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Abstract. A concise discussion of the three-dimensional irreducible (1,0) and

(0,1) representations of the restricted Lorentz group and their application to the

description of the electromagnetic field is given. It is shown that a mass term is

in conflict with relativistic invariance of a formalism using electric and magnetic

fields only, contrasting the case of the two-component Majorana field equations. An

important difference between the Dirac equation and the Dirac form of Maxwell’s

equations is highlighted by considering the coupling of the electromagnetic field to

the electric current.

1. Introduction

Starting from Lorentz symmetry as the key property of Minkowski space-time in

the framework of the special theory of relativity, we may observe that the classical

electric and magnetic field can be combined into a single photon wave function [3]

Ψ =
1√
2
(E+ iB) , i2 = −1 (1)

where the electric field E and the magnetic field B are three-component real fields

which, for the sake of convenience, shall be written in column matrix form

E(x) =

⎛⎝E1(x)
E2(x)
E3(x)

⎞⎠ , B(x) =

⎛⎝B1(x)
B2(x)
B3(x)

⎞⎠ , x =

⎛⎜⎜⎝
x0

x1

x2

x3

⎞⎟⎟⎠ (2)

in the following. The column vector x denotes Cartesian space-time coordinates

x = (x0 = ct, x1, x2, x3)T = (x0,xT)T = (x0,−x1,−x2,−x3)
T in an orthonor-

mal standard coordinate system in Minkowski space. Throughout the paper, we

will choose a system of units where the speed of light is c = 1.
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Hence, the Maxwell-Faraday equation

∂B

∂t
= −∇×E = −curlE (3)

and Ampère’s circuital law in vacuo

∂E

∂t
= ∇×B (4)

can be cast into one single Lorentz-covariant equation of motion

∂Ψ

∂t
= −i · ∇ ×Ψ . (5)

This was already recognized in lectures by Riemann in the nineteenth century [8].

A short related note can also be found the lecture notes of Sommerfeld [7].

2. Field Equations

Taking the divergence of equation (5)

∇ · Ψ̇ = −i · ∇ · (∇×Ψ) = 0 (6)

readily shows that the divergence of the electric and magnetic field is conserved.

Therefore, if the analytic condition divE = divB = 0 holds due to the absence

of electric or magnetic charges on a space-like slice of space-time, it holds every-

where.

The presence of electric charges and the absence of magnetic charges breaks the

gauge symmetry of equation (5)

Ψ �→ eiαΨ , α ∈ R . (7)

Introducing the antisymmetric matrices Σ̃1, Σ̃2, and Σ̃3 defined by the help of the

totally antisymmetric tensor in three dimensions ε fulfilling ε123 = 1, εlmn =
−εmln = −εlnm

(Σ̃l)mn = iεlmn (8)

Σ̃1 =

⎛⎝ 0 0 0
0 0 i
0 −i 0

⎞⎠ , Σ̃2 =

⎛⎝ 0 0 −i
0 0 0
i 0 0

⎞⎠ , Σ̃3 =

⎛⎝ 0 i 0
−i 0 0
0 0 0

⎞⎠ (9)

equation (5) can be written in the form (∂k = ∂/∂xk , k = 1, 2, 3)

∂Ψ

∂t
= Σ̃k∂kΨ (10)
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or, defining matrices Γμ by Γ0 = Id 3, where Id 3 denotes the 3×3 identity matrix,

and Γk = Σ̃k = −Γk for k = 1, 2, 3, equation (5) finally reads

iΓμ∂μΨ = 0 . (11)

Obviously, the complex conjugate wave functions Ψ∗ fulfills the equation

iΓ̄μ∂μΨ
∗ = 0 (12)

where Γ̄μ = (Id 3, Σ̃1, Σ̃2, Σ̃3).

Defining by the help of the hermitian conjugate field Ψ+ = Ψ∗T the four density

components

T 0μ = Ψ+ΓμΨ (13)

we recover after a short calculation the energy density and the Poynting vector of

the electromagnetic field

ω = T 00 =
1

2
(E2 +B2), sk = T 0k = (E×B)k . (14)

Equations (14) signal a crucial difference between the Dirac equation for a spin- 12
(anti-) particle with mass m

iγμ∂μψ −mψ = 0 (15)

and equation (11), since the (probability) four-current density

jμDirac = ψ+γ0γμψ = ψ̄γμψ (16)

transforms a a vector field, whereas T 0μ = Tμ0 is related to the electromagnetic

stress-energy tensor T μν .

