0. (9)

Thus we recover the condition(
ĉ1, (R(c)− ĉ2 ⊗ ĉt2) ĉ3

)2 ≤ (
1− (ĉ1, ĉ2)

2
) (

1− (ĉ3, ĉ2)
2
)
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given in [26]. The reader will find there also another derivation of the above for-

mula and a detailed proof why it should be considered both necessary and sufficient

condition (provided ĉ2 is not parallel to either ĉ1 or ĉ3) for the existence of the de-

composition (7). We use it simply to test whether or not a certain choice of the

axes is appropriate for the specified rotational matrix R.

If the necessary condition is fulfilled, we may solve the above equation for v and

use the two roots v± for the computation of the corresponding matrix entries of

R(c1) in the same way

(ĉ3,R(c) ĉ2)=(ĉ3,R(wĉ3)R(v±ĉ2)R(uĉ1) ĉ2)=(ĉ3,R(v±ĉ2)R(uĉ1) ĉ2)

and this leads to a pair of quadratic equations for the scalar parameter u(
(σ32 + κ32)(1 + v2±) + 2κ12ν±

)
u2 + 2μ±u+ (σ32 − κ32)(1 + v2±) = 0 (10)

where

ν± = κ13(v
2
± − 1)− 2κ12κ23v

2
± + 2ω v±

μ± = ω(v2± − 1) + 2(κ12κ23 − κ13)v±.

Hence we have four solutions for u. Now it remains to determine the value of w
by exploiting

(ĉ2,R(c) ĉ1) = (ĉ2,R(wĉ3)R(v±ĉ2)R(uĉ1) ĉ1)

= (ĉ2,R(wĉ3)R(v±ĉ2) ĉ1)

from which we derive the corresponding set of quadratic equations(
(σ21 + κ21)(v

2
± + 1) + 2κ23ν±

)
w2 + 2μ±w + (σ21 − κ21)(v

2
± + 1) = 0. (11)

In this way we end up with eight candidates for Euler decomposition, since each

of the three quadratic equations has two solutions in the generic case. In order to

choose the actual solution or solutions to the problem among these eight possibili-

ties one may simply compare their matrix entries with the corresponding entries of

the matrix R(c).
Alternatively, we may utilize the vector parameter composition

c = 〈 c3, 〈 c2, c1〉〉
or its equivalent forms

c1 = 〈−c2, 〈−c3, c〉〉
c2 = 〈−c3, 〈c,−c1〉〉
c3 = 〈c, 〈−c1,−c2〉〉
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which, in accordance with (6), can be expanded as

uĉ1 =
τ n̂− vĉ2 − wĉ3 + vwĉ2×ĉ3 + vτ n̂×ĉ2 + wτ n̂×ĉ3 + vwτm1

1− vwκ23 + vτρ2 + wτρ3 − uwτρ̃1

vĉ2 =
τ n̂− uĉ1 − wĉ3 + uwĉ3×ĉ1 + wτ n̂×ĉ3 − uτ n̂×ĉ1 + uwτm2

1− uwκ13 + uτρ1 + wτρ3 + uwτρ̃2
(12)

wĉ3 =
τ n̂− uĉ1 − vĉ2 + uvĉ1×ĉ2 − uτ n̂×ĉ1 − vτ n̂×ĉ2 + uvτm3

1− uvκ12 + uτρ1 + vτρ2 − uvτ ρ̃3
·

In the above equations we have used the notations

ρk = (ĉk, n̂) , εijkρ̃k = (ĉi×ĉj , n̂)

and
m1 = ρ2ĉ3 − ρ3ĉ2 − κ23n̂

m2 = κ13n̂− ρ1ĉ3 − ρ3ĉ1

m3 = ρ2ĉ1 − ρ1ĉ2 − κ12n̂.

Multiplying both sides of the kth equation in (12) with ĉ×l on the left, we obtain

three systems of lower rank. Each one of them contains at least one nontrivial

relation that can be extracted by considering its scalar product with n̂. In particular,

from the first and the third one we easily derive expressions for u(v, τ) and w(v, τ),
where v is given by (16) as a solution to (8), more precisely these are

u =
(κ23 − ρ2ρ3)τv − ρ̃1v

(ρ1ρ̃1 + ρ2ρ̃2)τv + (κ23ρ1 − κ13ρ2)v + (ρ1ρ3 − κ13)τ − ρ̃2
(13)

and

w =
(κ12 − ρ1ρ2)τv − ρ̃3v

(ρ2ρ̃2 + ρ3ρ̃3)τv + (κ12ρ3 − κ13ρ2)v + (ρ1ρ3 − κ13)τ − ρ̃2
· (14)

From the second equation we obtain a similar expression for w = w(u, τ)

w =
(κ12 − ρ1ρ2)τu− ρ̃3u

(ρ3ρ̃3 − ρ1ρ̃1)τu+ (κ12ρ3 − κ23ρ1)u+ (κ23 − ρ2ρ3)τ − ρ̃1
· (15)

However, the first two actually complete the solution after substituting the values

of v± derived from (8)

v± =
−ω ±√

Δ

σ31 + κ31 − 2κ12κ23
(16)

where Δ is defined in (9).
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As for the matrix element σ31, we may easily express it from (3) as

σ31 = ρ1ρ3 + (κ13 − ρ1ρ3) cosϕ− ρ̃2 sinϕ

that can be easily generalized as

σij = ρiρj + (κij − ρiρj) cosϕ− εijkρ̃k sinϕ. (17)

Note that for a fixed rotational angle and therefore scalar parameter τ , the expres-

sions (13), (14) and (15) are linear fractional functions that can be easily inverted,

so we have analogous expressions for u(w), v(u) and v(w). These are certainly

consistent with each other, so we may easily derive a quadratic equation for one of

the parameters, similar to (8) and the other two will be expressed by it in a linear

fractional manner.

If we consider the simple and yet interesting from practical point of view example

in which the vectors ĉk coincide with the coordinate axes (Bryan decomposition).

Applying the method described above we easily obtain the relations(
u±
w±

)
=

τ

1− τ n̂2v±

(
n̂1 + n̂3v±
n̂3 + n̂1v±

)
in which we have to substitute the solution to (8) given by the formula

v± =
−1±

√
1− σ2

31

σ31
·

In other words, the final result can be expressed in terms of explicit functions of

v±, ϕ and n̂.

In a similar way one may express u±(v±, c), w±(v±, c) as linear fractional func-

tions for the classical Euler decomposition setting in which the successive rotations

are about the axes OZ, OX and again OZ in this specified order(
u±
w±

)
=

τ

τ n̂1 + v±

(
n̂3v± − n̂2

n̂3v± + n̂2

)
·

In this case the solutions to (8) are given by the formula

v± = ±
√

1− σ31
1 + σ31

·

Note that this approach is not directly applicable if the rotational matrix R(c) is a

half turn since when τ → ∞ the denominator in (6) vanishes and this means that

the case should be treated separately which is done in the section to follow.
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3. The Symmetric Case

Let us now consider the particular case of a nontrivial symmetric orthogonal matrix

R(n̂, π) = 2 n̂⊗ n̂t − I = O(n̂) (18)

that represents a rotation by an angle π about the axis, specified by the unit vector

n̂. It is easy to see that−O (n) is a mirror reflection with respect to the plane,

normal to n̂.

