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Abstract. In this article, a generalized Kleinian sigma function for an affine

(3, 4, 5) space curve of genus two was constructed as the simplest example of the

sigma function for an affine space curve, and in terms of the sigma function, the Ja-

cobi inversion formulae for the curve are obtained. An interesting relation between

a space curve with a semigroup generated by (6, 13, 14, 15, 16) and Norton number

associated with Monster group is also mentioned in the Appendix by the second

author.

1. Introduction

Recently the Kleinian sigma function for hyperelliptic curves, a natural general-

ization of the Weierstrass sigma function, is re-evaluated because in terms of the

sigma functions, it is more convenient to investigate the properties of the abelian

functions and their interesting properties are revealed naturally [2, 6, 17].

Further Enolskii, Eilbeck, and Leykin [5] discovered a construction which gener-

alizes the Kleinian sigma function associated with hyperelliptic curves to one for

an affine (r, s) plane curve, where r and s (r < s) are coprime positive integers

g = (r − 1)(s− 1)/2. There they have constructed also the fundamental differen-

tial of the second kind over an affine (r, s) plane curve and using it, obtained the

Legendre relation as the symplectic structure over the curve. Using the Legendre

relation, they defined the generalized Kleinian sigma function over the image of

the abelian map C
g. They have found also the natural Jacobi inversion formulae in

terms of their sigma function. We call this construction EEL construction in this

article. Using the EEL construction, we have some interesting results [20, 21].

In this article, we consider a generalized Kleinian sigma function for an affine

(3, 4, 5) space curve of genus two, which is the simplest affine space curve. Our

purpose of this article is to show that the sigma function is also defined for an affine

space curve as we can do for plane curves.

Following the EEL-construction, we define the fundamental differential of the sec-

ond kind over it and obtain the Legendre relation as the symplectic structure over it.
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With the abelian map to C
2, we show that the symplectic structure determines the

sigma function. Further using the sigma function, we obtain the Jacobi inversion

formulae for the curve and the Jacobian following the previous works [20, 21].

It means that the generalization of the sigma functions for the affine plane curves

to ones for the space curves is basically possible and is useful. Recently, Korotkin

with Shramchenko defined a sigma function for a compact Riemann surface [15]

but it is not directly associated with an algebraic curve. Further Ayano introduced

sigma functions for space curves of special class [1], which are called telescopic

curves, but the class does not include this (3,4,5) curve.

In Remark 21, we also show a problem of a space curve associated with the semi-

group generated by (6, 13, 14, 15, 16) with an Appendix by Komeda. The semi-

group might be related to Norton number associated with the Monster group, the

simple largest sporadic finite group [22].

2. Preliminary

2.1. Numerical Semigroup

Here we give a short overview of recent study of the numerical semigroups as

sub-semigroups of non-negative integers N0 related to algebraic curves. We call

an additive semigroup in N0 numerical semigroup if its complement in N0 is

finite. For a numerical semigroup H = H(M) generated by M , the number

of elements of L(H) := N0 \H is called genus and L(H) is called gap se-

quence. For example, we have semigroups H2, H4, H12 generated by M2 :=
〈3, 4, 5〉, M4 := 〈3, 7, 8〉, M12 := 〈6, 13, 14, 15, 16〉 respectively whose gen-

era are g(Hg) for g = 2, 4, 12 due to L(H2) = {1, 2}, L(H4) = {1, 2, 4, 5},
L(H12) = {1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 17, 23}.
For a complete non-singular irreducible curve C of genus g over an algebraically

closed field k of characteristic 0, the field of its rational functions k(C), and a point

P ∈ C, we define

H(P ) := {n ∈ N0 ; there exists f ∈ k(C) such that (f)∞ = nP } (1)

and refer further on as the Weierstrass semigroup of the point P . If L(H(P )) :=
N0\H(P ) differs from the set {1, 2, · · · , g}, we call P Weierstrass point of C.