Ψ and Ψ∗ transform according to the (1,0) and (0,1) = (1,0)∗ representation of

the proper Lorentz group (see below). We mention as a historical fact that Fredrik

Jozef Belinfante coined the expression undor when dealing with fields transform-

ing according to some specific representations of the Lorentz group. Here, we term

the complex Riemann-Silberstein three-component field Ψ a bivector field [6], in

order to allow for a clear distinction from vector or spinor fields. Furthermore, this

term was already used by Ludwig Silberstein [6] in 1907.

3. Transformation Properties

E and B transform as vectors under spatial rotations (x0,x′) → (x′0,x′) =
(x0, Rx) according to

C ′(x′) = RC(x) (17)
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where R is an orientation preserving rotation matrix in the special orthogonal group

SO(3) = {R∈Mat(3,R) ; RTR = Id 3, detR = 1} . (18)

The definition of SO(3) is rooted in the preservation of the Euclidean scalar pro-

duct of real three-vectors (x,y) = xTy = (Rx, Ry) = xTRTRy. From RTR =
Id 3 follows detR = ±1; the additional condition detR = 1 excludes spatial

reflections from SO(3).

However, the electromagnetic field components are not related to spatial compo-

nents of a four-vector with respect to the proper Lorentz group

SO+(1, 3) = {Λ∈Mat(4,R) ; ΛTgΛ = g, Λ0
0 ≥ 1, detΛ = 1} (19)

with the metric tensor g defined according to the sign convention given by

g = diag(1,−1,−1,−1) =

⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠ . (20)

The explicit representation of Λ∈SO+(1, 3) by its matrix elements is given by

Λ =

⎛⎜⎜⎝
Λ0

0 Λ0
1 Λ0

2 Λ0
3

Λ1
0 Λ1

1 Λ1
2 Λ1

3

Λ2
0 Λ2

1 Λ2
2 Λ2

3

Λ3
0 Λ3

1 Λ3
2 Λ3

3

⎞⎟⎟⎠ . (21)

Still, the electromagnetic field Ψ transforms as a vector under the complex special

orthogonal group in three dimensions

SO(3,C) = {Q∈Mat(3,C) ; QTQ = Id 3, detQ = 1} . (22)

This observation is related to the fact that the proper Lorentz group and the complex

rotation group SO(3,C) are isomorphic indeed

SO+(1, 3) ∼= SO(3,C) . (23)

The elegance and the analogy of the considerations presented so far to the Dirac [4],

Weyl [9] or massive two-component Majorana formalism [5] is obvious. Still, a

mass term is absent in equation (11). It is one purpose of this paper to explicitly

show that such a term cannot be established, which enforces a new concept like

gauge theories when massive spin-one particles are involved in a field theory.
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4. Symmetries: Generators of SO+(1, 3), SO(3) and SO(3,C)

A pure Lorentz boost in x1-direction with velocity β = β1 and Lorentz factor

γ = γ1 is expressed by the matrix

Λ =

⎛⎜⎜⎝
γ −γβ 0 0

−γβ γ 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ , γ =
1√

1− β2
, γ2 − γ2β2 = 1. (24)

which can be written to first order in β as

Λ =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ + β

⎛⎜⎜⎝
0 −1 0 0

−1 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ = 1 + βL1 (25)

where L1 is a generator for boosts in x1-direction. The original Lorentz boost is

recovered by exponentiating the generator multiplied by the boost parameter ξ1

exp(ξ1L1) =

⎛⎜⎜⎝
cosh ξ1 − sinh ξ1 0 0

− sinh ξ1 cosh ξ1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ , cosh(ξ1) = γ1 . (26)

Additional generators L2 and L3 for boost in x2- and x3-direction are

L2 =

⎛⎜⎜⎝
0 0 −1 0
0 0 0 0

−1 0 0 0
0 0 0 0

⎞⎟⎟⎠ , L3 =

⎛⎜⎜⎝
0 0 0 −1
0 0 0 0
0 0 0 0

−1 0 0 0

⎞⎟⎟⎠ (27)

and generators for rotations around the x1-, x2-, and x3-axis are

S1 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

⎞⎟⎟⎠ , S2 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

⎞⎟⎟⎠ , S3 =

⎛⎜⎜⎝
0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

⎞⎟⎟⎠ .

Altogether, these six generators of the proper Lorentz group span the Lie algebra

so+(1, 3), satisfying the commutation relations

[Sl, Sm] = −εlmnSn, [Ll, Lm] = +εlmnSn, [Ll, Sm] = −εlmnLn (28)
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with the totally antisymmetric tensor or SO(3)-structure constants ε in three di-

mensions. Note that generators are often multiplied with the imaginary unit i in

the physics literature in order to get Hermitian matrices.