Applying directly the ideas from the previous section, we find that (8) can be writ-

ten in this case as

(ρ1ρ3 − κ12κ23) v
2 + ω v + ρ1ρ3 − κ13 = 0 (19)

with the obvious solution

v± =
−ω ±√

Δ

2(ρ1ρ3 − κ12κ23)
· (20)

The additional condition for the discriminant

ω2 = det(κ) ≥ 4 (ρ1ρ3 − κ12κ23) (ρ1ρ3 − κ13) (21)

in this case can be written as

4 (ρ1ρ3 − κ12κ23 − κ13) ρ1ρ3 ≤ 1− 2κ12κ23κ13 − κ212 − κ213 − κ223.

Similarly from (10) and (11) we get(
ρ2ρ3(v

2
± + 1) + κ12ν±

)
u2 + μ±u+ (ρ2ρ3 − κ23) (v

2
± + 1) = 0

which gives the possible values of u, while for w they can be specified from the

equation(
ρ1ρ2(v

2
± + 1) + κ23ν±

)
w2 + μ±w + (ρ1ρ2 − κ12) (v

2
± + 1) = 0.

All considerations in the previous section are applicable here, except for the re-

lations, derived from the composition law for the vector parameters, because the

denominator of (6) vanishes in the symmetric case. This can be concluded directly

from (4). One way to make R(c) symmetric is to set the scalar parameter equal to

zero, but then one gets the identity matrix. The other possibility is to take the limit

| c | → ∞ in (4), which is the only way to obtain a half turn of the type (18). Since

this limiting procedure yields a vanishing denominator for the composition of the

vector parameters in (6), we have

(c1, c2) + (c1, c3) + (c2, c3)− (c1, c2 × c3) = 1.



78 Danail Brezov, Clementina Mladenova and Ivaïlo Mladenov

In terms of the scalar parameters it can be rewritten as

κ12uv + κ13uw + κ23vw − ωuvw = 1. (22)

On the other hand, once we have the value of v fixed from (19), we may use directly

the results (13) and (14) in the limit τ → ∞ in order to obtain

u(v) =
(κ23 − ρ2ρ3) v

(ρ1ρ̃1 + ρ2ρ̃2) v + ρ1ρ3 − κ13
(23)

w(v) =
(κ12 − ρ1ρ2) v

(ρ2ρ̃2 + ρ3ρ̃3) v + ρ1ρ3 − κ13

which concludes the solution in the symmetric case.

Actually, it is possible to obtain equation (19) by the same construction, so it is

sufficient to resolve the symmetric case. Note also that in general we can express

any two of the scalar parameters as a function of the complementary one just as in

equations (23), i.e.,

u(w) =
(ρ2ρ3 − κ23)w

(ρ3ρ̃3 − ρ1ρ̃1)w + ρ1ρ2 − κ12
(24)

v(w) =
(κ13 − ρ1ρ3)w

(ρ2ρ̃2 + ρ3ρ̃3)w + ρ1ρ2 − κ12

and finally

v(u) =
(κ13 − ρ1ρ3)u

(ρ1ρ̃1 + ρ2ρ̃2)u+ ρ2ρ3 − κ23
(25)

w(u) =
(ρ1ρ2 − κ12)u

(ρ1ρ̃1 − ρ3ρ̃3) v + ρ2ρ3 − κ23

and this comes quite handy for our further considerations.

We conclude this section with the examples from the previous one, this time written

for half turns. For the Bryan decomposition when the axes of rotation coincide with

the coordinate axes, we easily find the solutions to be(
u±
w±

)
= − 1

n̂2v±

(
n̂3v± + n̂1

n̂1v± + n̂3

)
while in the Euler case we have(

u±
w±

)
=

1

n̂1

(
n̂3v± − n̂2

n̂3v± + n̂2

)
·
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Furthermore, one needs to substitute the solutions to (8) in both cases - the former

being

v± =
−1±

√
1− 4n̂2

1n̂
2
3

2n̂1n̂3

while for the latter we have

v± = ±
√
n̂2
1 + n̂2

2

n̂3
·

One may easily verify that in the first case we have, uvw = −1, as promised by

formula (22), while in the second one, the relation is uw = 1.

The cases, in which the denominators vanish, correspond to either decomposing

into two rotations, or half turns, appearing in the decomposition. These require

slightly different techniques, developed in the following two sections.

4. Decomposition Into Two Rotations

There is one more question that needs to be discussed in the present context.

Namely, in certain cases one may ask if it is possible to write the vector decompo-

sition for two, rather than three, rotational matrices, i.e.,

R(c) = R(vĉ2)R(uĉ1). (26)

Then we need to specify only two parameters, but have less relations to work with.

Generally speaking, it is not clear whether such a representation is possible at all,

and a consistent treatment of the problem should clarify what conditions have to be

fulfilled in order to alow it. If we apply the same approach as we did in the generic

case, we end up with much simplified relations for the parameters

(ĉ2,R(c) ĉ1) = (ĉ2,R(vĉ2)R(uĉ1) ĉ1) = (ĉ2, ĉ1)

(ĉ2,R(c) ĉ2) = (ĉ2,R(vĉ2)R(uĉ1) ĉ2) = (ĉ2,R(uĉ1) ĉ2)

(ĉ1,R(c) ĉ1) = (ĉ1,R(vĉ2)R(uĉ1) ĉ1) = (ĉ1,R(vĉ2) ĉ1) .

From the first equation we have

σ21 = κ21 (27)

which can be considered as a necessary condition for the existence of decompo-

sition (26). In [26] it is shown that this condition is also sufficient, provided that

κ12 �= ±1, as in this case we have one, rather than two axes.



80 Danail Brezov, Clementina Mladenova and Ivaïlo Mladenov

From the second and the third relation we easily get the solutions for the scalar

parameters u and v in the form

u± = ±
√

1− σ22
1 + σ22 − 2κ212

= ± sin θ2
2√

cos2 θ2
2 − cos2 γ12

(28)

v± = ±
√

1− σ11
1 + σ11 − 2κ212

= ± sin θ1
2√

cos2 θ1
2 − cos2 γ12

where γ12 is the angle between ĉ1 and ĉ2, and θk - that one by which R(c) rotates

the vector ĉk. A simple geometrical argument shows that the denominators vanish

only if c⊥ ĉ1,2, which needs to be discussed separately. Note that in the particular

case of perpendicular axes (κ12 = 0) we have

u± = ±tan
θ2
2
, v± = ±tan

θ1
2

which leads to |ψ1| = |θ2|, |ψ2| = |θ1| and the connection between the angles

ψk and ϕ becomes apparent from Rodrigues’ formula (3), since after taking an

appropriate scalar products one ends up with

cos θk = cosϕ+ (1− cosϕ) cos2 βk, βk = �(n̂, ĉk).