A numerical semigroup H is said to be Weierstrass if there exists a pointed al-

gebraic curve (C,P ) such that H = H(P ). Hurwitz considered whether every

numerical semigroup H is Weierstrass. This was a long-standing problem but

Buchweitz finally showed that every H is not Weierstrass. His first counterex-

ample is the semigroup HB generated by 13, 14, 15, 16, 17, 18, 20, 22 and 23,
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whose genus is 16. Thus in general, it is not so trivial whether a given semigroup

is Weierstrass or not. Komeda has been investigated this problem with Ohbuchi

and Kim [10–12, 14].

2.2. Commutative Algebra

Here we review a normal ring and normalization in commutative ring [16]. We

assume that every ring is a commutative ring with unit.

B is a ring and A is a subring of B. B is said to be an extension of A. An element

b of B is said to be integral over A if b satisfies a monic polynomial over A, i.e.,

there exist n and {ai}i=1,...,n ∈ A such that bn + a1b
n−1 + · · · an = 0.

We say that B is integral over A, or B is an integral ring over A, or B is an integral
extension of A if every element b of B is integral over A.

An integral closure in B over A is defined by Ã := {b ∈ B ; b is integral over A}.
If A = Ã, A is integral closed in B.

Definition 1. Let A is a ring and Q(A) is a quotient ring of A. We assume that
A is an integral domain. A is normal if A is integral closed in Q(A), i.e., for
Ã := {q ∈ Q(A) ; there exist n and ai ∈ A such that qn+a1q

n−1+ · · · an = 0},
A = Ã.

We define the minimum extension Â of A in Q(A) so that Â is integral closed in
Q(A). We say that Â is normalization of A or the normalized ring of A.

Through the correspondence between an algebraic variety and a commutative ring,

we have the well-known normalization theorem [9, p.5, p.68]

Theorem 2. For any irreducible algebraic curve X ⊂ CP
2, there exists a compact

Riemann surface X̃ and a holomorphic mapping s : X̃ → CP
2 such that s(X̃) =

X and s is injective on the inverse image of the set of smooth points of X . Further
the Riemann surface is unique up to its isomorphism; if there are two Riemann
surfaces X̃ and X̃ ′ given by normalizations of X , there is a biholomorphic from
X̃ to X̃ ′.

As illustrations of Theorem 2, we give three examples.

Example 3. (x3 − y2), R := C[X,Y ]/(X3 − Y 2) is not normal because Y
X

∈
R̃\R ⊂ Q(R) due to

(
Y
X

)2 −X = 0. Since R ≈ C[t2, t3], the normalized ring is

R̂ = C[t].
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Example 4. (y3 = x5 − 1 and w3 = z − z6). Following Theorem 2, we consider
the covering of a curve of f(x, y) := y3 − x5 +1. Let us consider a homogeneous
polynomial F (X,Y, Z) := Y 3Z2 − X5 + Z5 ∈ C[X,Y, Z]. Around Z �= 0, we

have F (X,Y, Z) = Z5
(
Y 3

Z3 − X5

Z5 + 1
)

and thus by regarding that x = X/Z and

y = Y/Z, we have F (X,Y, Z) = Z5f(X/Z, Y/Z). R0 := C[x, y]/(f(x, y)) is a
normal ring. On the other hand, around Z = 0 and X �= 0, we have F (X,Y, Z) =

X5
(
Y 3Z2

X5 − 1 + Z5

X5

)
, and then we obtain a polynomial, g(w, z) = w3z2−1+z5

by regarding w = Y/X and z = Z/X . However R∞ := C[w, z]/(g(w, z))
is not a normal ring. As a vector space, R∞ is C1 + Cz + Cz2+ · · · + Cw +
Cwz + Cwz2 + · · · +Cw2 + Cw2z + Cw2z2 + · · · +Cw3 + Cw3z. We show
that q ∈ Q(R∞)\R∞ exists such that qn + a1q

n−1 + · · · an = 0 for certain

ai ∈ R∞. Noting
1

1− z
g(w, z) =

w3z2

1− z
+ 1 + z + z2 + z3 + z4 = 0 ∈ Q(R∞),

we consider q := w3

1−z
+ 1+z

z2
∈ Q(R∞)\R∞, which is integral over R∞. By

normalization, we define ŵ := wz = y/x2. R̂∞ := C[ŵ, z]/(ĝ(w, z)) is a normal
ring, where ĝ(ŵ, z) := ŵ3 − z + z6. The minimal condition is obvious.