Restricting our considerations to the rotation group SO(3) only, a basis of the Lie

Algebra so(3) is given by (Σl)mn = εlmn, or explicitly

Σ1 =

⎛⎝ 0 0 0
0 0 1
0 −1 0

⎞⎠ , Σ2 =

⎛⎝ 0 0 −1
0 0 0
1 0 0

⎞⎠ , Σ3 =

⎛⎝ 0 1 0
−1 0 0
0 0 0

⎞⎠ (29)

with

[Σl,Σm] = −εlmnΣn . (30)

By decomposing a real rotation matrix according to R = Id 3 + δR, we obtain in

a straightforward manner

RTR = (Id 3 + δR)T(Id 3 + δR) = Id 3 + δRT + δR+ δRTδR = Id 3 . (31)

For small δR, δRTδR is negligible and δRT + δR = 0 holds approximately, corre-

spondingly the generators in so(3) must be antisymmetric. Therefore, the real and

antisymmetric Σ−matrices form a basis of so(3).

By definition, the same argument given by equation (31) holds for the complex

group SO(3,C). A complete basis of the Lie algebra so(3,C) is thus obtained by

adding the antisymmetric matrices Σ̃k = iΣk to the generators Σ1, Σ2, and Σ3 of

the real rotation group SO(3). This complexification leads to

[Σl,Σm] = −εlmnΣn, [Σ̃l, Σ̃m] = εlmnΣn, [Σ̃l,Σm] = −εlmnΣ̃n (32)

i.e., the same abstract Lie algebra is obtained if one identifies the generators of

SO+(1, 3) and SO(3,C) according to Sl ↔ Σl and Ll ↔ Σ̃l for l = 1, 2, 3.

An arbitrary matrix Λ ∈ SO+(1, 3) can be written in the form

Λ = exp(ξ1L1 + ξ2L2 + ξ3L3 + α1S1 + α2S2 + α3S3) (33)

establishing a one-one correspondence to Q ∈ SO(3,C) via

Q = exp(ξ1Σ̃1 + ξ2Σ̃2 + ξ3Σ̃3 + α1Σ1 + α2Σ2 + α3Σ3) . (34)

E.g., one has in correspondence to equation (26) for a bivector boost in x1-direction

an SO(3,C) transformation matrix

exp(ξ1Σ̃1) =

⎛⎝ 1 0 0
0 cosh ξ1 i sinh ξ1
0 −i sinh ξ1 cosh ξ1

⎞⎠ =

⎛⎝ 1 0 0
0 γ1 iγ1β1
0 −iγ1β1 γ1

⎞⎠ (35)
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and a rotation around the x1-axis is obtained by acting on the bivector with

exp(α1Σ1) =

⎛⎝ 1 0 0
0 cosα1 sinα1

0 − sinα1 cosα1

⎞⎠ ∈ SO(3) . (36)

A short exercise shows that acting with exp(ξ1Σ̃1) on the bivector field generates

the correct Lorentz transformations of the electromagnetic field derived in many

standard textbooks for a boost in x1-direction⎛⎝E′
1 + iB′

1

E′
2 + iB′

2

E′
3 + iB′

3

⎞⎠ =

⎛⎝ 1 0 0
0 γ1 iγ1β1
0 −iγ1β1 γ1

⎞⎠⎛⎝E1 + iB1

E2 + iB2

E3 + iB3

⎞⎠ (37)

therefore

E′
1 =E1 , B′

1 =B1

E′
2 =γ1(E2 − β1B3) , B′

2 =γ1(B2 + β1E3)

E′
3 =γ1(E3 + β1B2) , B′

3 =γ1(B3 − β1E2).

(38)

Generally, one has in the case of a Lorentz transformation x′μ = Λμ
νxν

Ψ′(x′) = QΨ(x) = QΨ(Λ−1x′) . (39)

Note that the transformation property of Ψ implies that the real and imaginary part

of

ΨTΨ = ΨTQTQΨ = ΨTQ−1QΨ =
1

2
(E2 −B2) + iE ·B (40)

are Lorentz-invariant quantities.