Also note that (28) demands an additional pair of conditions

1 + σkk ≥ 2κ221, k = 1, 2

to be fulfilled in order to guarantee real solutions. These inequalities always hold

for a simple geometrical reason: the maximal value of θk is obtained when n̂ is

perpendicular to the plane, determined by the two rotational axes. Then R(c) is

decomposed into a pair of reflections and the resulting angle equals in absolute

value twice the angle between the two axes, that is |θk| = 2min(|γ |, |π − γ |),
k = 1, 2.

Next, we use the two vector compositions, we obtain from (26)

〈c,−c1〉 = c2, 〈−c2, c〉 = c1

which produce directly

u =
ξ1 − κ12(1 + ξ1)ξ2

1− κ212(1− ξ1)(1− ξ2)
, v =

ξ2 − κ12(1 + ξ2)ξ1
1− κ212(1− ξ1)(1− ξ2)

· (29)
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The easiest solution once more appears to be the case of perpendicular axes κ12=0.

Then we have u = ξ1 and v = ξ2. Since these solutions are bound to coincide with

the obtained above, we have

tan
θ2
2

= ±tan
ϕ

2
cosβ1, tan

θ1
2

= ±tan
ϕ

2
cosβ2.

Here we present another set of equivalent formulae, obtained by the method, pre-

sented at the end of Section 2. First we note that equation (17) can be cast in the

form

σij − κij = (ρiρj − κij)(1− cosϕ)− εijkρ̃k sinϕ

leading to the expressions for τ in the cases of two axes decomposition

σij = κij =⇒ (ρiρj − κij)τ = εijkρ̃k. (30)

Obviously, their explicit forms are given by the formulas

σ21 = κ21 ⇒ τ=
ρ̃3

κ12−ρ1ρ2

σ32 = κ32 ⇒ τ=
ρ̃1

κ23−ρ2ρ3
(31)

σ31 = κ31 ⇒ τ=
ρ̃2

ρ1ρ3−κ13
·

The rest of the procedure is basically considering the limit w → 0 in the case we

rotate about the first and the second axis, and similarly for the other two parameters.

Note that (30) guarantees that the limit will always be of the type
0

0
, so we may

use l’Hôspital’s rule to obtain that when w → 0 (or w → ∞) is applied to (13),

(14) and (15) produce the following expressions

u =
(ρ2ρ3 − κ23)τ + ρ̃1

(ρ3ρ̃3 − ρ1ρ̃1)τ + κ12ρ3 − κ23ρ1
(32)

v =
(κ13 − ρ1ρ3)τ + ρ̃2

(ρ2ρ̃2 + ρ3ρ̃3)τ + κ12ρ3 − κ13ρ2
·

On the same footing when v → 0,∞ we have additionally

u =
(κ23 − ρ2ρ3)τ − ρ̃1

(ρ1ρ̃1 + ρ2ρ̃2)τ + κ23ρ1 − κ13ρ2
(33)

w =
(κ12 − ρ1ρ2)τ − ρ̃3

(ρ2ρ̃2 + ρ3ρ̃3)τ + κ12ρ3 − κ13ρ2
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and finally for u → 0,∞

v =
(κ13 − ρ1ρ3)τ + ρ̃2

(ρ1ρ̃1 + ρ2ρ̃2)τ + κ23ρ1 − κ13ρ2
(34)

w =
(κ12 − ρ1ρ2)τ − ρ̃3

(ρ3ρ̃3 − ρ1ρ̃1)τ + κ12ρ3 − κ23ρ1
·

If, on the other hand, R(c) is a half turn itself

O(n̂) = R(vĉ2)R(uĉ1)

we may use (12) and then explore it in the limit τ → ∞. In this case

ρ1ρ2 − κ12 = 0 (35)

so we may use once more l’Hôpital’s rule in order to obtain

u =
ρ2ρ3 − κ23
ρ3ρ̃3 − ρ1ρ̃1

, v =
κ13 − ρ1ρ3
ρ2ρ̃2 + ρ3ρ̃3

· (36)

If the rotations are about the first and the third axis, and the condition κ13 = ρ1ρ3
holds, we can proceed in the same way by using directly (23) for the case v → 0
to end up with

u =
κ23 − ρ2ρ3
ρ1ρ̃1 + ρ2ρ̃2

, w =
κ12 − ρ1ρ2
ρ2ρ̃2 + ρ3ρ̃3

· (37)

Finally, decomposition about the second and the third axis demands that the con-

dition κ23 = ρ2ρ3 is fulfilled and via (25) and l’Hôpital’s rule we obtain

v =
κ13 − ρ1ρ3
ρ1ρ̃1 + ρ2ρ̃2

, w =
ρ1ρ2 − κ12
ρ1ρ̃1 − ρ3ρ̃3

· (38)

Let us briefly discuss the problem of vanishing denominators in equations (28).

This phenomenon is quite natural to appear, since the scalar parameters are allowed

to take infinite values in the symmetric case. In particular R(c) can be symmetric

as well - for example a half turn about OZ that is being decomposed into a product

of two half turns (about OX and OY respectively), or two mirror reflections with

respect to perpendicular planes, as basic geometry teaches us. We can still come

up with a solution - whenever σ11 + 1 = 2κ212 for example, it is clear that ψ2 = π
and although the corresponding scalar parameter diverges, we may construct the

matrix R(c2) based on (18). Cases like this are considered into more detail in the

next section.
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5. Cases Involving a Half Turn

As has been thoroughly discussed above, the decomposition of a half turn into

two or three rotations is not much different compared to the decomposition of

a generic orthogonal matrix, especially on the level of quadratic equations. On

the contrary, if a half turn takes part in the decomposition, the picture changes

drastically due to the divergent scalar parameter. In this section we present several

simple tricks to recognize and deal with the presence of one or more half turns in

the decomposition.

Our strategy here is rather simple. We study the asymptotic behavior of the so-

lutions (13), (14) and (15) as the corresponding parameter tends to infinity. The

solutions tend to be as in the case of decomposition by two rotations, so we may

take advantage of (32), (33) and (34) in the generic case and respectively (36), (37),

(38) in the symmetric one.

Similarly, for two half turns we consider the double limit asymptotic and for this

purpose we use a slightly different technique. Namely, instead of multiplying the

equations in (12) by ĉ×k we take the scalar products with ĉk and in this way we

obtain the dependance of each parameter on the remaining two

u(v, w) =
ρ1τ − κ12v − κ13w + ωvw − ρ̃3vτ + ρ̃2wτ − m̃vwτ

1− κ23vw + ρ2vτ + ρ3wτ − ρ̃1vwτ

v(u,w) =
ρ2τ − κ12u− κ23w + ωuw − ρ̃3uτ − ρ̃1wτ − m̃uwτ

1− κ13uw + ρ1uτ + ρ3wτ + ρ̃2uwτ
(39)

w(u, v) =
ρ3τ − κ13u− κ23v + ωuv + ρ̃2uτ − ρ̃1vτ − m̃uvτ

1− κ12uv + ρ1uτ + ρ2vτ − ρ̃3uvτ

where

m̃ = κ12ρ3 + κ23ρ1 − κ13ρ2.