Example 5. (a space curve y3 = x2(x2 − 1) and w3 = x(x2 − 1)2). Let
us consider a polynomial f(x, y) = y3 − x2(x2 − 1) and show that R0 :=
C[x, y]/(f(x, y)) is not a normal ring. As a vector space, R0 is C1 + Cx +
Cx2 + · · · +Cy + Cyx + Cyx2 + · · · +Cy2 + Cy2x + Cy2x2 + · · · . We
show that w ∈ Q(R0) \R0 exists such that wn + a1w

n−1 + · · · an = 0 for
certain ai’s of R0. In other words, noting that y ∼ 3

√
x2(x2 − 1) and y2 ∼

x 3

√
x(x2 − 1), one of w is that w := y2

x
which is integral over R0 because

w3 = y6

x3 = x(x2 − 1)2 or w3 − x(x2 − 1)2 = 0 ∈ R0. Let g(x,w) = x(x2 − 1)2.

Noting the relations that w = y2

x
, y = w2

x2−1
, and wy = (x2 − 1)x, we have

R̂0 := C[x, y, w]/(f1(x, y, z), f2(x, y, z)f3(x, y, z)), as the normalized ring of
R0, where f1(x, y, w) = y2−wx, f2(x, y, w) = wy−(x2−1)x, and f3(x, y, w) =
w2− y(x2− 1). The minimal condition is also obvious. This example corresponds
to the special case of the affine (3, 4, 5) space curve in this article. Due to Theorem
2, the corresponding Riemann surface uniquely exists up to an isomorphism.

3. A Curve (3,4,5)

Since H2 generated by 〈3, 4, 5〉 is Weierstrass and is the simplest semigroup whose

cardinality of the generators is greater than two, we consider a curve C(H2) ex-

plicitly in order to construct the sigma functions for C(H2) following the EEL

construction.
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Following Theorem 2, in order to construct a non-singular curve X2 = C(H2), we

consider two singular curves X3 and X4 generated by ∞ points and the zeroes of

f3,12(x, y4) := y34 − k4(x), f4,15(x, y5) := y35 − k5(x)

where k4(x) := k2(x)k1(x)
2, k5(x) := k2(x)

2k1(x), k2(x) := (x − b1)(x −
b2) = x2 + λ

(2)
1 x + λ

(2)
2 , and k1(x) := (x − b0) = x + λ

(1)
1 for finite ba ∈ C

(a = 1, 2, 3) which is distinct from each other. Let us consider commutative rings

R3 := C[x, y4]/(f3,12(x, y4)) and R4 := C[x, y5] /(f4,15(x, y5)) related to X3

and X4 respectively. These genera of the semigroups associated with their Weier-

strass non-gap sequences at ∞-points are three and four respectively, though the

geometric genera are not. Following the normalization in Section 2, we normal-

ize R3 and R4. Since in terms of the language of the commutative algebra [16],
y24

(x− b0)
is integral over R3 in Q(R3) and

y25
(x− b0)(x− b2)

is integral over R4

in Q(R4), R3 and R4 are not normal rings. Thus we will normalise them in

C[x, y4, y5] in the meaning of the commutative algebra [16] (see Example 5 in

§2.2).

For the zeroes of f3,12(x, y4) and f3,15(x, y4), we could have the relations,

y4y5 = k2(x)k1(x), y5 =
y24

(x− b0)
, y4 =

y25
(x− b1)(x− b2)

· (2)

Here for the primitive root ζ3 (ζ
3
3 = 1, ζ3 �= 1), ζ3 acts on X3 and X4 respectively.

The first relation is chosen in the possibilities y4y5 = ζi3k2(x)k1(x) i = 0, 1, 2.