5. Mass Terms

5.1. Majorana Approach

Acting with the operator −iΓ̄μ∂μ on the field equation (11) leads to

Γ̄μΓν∂ν∂μΨ = ∂2
0Ψ+∇×∇×Ψ = ∂2

0Ψ−ΔΨ+∇(∇ ·Ψ) = 0 (41)

therefore the wave function Ψ fulfills the free wave equation

�Ψ = ∂μ∂μΨ = 0 (42)

in the absence of charges, ensuring the correct relativistic energy-momentum rela-

tion. Introducing a naive mass term for the Ψ-field like

iΓμ∂μΨ−mΨ = 0 (43)
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would spoil the relativistic invariance of the field equation. As a more general

approach one may introduce an (anti-)linear operator S and make the ansatz

iΓμ∂μΨ−mSΨ = 0 . (44)

Since plane-wave solutions ∼ e±ipx must obey p2 = pμp
μ = m2

iΓ̄ν∂ν(iΓ
μ∂μΨ) = −�Ψ = m2Ψ = iΓ̄ν∂ν(mSΨ) (45)

the transformed bivector fulfills the wave equation

iΓ̄μ∂μ(SΨ)−mΨ = 0. (46)

Acting on equation (46) with S leads to the requirement

SiΓ̄μ∂μ(SΨ) = mSΨ = iΓμ∂μΨ (47)

or

SiΓ̄μS = iΓμ . (48)

If S is a linear operator, it must fulfill

S2 = Id 3, SΣ̃kS = −Σ̃k, k = 1, 2, 3 (49)

or

SΣ̃kS
−1 = −Σ̃k, k = 1, 2, 3. (50)

This is impossible, since the structure constants of Lie algebra a stable under sim-

ilarity transformations.

If S is anti-linear, it can be written as S = S̃K, where K denotes complex conju-

gation. The complex conjugation of the imaginary unit in equation (48) et cetera

then leads to

S̃S̃∗ = −Id 3, S̃Σ̃∗
kS̃

∗ = Σ̃k, k = 1, 2, 3 (51)

or

S̃Σ̃∗
kS̃

−1 = −Σ̃k, k = 1, 2, 3. (52)

Again, no such S̃ exists in three dimensions, since det(SS̃∗) = det(S̃)det(S̃∗) =
det(S̃)det(S̃)∗ > 0 contradicts det(−Id 3) = −1. This can be contrasted with the

case in two dimensions, where the Pauli matrices �σ = (σ1, σ2, σ3) obey

ε�σ∗ε−1 = −�σ (53)

where ε is the totally antisymmetric tensor in two dimensions

ε =

(
0 1

−1 0

)
, ε2 = (ηε)(ηε)∗ = −Id 2, det(ε) = det(−Id 2) (54)
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such that the Majorana equation(s) as a generalization of the Weyl equations [9]

and Lorentz invariant two-component field equations describing a massive particle

exist [1, 5]

iσμ∂μΨ−mηεΨ∗ = 0 (55)

where σμ = (Id 2, �σ) and η is a phase.

5.2. Mass Term II: Gauge Formalism

One might try to invoke a mass term by naively introducing an SO(3,C) bivector

“gauge potential”

H = HR + iHI =

⎛⎝HR
1 + iHI

1

HR
2 + iHI

2

HR
3 + iHI

3

⎞⎠ (56)

related to the massive bivector field via

Ψ = iΓ̄ν∂νH = (i∂0+∇×)(HR+iHI) = (−ḢI +∇×HR)+i(ḢR+∇×HI)

fulfilling the massive wave equation

�H+m2H = 0. (57)

This would imply

iΓμ∂μ(iΓ̄
ν∂νH) = (−∂2

0 −∇×∇×)H = (−∂2
0 +Δ−∇(∇·)H = −m2H

and therefore ∇(∇ ·H) = 0. This condition is, however, not Lorentz invariant.

One has to accept that a mass term is impossible for simple group theoretical rea-

sons. Since a four-gradient transforms according to the ( 12 ,
1
2)-representation of the

Lorentz group, it produces quantities transforming according to the representations

(12 ,
1
2) ⊗ (1, 0) = (32 ,

1
2) ⊕ (12 ,

1
2) when acting on a bivector under (1, 0). In the

case of Majorana fermions, one has ( 12 ,
1
2) ⊗ (12 , 0) = (1, 12) ⊕ (0, 12), such that a

the derivative of a field field transforming according to ( 12 , 0) can be coupled to its

complex conjugate field tranforming according to (0, 1
2).

6. Coupling to a Current: Transformation Properties

Adding the real electric current to Ampère’s circuital law

∂E

∂t
= ∇×B− j (58)
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where a possible factor 1√
2

according to the normalization chosen in equation (1)

and the coupling constant have been absorbed in j, shows that equation (11) cannot

be interpreted as the “Dirac form” of Maxwell’s equations, since the current j =
(j1, j2, j3) consists of three spatial components of a charge-current four-vector

density

j = {jμ} = (j0, j1, j2, j3) = (ρ, j1, j2, j3) = (ρ, j). (59)

Equation (5) becomes
∂Ψ

∂t
= −i · ∇ ×Ψ− j (60)

and taking the divergence of equation (60) leads to

∇ · Ψ̇ = −i · ∇ · (∇×Ψ)− div j = ρ̇ (61)

since the continuity equation ρ̇+ div j = 0 holds. Due to the absence of magnetic

charges, equation (61) is equivalent to div Ė = ρ̇.