As a consequence we have the relations

lim
v,w→∞u(v, w) =

m̃τ − ω

ρ̃1τ + κ23

lim
u,w→∞ v(u,w) =

m̃τ − ω

κ13 − ρ̃2τ
(40)

lim
u,v→∞w(u, v) =

m̃τ − ω

ρ̃3τ + κ12
·
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For the symmetric case we consider the limits of the above formulas when τ → ∞
and obtain a remarkably simple solution to the problem

u =
m̃

ρ̃1
, v = − m̃

ρ̃2
, w =

m̃

ρ̃3
· (41)

The above formulae, together with their asymptotic behavior, practically cover all

non-degenerate cases. In the following we discuss some geometrical arguments

concerning the conditions under which certain decomposition involves a half turn.

5.1. The Case of Two Rotations

First we consider the case of two rotations as described in the previous section. As

mentioned above, the most singular case is when the rotation matrix R(c) is itself

a half turn and has to be decomposed into a pair of half turns about the axes ĉ1
and ĉ2 respectively. This is the same as a decomposition into a pair of reflections,

which is only possible if the three axes are perpendicular to each other

ρ1 = ρ2 = κ12 = 0. (42)

More generally, a rotation R(c) is decomposed into a pair of half turns if its axis

n̂ is perpendicular to the plane determined by the vectors ĉ1 and ĉ2, and the angle

ϕ is equal to twice the angle between the axes. This may be written as

ρ1 = ρ2 = 0, κ212 =
1

1 + τ2
· (43)

Another option is to decompose a half turn into a generic rotation and another half

turn

O(n̂) = O(ĉ2)R(uĉ1).

Multiplying both sides of the above equation on the left with O(ĉ2), we end up

with the previous situation - decomposition of R(c1) into a pair of half turns. The

orthogonality condition demands

κ12 = ρ1 = 0 (44)

which can be used as a test, and if it is fulfilled, we have for the vector parameter

c1 = 〈c2, c〉 which, considered in the limit v, τ → ∞, yields

c1 =
n̂× ĉ2
(n̂, ĉ2)

·
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The value of the scalar parameter is fixed by the defining identity

u = (ĉ1, c1) =
(ĉ1, n̂× ĉ2)

(n̂, ĉ2)
= − ρ̃3

ρ2
· (45)

A more direct way to obtain the same result is to set w = 0 and let v, τ → ∞ in

(39).

In particular, if we have ρ2 = 0 in addition to the orthogonality conditions, we may

conclude that R(c1) is also a half turn. Obviously, the case in which the factors on

the right hand side are exchanged, i.e.,

O(n̂) = R(vĉ2)O(ĉ1)

is quite similar and can be treated in the same way. This time the test produces the

relations

κ12 = ρ2 = 0 (46)

and the actual solution can be derived from the equation

c2 =
ĉ1× n̂

(n̂, ĉ1)
·

Therefore, for the scalar parameter we have the formula

v = (ĉ2, c2) =
(ĉ2, ĉ1× n̂)

(n̂, ĉ1)
= − ρ̃3

ρ1
(47)

which can be obtained also from (39) at w → 0, in the limit u, τ → ∞.

Finally, let us consider the case

R(c) = O(ĉ2)R(uĉ1).

Choosing a suitable scalar product, one easily recovers the condition of vanishing

denominator in the first relation of (28)

2κ212 = 1 + σ11 (48)

which is quite convenient to use as a test.

If the above condition is satisfied, we easily find

u = − 1

ξ1
=

ρ1ρ2 − κ12
ρ1ρ̃3

(49)

using the condition that ensures the vanishing of the denominator of composition

vector 〈c,−c1〉 and the first relation in (31).
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In the case

R(c) = R(vĉ2)O(ĉ1)

analogous considerations lead to the formula

v = − 1

ξ2
=

ρ1ρ2 − κ12
ρ2ρ̃3

(50)

as long as the condition

2κ212 = 1 + σ22 (51)

is fulfilled.

Table 1. Two axes decompositions.

Decomposition Criteria u v

R(c) = R(vĉ2)R(uĉ1) (27) (29) (29)

R(c) = O(ĉ2)R(uĉ1) (27), (48) (49) ∞
R(c) = R(vĉ2)O(ĉ1) (27), (51) ∞ (50)

R(c) = O(ĉ2)O(ĉ1) (43) ∞ ∞
O(n̂) = R(vĉ2)R(uĉ1) (35) (36) (36)

O(n̂) = O(ĉ2)R(uĉ1) (44) (45) ∞
O(n̂) = R(vĉ2)O(ĉ1) (46) ∞ (47)

O(n̂) = O(ĉ2)O(ĉ1) (42) ∞ ∞

Exploiting the same technique, we easily obtain the solutions for the decomposi-

tions into rotations about the first and the third, respectively the second and the

third axes. The above formulae remain valid for u,w, respectively v, w with only

a slight adjustment of the indices.

All cases of two axes decompositions of rotations, along with the precise condi-

tions under which they are justified, are presented in Table 1.
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5.2. The Case of Three Rotations

Now we focus on the generic case. To begin with, if R(c) is decomposed as

R(c) = O(ĉ3)R(vĉ2)R(uĉ1) (52)

it would be convenient to use the fact that O(ĉ3) is an involution and multiply with

it on the left. Then we may consider the equality of the matrix elements

(ĉ2, O(ĉ3)R(c)ĉ1) = (ĉ2, R(vĉ2)R(uĉ1)ĉ1)

that can be written also as

2κ23σ31 = κ12 + σ21. (53)

The latter can be used as a test whether R(c3) is actually a half turn. This can

be also interpreted as a condition that the product O(ĉ3)R(c) can be decomposed

into a pair of rotations with respect to ĉ1 and ĉ2 in that order.

As for the composition of vector parameters in the divergent case, it is a simple

matter of asymptotic behavior. For example in the formula

〈c3, c〉 = wĉ3 + τ n̂+ wτ ĉ3× n̂

1− wτ (ĉ3, n̂)

the limit w → ∞ depends on two things: whether τ also diverges and whether

n̂ ⊥ ĉ3. The latter corresponds to a half turn about the rotated vector ĉ3 while the

former indicates that the rotation we decompose is a half turn itself. In that case

(τ → ∞) the resultant vector of the composition is

c̃ = lim
w,τ→∞〈c3, c〉 = n̂× ĉ3

(n̂, ĉ3)
, | c̃ | = ±tan�(n̂, ĉ3)

and therefore the angle of the compound rotation equals twice the angle between

the lines (or planes), determined by n̂ and ĉ3, which illustrates an old theorem

from elementary geometry.