As a normalization of these singular curves, we have the commutative ring,

R2 ≡ R := C[x, y4, y5]/(f8, f9, f10)

and X2 := Spec R. Here we define f8, f9, f10 ∈ C[x, y4, y5] by

f8 = y24 − y5k1(x), f9 = y4y5 − k2(x)k1(x), f10 = y25 − y4k2(x)

which are also regarded as the 2× 2 minors of

∣∣∣∣k2(x) y4 y5
y4 y5 k3(x)

∣∣∣∣. Here ζ3 acts on

X2 by ζ̂3(x, y4, y5) = (x, ζ3y4, ζ
2
3y5).

Let X be the Riemann surface which is naturally obtained as an extension of X2

as mentioned in Theorem 2, i.e., X = X2 ∪ {∞} as a set. It is noted that when

x diverges, y4 and y5 also diverge vise versa. Thus the infinity point ∞ uniquely

exists in X . Gm acts on R by setting g−3
m x, g−a

m ya for x, ya, gm ∈ Gm and

a = 4, 5. By Nagata’s Jacobi-method [16], it can be proved that X is non-singular.
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Though they do not explicitly appear, we may also implicitly consider parametriza-

tions of y4 and y5 by y4 = w2w
2
1, and y5 = w2

2w1, where w3
1 = k1 and w3

2 = k2.

When we consider R̃ := C[x,w1, w2]/(w
3
1 − k1(x), w

3
2 − k2(x)), it is related to a

natural covering of X .

3.1. The Weierstrass Gap and Holomorphic One Forms

The Weierstrass gap sequences at ∞ are given in Table 1. For the local parameter

t∞ at ∞, we have

x =
1

t3∞
, y4 =

1

t4∞
(1 + d≥(t∞)), y5 =

1

t5∞
(1 + d≥(t∞)). (3)

Here for a given local parameter t at some P in X , the series of t, whose orders

of zero at P are greater than � or equal to �, is denoted by d≥(t
�). H(∞) in (1)

is H(3, 4, 5) as Pinkham considered (3, 4, 5) curve as the simplest example of the

numerical semigroup H(3, 4, 5) [23, Section 14]. Its monomial curve is defined

by, Z2
4 = Z3Z5, Z4Z5 = Z5

3 , Z
2
5 = Z3

3Z4, or the 2×2 minor of

∣∣∣∣Z3 Z4 Z5

Z4 Z5 Z2
3

∣∣∣∣. Z3,

Z4 and Z5 correspond to
1

x

1

y4
and

1

y5
respectively and these relations correspond

to (2).

There we define φ
(g)
i as a non-gap monomial in Rg for g = 2, 3, 4 and e.g., φ(2)

0 =

1, φ
(2)
1 = x, φ

(2)
2 = y4, φ

(2)
3 = y5, φ

(2)
4 = x2, · · · and φ

(3)
0 = 1, φ

(3)
1 = x,

φ
(3)
2 = y4, φ

(3)
3 = x2, φ

(3)
4 = xy4, · · · . We introduce the weight N (g)(n) by

letting N (g)(n) := −wt(φ
(g)
n ), where wt() is the degree of divisor at ∞ of each

curve X’s. It is noted that H2 is identical to {N (2)(n) ; n = 0, 1, 2, . . .}. For

later convenience, we also introduce φ
H1 i

∈ R (i = 1, 2, 3, · · · ) by φ
H10

:= y4,

φ
H11

:= y5

φ
H12

:= xy4, φ
H13

:= xy5, for i > 3, φH1 i
:=

⎧⎨
⎩
x(i−4)/3y4y5 i ≡ 1 mod 3,

x(i+1)/3y4 i ≡ 2 mod 3,

xi/3y5 i ≡ 0 mod 3.