Therefore, although the bivector field only couples to the spatial components j of

the charge-current four-vector density (ρ, j), the charge distribution is encoded in

the divergence of the bivector itself and does not appear as an independent dynam-

ical variable, since the current density j together with the initial conditions for the

charge distribution fix the actual charge density or the divergence of the bispinor at

any time.

Considering the transformation properties of a Dirac spinor under a Lorentz trans-

formation x′ = Λx for a moment

ψ′(x′) = QD(Λ)ψ(x), Λ ∈ SO+(1, 3), x′μ = Λμ
νx

ν (62)

we observe that the Dirac equation

iγμ∂μψ −mψ = 0 (63)

also holds in the primed coordinate system. Namely, requiring

iγμ∂′
μψ

′(x′) = iγμ∂′
μQDψ(x) = mQDψ(x) (64)

implies

iγμΛ ν
μ ∂νQDψ(x) = mQDψ(x) (65)

or

Λα
νΛ

ν
μ Q−1

D γμQD = Λα
νγ

ν . (66)

Using Λα
νΛ

ν
μ = δαμ , we obtain

Q−1
D γαQD = Λα

νγ
ν . (67)
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This important property of the Dirac matrices which expresses the manifest Lorentz

covariance of the Dirac equation holds if the transformation of the spinor compo-

nents is performed by an appropriately chosen matrix QD.

However, a simple relation analogous to equation (67) à la

Q−1ΓαQ = Λα
νΓ

ν (68)

or

QTΓαQ = Λα
νΓ

ν , Q∗ΓαQ = Λα
νΓ

ν (69)

does not hold, as can be shown by a straightforward calculation.

In the bivector case, we have

iΓμ∂μΨ = −ij (70)

and therefore in a primed coordinate system

iΓμ
ab∂

′
μΨ

′
b(x

′) = −ij′a(x
′) (71)

implying (with latin indices a, b . . . = 1,2,3 denoting bivector indices or compo-

nents of the current density)

iΓμ
abΛ

ν
μ ∂νQbcΨc(x) = −iΛa

νj
ν(x) = −iΛa

0 divE(x)− iΛa
c j

c(x) (72)

since jμ(x) = (divE, j1, j2, j3) .

The divergence of the electric field can be written by the help of the Kronecker

delta as

divE = δνc ∂νΨc (73)

since the magnetic field is divergence free from the start. Hence equation (72)

becomes

i(Γμ
abΛ

ν
μ Qbc + Λa

0δ
ν
c )∂νΨc(x) = −iΛa

cj
c. (74)

Defining Λ̃ as the inverse of the 3-by-3 submatrix Λa
b according to Λ̃d

aΛ
a
b = δdb ,

one may multiply equation (74) by Λ̃d
a and obtains the original equation, i.e.,

i(Λ̃d
aΓ

μ
abΛ

ν
μ Qbc + Λ̃d

aΛ
a
0δ

ν
c )∂νΨc(x) = −iΛ̃d

aΛ
a
cj

c = −ijd (75)

and therefore

Γν
dc = Λ̃d

aΓ
μ
abΛ

ν
μ Qbc + Λ̃d

aΛ
a
0δ

ν
c . (76)

Restricting our consideration to spatial rotations, we have Λa
b = Qab and Λ̃−1 =

Q−1, furthermore Λa
0 = 0 for a = 1, 2, 3. Accordingly

Γν = Λ ν
μ Q−1ΓμQ (77)

in analogy to equation (66), since for pure rotations, spatial derivatives, the bivector

and the current density transform as vectors under SO(3), and the complicated

situation in equation (76) arising from coupling a bivector to a four-vector does

not arise.
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7. Conclusions

In this paper, the main features of the gauge free formalism describing a massless

spin-one field coupled to a conserved current based on the representation of the

proper (also called restricted) Lorentz group SO+(1, 3) by the complex orthogo-

nal group SO(3,C) are investigated. It is shown that a mass term analogous to

the Majorana or Dirac case is impossible for a bivector field for group theoretical

reasons, although the equations of motion in the bivector formalism display some

commonalities with the spinor formalism. It is hoped that the paper fills a gap

in the literature concerning the representation theory of the Lorentz group in low

dimensions relevant for relativistic field theory.
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