If τ is finite on the other hand, the composition law gives

c̃ = lim
w→∞〈c3, c〉 = n̂× ĉ3

(n̂, ĉ3)
− ĉ3

τ (n̂, ĉ3)
·

In each case the problem is reduced to decomposing a rotation, determined by its

vector parameter c̃ given above, into two successive rotations about the axes ĉ1
and ĉ2. The explicit solution for u and v is given directly by (32)

u =
(ρ2ρ3 − κ23)τ + ρ̃1

(ρ3ρ̃3 − ρ1ρ̃1)τ + κ12ρ3 − κ23ρ1
, v =

(κ13 − ρ1ρ3)τ + ρ̃2
(ρ2ρ̃2 + ρ3ρ̃3)τ + κ12ρ3 − κ13ρ2

·
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In the case

R(c) = R(wĉ3)R(vĉ2)O(ĉ1)

we proceed directly by multiplying on the right with O(ĉ1) and considering the

scalar product

(ĉ3, R(c)O(ĉ1)ĉ2) = (ĉ3, R(wĉ3)R(vĉ2)ĉ2)

to obtain the test condition

2κ12σ31 = κ32 + σ32. (54)

As for the solutions - they are given by the formulas (34)

v =
(κ13 − ρ1ρ3)τ + ρ̃2

(ρ1ρ̃1 + ρ2ρ̃2)τ + κ23ρ1 − κ13ρ2
, w =

(κ12 − ρ1ρ2)τ − ρ̃3
(ρ3ρ̃3 − ρ1ρ̃1)τ + κ12ρ3 − κ23ρ1

·

Concerning the vector parameters, the results can be easily derived from 〈c, c1〉,
letting u → ∞. More precisely, we have

lim
u→∞〈c, c1〉 = ĉ1× n̂

(ĉ1, n̂)
− ĉ1

τ(ĉ1, n̂)

for the generic case and

lim
u,τ→∞〈c, c1〉 = ĉ1× n̂

(ĉ1, n̂)
, | c̃ | = ±tan�(ĉ1, n̂)

for the case when R(c) is also a half turn.

In the particular case R(c) = O(ĉ3)O(ĉ2)R(uĉ1) we only need the asymptotic

behavior of (32) in the limit v → ∞ to obtain (40)

lim
v,w→∞u(v, w) =

m̃τ − ω

ρ̃1τ + κ23
·

There are two conditions in this case, namely

2
(
κ13σ31 − κ212

)
= σ11 − 1, (ĉ2×ĉ3,R(c)ĉ1) = ω. (55)

The first one follows directly from a suitably chosen scalar product for the equality

O(ĉ3)R(c) = O(ĉ2)R(uĉ1) and the second one - from the property that R can

be decomposed into a pair of rotations about the axes ĉ1 and ĉ2×ĉ3 (the latter may

be seen from the composition of vector parameters for the product O(ĉ3)O(ĉ2)).

In the case when the denominator vanishes, while the nominator is nonzero, we

obviously have a composition of three half turns, that will be discussed later on.
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In a similar way we obtain

2
(
κ13σ31 − κ223

)
= σ33 − 1, (ĉ3,R(c)ĉ1×ĉ2) = ω (56)

to be the corresponding conditions for the decomposition of the type R(c) =
R(wĉ3)O(ĉ2)O(ĉ1). If satisfied, the parameters w can be easily obtained from

(14) in the limit v → ∞ in (40) which produces

lim
u,v→∞w(u, v) =

m̃τ − ω

ρ̃3τ + κ12
·

If, on the other hand, both (53) and (54) are fulfilled, the decomposition could

be a fact or not as this is not yet a sufficient condition in order to have R(c) =
O(ĉ3)R(vĉ2)O(ĉ1). In this case the value of the scalar parameter u can easily be

found from (13) in the limit u,w → ∞, which is (40)

lim
u,w→∞ v(u,w) =

m̃τ − ω

κ13 − ρ̃2τ
·

The exact condition for such decomposition may easily be found from the equali-

ties O(ĉ3)R(c) = R(vĉ2)O(ĉ1) and R(c)O(ĉ1) = O(ĉ3)R(vĉ2), used in suit-

able scalar products. The result is

σ22 − 1 = 2(σ21κ21 − κ223) = 2(σ23κ23 − κ221). (57)

In the special case of a decomposition of the type R(c) = O(ĉ3)O(ĉ2)O(ĉ1) and

considering the equality of vector parameters 〈c3, c〉 = 〈c2, c1〉 one finds that

κ12 + ρ̃3τ = κ23 + ρ̃1τ = κ13 − ρ̃2τ = 0 (58)

which can be interpreted as a condition for zero denominators in (40).

Another interesting situation is a half turn, appearing in the middle of the decom-

position, i.e.,

R(c) = R(wĉ3)O(ĉ2)R(uĉ1).

When used in a suitable scalar product the above equality yields

σ31 = 2κ12κ23 − κ13 (59)

which can be utilized as a test whether or not our decomposition really involves a

half turn in the middle. Applying the very same technique as before, we come to

the equations in (33)

u =
(κ23 − ρ2ρ3)τ − ρ̃1

(ρ1ρ̃1 + ρ2ρ̃2)τ + κ23ρ1 − κ13ρ2
, w =

(κ12 − ρ1ρ2)τ − ρ̃3
(ρ2ρ̃2 + ρ3ρ̃3)τ + κ12ρ3 − κ13ρ2

·
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It remains to discuss what happens if R(c) is itself a half turn. In each subcase

here, the construction we built at the end of Section 3 will suffice.

In order to answer the question properly, let us consider for the concreteness the

case O(n̂) = O(ĉ3)R(vĉ2)R(uĉ1). The condition for which we are looking for

can be obtained from a simple geometrical argument which relies on the obvious

fact that the rotation O(ĉ3)O(n̂) should be decomposable into a pair of rotations

about the first and the second axis in that order. The analogue of (53) for this case

yields

2κ23ρ1ρ3 = ρ1ρ2 + κ13κ23. (60)

The solutions for u and v are identical to the results in (36)

u =
ρ2ρ3 − κ23
ρ3ρ̃3 − ρ1ρ̃1

, v =
κ13 − ρ1ρ3
ρ2ρ̃2 + ρ3ρ̃3

as we can rely once more on l’Hôpital’s rule, this time in the limit w → ∞.

For the case O(n̂) = R(wĉ3)R(vĉ2)O(ĉ1), following the same construction, we

easily obtain the condition

2κ12ρ1ρ3 = ρ2ρ3 + κ12κ13 (61)

and the solution is the same as in (38)

v =
κ13 − ρ1ρ3
ρ1ρ̃1 + ρ2ρ̃2

, w =
ρ1ρ2 − κ12
ρ1ρ̃1 − ρ3ρ̃3

·

Finally, if both v and τ are infinite, that is, if a half turn appears in the middle of

the decomposition of another half turn, we consider the equation

(ĉ3,R(−wĉ3)O(n̂)ĉ1) = (ĉ3,O(ĉ2)R(uĉ1)ĉ1)

in order to obtain the equality

ρ1ρ3 = κ12κ23 (62)

that can be used as a test condition.

The solutions, once more, can be borrowed this time from (37)

u =
κ23 − ρ2ρ3
ρ1ρ̃1 + ρ2ρ̃2

, w =
κ12 − ρ1ρ2
ρ2ρ̃2 + ρ3ρ̃3

·

In some circumstances, say κ12 = κ23 = 0 and ρ = 0, which may occur in

the classical Euler case of coincident first and third axes, the respective equations
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from (37) becomes useless and the only relation for the two variables (obtained

from (13) in the limit v, τ → ∞ ) turns out to be

ρ̃1uw = ρ̃3. (63)

So, in such cases the decomposition depends on an arbitrary scalar parameter and

therefore we may, with clear conscious, call such solutions “degenerate”. This in-

teresting situation deserves special treatment and will be illustrated by an example

further on.

For the cases of two half turns in the decomposition, we use the conditions (55) and

(56), written for the symmetric case and double limit in the equations (39), leading

to (40) and (41). In the specific case O(n̂) = O(ĉ3)R(vĉ2)O(ĉ1), one may use

the equalities O(ĉ3)O(n̂) = R(vĉ2)O(ĉ1) and O(n̂)O(ĉ1) = O(ĉ3)R(vĉ2) in

suitably chosen scalar products to obtain

ρ̃2κ23 + ρ̃3 = 0, ρ̃2κ21 + ρ̃1 = 0. (64)

The explicit solution given by (41) is

u =
m̃

ρ̃1
, v = − m̃

ρ̃2
, w =

m̃

ρ̃3
·

Similarly, we obtain the remaining two conditions using the same technique as in

(55) and the additional equality

ρ1ρ̃1 + ρ2ρ̃2 + ρ3ρ̃3 = ω.

We have

ρ21 − 2ρ1ρ3κ13 = 1− κ212 − κ213, ρ2ρ̃2 + ρ3ρ̃3 = 0 (65)

for O(n̂) = O(ĉ3)O(ĉ2)R(uĉ1) and respectively

ρ23 − 2ρ1ρ3κ13 = 1− κ213 − κ223, ρ1ρ̃1 + ρ2ρ̃2 = 0 (66)

for O(n̂) = R(wĉ3)O(ĉ2)O(ĉ1). In particular O(n̂) can be decomposed into

three half turns. Elementary geometrical argument shows that this is only possible

if

ρ̃ = 0 (67)

which is equivalent to the condition that the vectors ĉk determine a plane and n̂
belongs to it.
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6. The Identity Transformation

For the sake of thoroughness we also consider the trivial case R ≡ I. Since this

is the only representative of SO(3) for which the invariant axis is not unique, it

deserves a special treatment. As neither of the objects ρ, ρ̃ and ξ is well defined,

we cannot use our main construction (12) here, but we can still take advantage of

the vector parameter composition law in three different ways

c1 = 〈−c2,−c3〉, c2 = 〈−c3,−c1〉, c3 = 〈−c1,−c2〉. (68)

The idea is still quite similar to (12) - we multiply the kth equality in the system

with ĉ×k and then consider the scalar products with ĉ2 for the first, respectively ĉ3
for the second and ĉ1 for the third relation

(κ13 − κ12κ23)vw + ωw = 0

(κ12 − κ13κ23)uw + ωu = 0 (69)

(κ23 − κ12κ13)uv + ωv = 0.

In this way we guarantee maximal rank, unless ĉ1 and ĉ3 are parallel, in which

case ( or more generally in the case ω = 0) we have v = 0, that can also be derived

from the particular form of (8) in this setting

(κ31 − κ12κ23) v
2 + ωv = 0 (70)

where the solutions are easily obtained as

v− = 0, v+ =
ω

κ12κ23 − κ13
· (71)

Note that two axes decompositions are only possible for the first and the third axis,

and only if they are collinear. Then v− = v+ and we have the trivial R1 = R−1
3 so

ê1 ‖ ê3 ⇒ v = 0 (72)

leading to a single relation for the two parameters

u+ κ13w = 0. (73)

Actually this is another example of a degenerate solution (including half turns as

a limiting case) and the only one corresponding to ω = 0 (besides the trivial one

u = v = w = 0).

Because in the regular case

ω �= 0 (74)
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and as long as no half turns are present in the decomposition, the system (69)

produces the solutions u = v = w = 0, and

u =
ω

κ12κ13 − κ23
, v =

ω

κ12κ23 − κ13
, w =

ω

κ13κ23 − κ12
· (75)

Note that the denominators coincide with the corresponding conditions for the

presence of a half turn, which also follows from other considerations, thoroughly

discussed in Section 5.2. In particular if

κ12κ23 − κ13 = 0 (76)

then we have a decomposition of the type

I = R(c3)O(ĉ2)R(c1).

The solutions for u and w can still be derived from (75) as long as none of the

remaining two parameters diverges. In a similar way we may write

κ13κ23 − κ12 = 0 ⇒ I = O(ĉ3)R(c2)R(c1) (77)

or

κ12κ13 − κ23 = 0 ⇒ I = R(c3)R(c2)O(ĉ1) (78)

and each time the remaining two (non-divergent) parameters can be found using

the formulas in (75).

On the other hand, in the case of two half turns it would be more convenient to

derive another system for the scalar parameters, and we do so by considering the

dot product of the kth relation in (68) with ĉk. This allows to write down each of

the parameters as a function of the other two

u=
ωvw−κ12v−κ13w

1− κ23uv
, v=

ωuw−κ12u−κ23w

1− κ13uw
, w=

ωuv−κ13u−κ23v

1− κ12uv

and we can take double limits

κ12 = κ13 = 0 ⇒ u = lim
v,w→∞u(v, w) = − ω

κ23

κ12 = κ23 = 0 ⇒ v = lim
u,w→∞ v(u,w) = − ω

κ13
(79)

κ13 = κ23 = 0 ⇒ w = lim
u,v→∞w(u, v) = − ω

κ12

provided that the corresponding conditions are fulfilled. Note that the latter can be

derived from both geometric and algebraic considerations, as it has been already

done in the cases, discussed in Section 5.2. In particular, if

κ12 = κ13 = κ23 = 0 (80)



94 Danail Brezov, Clementina Mladenova and Ivaïlo Mladenov

we encounter a decomposition into three half turns I = O(ĉ3)O(ĉ2)O(ĉ1).

With this we exhaust all possibilities for the decomposition of the rotations in R
3

into two or three successive rotations about initially given axes. In the next section

we illustrate our methods on the well-known examples treated in [20] and [32], as

well as some more exotic cases, consistently ignored up to now by other authors.

The suggested generalizations and directions for further studies can be found at the

end of the paper. An outline of the algorithm is presented as a flowchart in Fig. 1.

In Table 2 we have presented all possible decompositions of rotations with respect

to three axes, along with the corresponding conditions.

7. Examples

A brief formulation of the proposed approach to various decompositions of the ro-

tational matrices is illustrated in Fig. 1. Here we will consider various applications

of our scheme (see also [2]).

We will start with the Euler and Bryan decompositions of the symmetric orthogo-

nal matrix

O(n̂) =
1

3

⎛⎝−1 2 2
2 −1 2
2 2 −1

⎞⎠ =⇒ n̂t =
1√
3
(1, 1, 1) (81)

which plays an essential role in the construction of the minimal atlas for the rota-

tional group SO(3) [11]. Our concern here will be the decomposition of this half

turn rotation into three consecutive rotations about the axes

ĉt1 =
1√
3
(1,−1,−1), ĉt2 =

1√
3
(−1, 1,−1), ĉt3 =

1√
3
(−1,−1, 1).

Using the algorithm described above, we obtain the scalar parameters (u, v, w),
the angles of rotation (in degrees)

ψt =
180◦

π
(2 arctanu, 2 arctan v, 2 arctanw)

and thus the matrix decomposition (7).

For the so chosen matrix (81) we obtain, via the techniques described in Section 2,

only one solution (u, v, w) = (−
√
3,

1√
3
,−

√
3) since equation (8) has zero dis-

criminant. For the respective angles we have

(ψ1, ψ2, ψ3) = (−120◦, 60◦,−120◦)
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Table 2. Three axes decompositions. (∗) degenerate one parameter families of solutions

are possible, in which there is a single nontrivial relation for the two unknowns. (∗∗)
degenerate solutions, corresponding to mutually inverse rotations about parallel axes.

Decomposition Criteria u v w

R(c) = R(wĉ3)R(vĉ2)R(uĉ1) (9) (13) (16) (14)

R(c) = O(ĉ3)R(vĉ2)R(uĉ1) (53) (32) (32) ∞
R(c) = R(wĉ3)O(ĉ2)R(uĉ1) (59) (33) ∞ (33)

R(c) = R(wĉ3)R(vĉ2)O(ĉ1) (54) ∞ (34) (34)

R(c) = O(ĉ3)O(ĉ2)R(uĉ1) (55) (40) ∞ ∞
R(c) = R(wĉ3)O(ĉ2)O(ĉ1) (56) ∞ ∞ (40)

R(c) = O(ĉ3)R(vĉ2)O(ĉ1) (54), (57) ∞ (40) ∞
R(c) = O(ĉ3)O(ĉ2)O(ĉ1) (55), (58) ∞ ∞ ∞
O(n̂) = R(wĉ3)R(vĉ2)R(uĉ1) (9) (23) (20) (23)

O(n̂) = O(ĉ3)R(vĉ2)R(uĉ1) (60) (36) (36) ∞
O(n̂) = R(wĉ3)O(ĉ2)R(uĉ1) (62) (37), (63) (∗) ∞ (37), (63) (∗)
O(n̂) = R(wĉ3)R(vĉ2)O(ĉ1) (61) ∞ (38) (38)

O(n̂) = O(ĉ3)O(ĉ2)R(uĉ1) (65) (41) ∞ ∞
O(n̂) = R(wĉ3)O(ĉ2)O(ĉ1) (66) ∞ ∞ (41)

O(n̂) = O(ĉ3)R(vĉ2)O(ĉ1) (64) ∞ (41) ∞
O(n̂) = O(ĉ3)O(ĉ2)O(ĉ1) (67) ∞ ∞ ∞

I = R(wĉ3)R(vĉ2)R(uĉ1) (74) (75) (75) (75)

I = O(ĉ3)R(vĉ2)R(uĉ1) (74), (77) (75) (75) ∞
I = R(wĉ3)O(ĉ2)R(uĉ1) (74), (77) (75) ∞ (75)

I = R(wĉ3)R(vĉ2)O(ĉ1) (74), (77) ∞ (75) (75)

I = O(ĉ3)O(ĉ2)R(uĉ1) (74), (79) (79) ∞ ∞
I = R(wĉ3)O(ĉ2)O(ĉ1) (74), (79) ∞ ∞ (79)

I = O(ĉ3)R(vĉ2)O(ĉ1) (74), (79) ∞ (79) ∞
I = O(ĉ3)O(ĉ2)O(ĉ1) (74), (80) ∞ ∞ ∞
I = R(wĉ3)R(uĉ1) (72) (73) (∗∗) 0 (73) (∗∗)
I = O(ĉ3)O(ĉ1) (72) ∞ 0 ∞

and the corresponding rotations about the fixed axes are

R1 =

⎛⎝ 0 −1 0
0 0 1

−1 0 0

⎞⎠ , R2 =
1

3

⎛⎝ 2 1 2
−2 2 1
−1 −2 2

⎞⎠ , R3 =

⎛⎝ 0 1 0
0 0 −1

−1 0 0

⎞⎠.
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However, there is one more solution, which corresponds to a half turn, appearing

in the middle of the decomposition as it is easy to see that the condition (62) is

fulfilled, and since κ12 �= 0, we can resolve for the unknown u in order to w and

obtain (u, v, w) = (

√
3

2
,∞,

√
3

2
), or ψt = (81.785◦, 180◦, 81.785◦), leading to

R1 =
1

7

⎛⎝ 3 −2 −6
6 3 2
2 −6 3

⎞⎠ , R2 =
1

3

⎛⎝−1 −2 2
−2 −1 −2
2 −2 −1

⎞⎠ , R3 =
1

7

⎛⎝ 3 2 −6
−6 3 −2
2 6 3

⎞⎠
which covers the Bryan case. It is necessary to mention also that all even permuta-

tions of the axes give the same angles of rotation, while for the odd ones we only

need to invert the sign.

As for the Euler case, we use the above set of axes with the modification ĉ3 ≡ ĉ1.

Here we find only one solution (u, v, w) = (−
√
3,∞,

√
3), that can be written

with the help of the trigonometric formulas as ψt = (−120◦, 180◦, 120◦) and

which matrix forms are

R1 =

⎛⎝ 0 −1 0
0 0 1

−1 0 0

⎞⎠ , R2 =
1

3

⎛⎝−1 −2 2
−2 −1 −2
2 −2 −1

⎞⎠ , R3 =

⎛⎝ 0 0 −1
−1 0 0
0 1 0

⎞⎠.

Next we consider a rotation about the diagonal of the first octant (so n̂ is as in

the previous example) by an angle ϕ =
2π

3
and look for its decomposition into

two successive rotations by angles ψ1 = ψ2 =
π

2
about OY , OX and OZ axes

in that order. There is a pair of twofold solutions since we have two equality

relations - both κ21 = σ21 = 0 and κ32 = σ32 = 0. For the first one we have

(u, v, w) = (1, 1, 0) and thus ψ = (90◦, 90◦, 0◦)t which gives the decomposition

in explicit form as

R =

⎛⎝ 0 0 1
1 0 0
0 1 0

⎞⎠ =

⎛⎝ 1 0 0
0 0 −1
0 1 0

⎞⎠ ⎛⎝ 0 0 1
0 1 0

−1 0 0

⎞⎠ = R2R1

while for the second solution (u, v, w) = (0, 1, 1), ψt = (0◦, 90◦, 90◦) and the

matrix decomposition can be written as

R =

⎛⎝ 0 0 1
1 0 0
0 1 0

⎞⎠ =

⎛⎝ 0 −1 0
1 0 0
0 0 1

⎞⎠⎛⎝ 1 0 0
0 0 −1
0 1 0

⎞⎠ = R3R2.

Apart from these two solutions, we have two more involving half turns. For exam-

ple, if we test whether decomposition in the form (52) is possible, we find that it is,
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since the condition (53) is fulfilled and no more half turns are allowed because the

orthogonality conditions do not hold, so finally we obtain (u, v, w) = (−1, 1,∞),
ψt = (−90◦, 90◦, 180◦) and the matrices in the decomposition turns out to be

R1 =

⎛⎝ 0 0 −1
0 1 0
1 0 0

⎞⎠ , R2 =

⎛⎝ 1 0 0
0 0 −1
0 1 0

⎞⎠ , R3 =

⎛⎝−1 0 0
0 −1 0
0 0 1

⎞⎠.

It turns out that a half turn may appear in the decomposition on the right as well.

Applying the same procedure (described in Section 5.2), we obtain (u, v, w) =
(∞, 1,−1), ψt = (180◦, 90◦,−90◦) and thus

R1 =

⎛⎝−1 0 0
0 1 0
0 0 −1

⎞⎠ , R2 =

⎛⎝ 1 0 0
0 0 −1
0 1 0

⎞⎠ , R3 =

⎛⎝ 0 1 0
−1 0 0
0 0 1

⎞⎠·

The presence of a half turn in the middle, however, is not an option in this case as

(59) is not satisfied, so this gives all possible solutions.

One more exotic example considers the Euler decomposition about the axes OY ,

OX and OY in this order of the half turn O(n̂), where n̂t = (0, 0, 1). Using (62)

one may easily check that a half turn is involved as a middle factor. The interesting

part is that the solutions in this case are infinitely many, depending on one scalar

parameter, since we use only one relation (62) for the two parameters. More pre-

cisely, for any real number u �= 0, setting w = − 1

u
, we obtain a solution. This

means that for any φ �= kπ, ψt = (φ, π, φ−π) is a solution and the corresponding

matrix decomposition is

R=

⎛⎝−1 0 0
0 −1 0
0 0 1

⎞⎠=

⎛⎝− cosφ 0 sinφ
0 1 0

− sinφ 0 − cosφ

⎞⎠⎛⎝1 0 0
0 −1 0
0 0 −1

⎞⎠⎛⎝cosφ 0 − sinφ
0 1 0

sinφ 0 cosφ

⎞⎠·

In particular letting u → ∞ makes w vanish and vice versa. In this way we obtain

the twofold solutions (u, v, w) = (∞,∞, 0) and (u, v, w) = (0,∞,∞) with the

corresponding angular parameters ψt = (π, π, 0) and ψt = (0, π, π) respectively,

as a limiting case of the one parameter family, described above. The corresponding

matrix decompositions are

R =

⎛⎝−1 0 0
0 −1 0
0 0 1

⎞⎠ =

⎛⎝ 1 0 0
0 −1 0
0 0 −1

⎞⎠⎛⎝−1 0 0
0 1 0
0 0 −1

⎞⎠ = R2R1
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for the first case and

R =

⎛⎝−1 0 0
0 −1 0
0 0 1

⎞⎠ =

⎛⎝−1 0 0
0 1 0
0 0 −1

⎞⎠ ⎛⎝ 1 0 0
0 −1 0
0 0 −1

⎞⎠ = R3R2

for the second one.

Our last example is from [32] and [20]. Following these papers, we consider a

rotation by an angle ϕ = 60◦ about the axis, given by the vector n̂ with coordinates

on the unit sphere (θ, φ) = (50◦, 25◦). The convention we are using here for the

azimuthal angle θ ∈ [−π

2
,
π

2
], is adopted from [32], which assumes that it is zero

at the equator and 90◦ at the North Pole. The three axes of rotation are chosen

as follows: the first one is OX , the second one is OY , rotated by 60◦ clockwise

in the XOY plane, and the third one - again OX . With five digits precision our

scheme produces the following results for the angular variables

(ψ+
1 , ψ

+
2 , ψ

+
3 ) = (178.50326◦, −108.73792◦, −40.54766◦)

(ψ−
1 , ψ

−
2 , ψ

−
3 ) = (−102.27231◦, 108.73792◦, 38.67676◦)

which are in complete accordance with the results presented in [32]. If we choose

for the third rotation the axis given by a vector with coordinates (θ, φ) = (80◦, 45◦)
on the unit sphere and keep everything else as before, the results become

(ψ+
1 , ψ

+
2 , ψ

+
3 ) = (−139.78921◦, 179.27102◦,−12.20974◦)

(ψ−
1 , ψ

−
2 , ψ

−
3 ) = (33.72840◦,−4.496982◦, 48.63548◦)

which again agree completely with those presented in [32] and [20].

For the scalar parameters we have respectively

(u+, v+, w+) = (−2.73183, 157.19197,−0.10695)

(u−, v−, w−) = (0.30314,−0.03926, 0.45189)

for the first rotation and

(u+, v+, w+) = (76.55670,−1.39519,−0.36939)

(u−, v−, w−) = (−1.24092, 1.39519, 0.350947)

for the second one. These same numbers are obtained in [20] as well, but in order

to comply with the notations used there, they are given here in the reverse order.
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8. Concluding Remarks

In this article we cover all possibilities for the decomposition of a rotational matrix

into two or three rotations about fixed, initially given axes, following the order they

are given in.

Unlike other articles on the problem, the present one gives explicit solutions also in

the case when some of the scalar parameters in the decomposition become infinite

or vanish.

The procedure of obtaining these solutions is linear, except in some cases for the

middle parameter, for which one may need to solve a simple quadratic equation.

The method is fast and efficient, despite of the various specific cases, which should

be treated separately.

Following the algorithm described above and using any modern programming lan-

guage (we used MAPLE in our tests), one may easily write a routine, that generates

all possible solutions, and eventually selects the most efficient one.

Since the efficiency is a priority as far as applications are concerned, one may also

consider permutations of the given rotational axes, as an addition to the receipt

suggested here, in order to generate more solutions to choose from. However, this

is rather trivial upgrade, so we leave it without further discussion.

Another question to ask in this context is if we can generalize our results to O(3)
and the answer is quite easy - the orthogonal matrices with determinant equal to

−1 can be mapped to SO(3) by a simple multiplication with −I. Therefore, all

our relations remain valid in principle for this more general case, with one slight

inconvenience that we end up with four times more solutions due to the fact that

the factor −I can be assigned to any of the three rotations, or to all of them simul-

taneously. So, we get four times more solutions in this case.

There are many more possible extensions or generalizations. For example relying

on moving frames, as practice very often dictates [13] or lifting to the universal

covering group SU(2) via the use of quaternions [3, 4]. Another almost straight-

forward generalization is the expanding of the above results to the dual groups like

SO(2, 1) and SU(1, 1) [9].

We leave these and many other unanswered questions and problems for further

investigations.
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Figure 1. Flow sheet for decomposition of the rotational matrices.
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