Sigma Functions for a Space Curve of Type (3, 4, 5) 81

We also define the weight N
H1(n) by N

H1(n) := −wt(φ
H1n

), N
H1(0) = 4,

N
H1(1) = 5, and N

H1(n) = n+ 5 for n ≥ 2. By letting

Λ
(2)
i := NH1(2)−NH1(i− 1) + i− 3,

Λ
(g)
i := N (g)(g)−N (g)(i− 1)− g + i− 1, (g = 3, 4)

the corresponding Young diagrams, Λ ≡ Λ(2) := (Λ1,Λ2) = (1, 1), Λ(3) :=

(Λ
(3)
1 ,Λ

(3)
2 ,Λ

(3)
3 ) = (3, 1, 1) and Λ(4) := (Λ

(4)
1 ,Λ

(4)
2 ,Λ

(4)
3 ,Λ

(4)
4 ) = (4, 2, 1, 1) are

given respectively as

, , .

The Young diagram Λ is not symmetric, whereas tΛ(3) = Λ(3) and tΛ(4) = Λ(4).

Then the following propositions are obvious

Proposition 6. The b-small bases of the holomorphic one forms over X are ex-

pressed by νI1 =
dx

3y5
and νI2 =

dx

3y4
or νIi :=

φ
H1 i−1

dx

3y4y5
, i = 1, 2.

We note their divisors and linear equivalences for Ba := (ba, 0, 0), a = 0, 1, 2,

(νI1) = ∞ + B0 ∼ (dx/y25) = 2(3∞− B1 − B2) and (νI1) ∼ (νI2) = B1 + B2

∼ (dx/y24) = 2(2∞−B0) = 2(∞+ (∞−B0)).

Proposition 7.
∑n

i=0 aiν̃i belongs to H1(X \∞,OX), where ν̃i :=
φ
H1

i
dx

3y4y5
and

the order of the singularity of (ν̃i) at ∞ is given by N
H1(n)− 5.

Lemma 8. a0
dx

y4y5
+ a1

xdx

y4y5
+ a2

x2dx

y4y5
is not holomorphic one form over X if

ai does not vanish.

Proof: For n < 3, every
∑n

i=0 ai
xidx
y4y5

has singularities at points in X\∞. �

We choose the bases αi, βj (1 � i, j � 2) of H1(X,Z) such that their intersection

numbers are αi · αj = βi · βj = 0 and αi · βj = δij , and we denote the period

matrices by
[
ω′ ω′′

]
=

1

2

[∫
αi

νIj

∫
βi

νIj

]
i,j=1,2

. Let Π2 be a lattice generated by

ω′ and ω′′. For a point P ∈ X , the abelian map ûo : X → C
2 is defined by

ûo(P ) =

∫ P

∞

νI ∈ C
2
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and for a point (P1, · · · , Pk) ∈ SkX , i.e., the k-th symmetric product of X , the

shifted abelian map û : SkX → C
2 by

û(P1, · · · , Pk) := ûo(P1, · · · , Pk) + ûo(B0)

where ûo(P1, · · · , Pk) :=
∑k

i=1 ûo(Pi). Then we define the Jacobian J2 and its

subvariety W k, k = 0, 1, 2 by

κ : C2 → J2 = C
2/Π2 = W 2, W k := κû(SkX)

respectively. Further the singular locus of S2X is denoted by S2
1X as in [20].

For a point (P1, P2) ∈ S2X around the infinity point, by letting their local param-

eters t∞,1 and t∞,2, u ≡ t(u1, u2) := ûo(P1, P2) is given by u1 = 1
2(t

2
∞,1 +

t2∞,2)(1 + d>0(t∞,1, t∞,2)), u2 = (t∞,1 + t∞,2)(1 + d>0(t∞,1, t∞,2)), where

d≥(t1, t2) is a natural extension of d≥(t).

3.2. Differentials of the Second and the Third Kinds

Following the EEL-construction [5] for a (n, s) curve, we give here an algebraic

representation of a differential form which is equal to the fundamental normalized

differential of the second kind in [7, Corollary 2.6], up to a tensor of holomorphic

one forms

Definition 9. A two-form Ω(P1, P2) on X×X is called a fundamental differential
of the second kind if it is symmetric, Ω(P1, P2) = Ω(P2, P1), it has its only pole
(of second order) along the diagonal of X ×X , and in the vicinity of each point
(P1, P2) is expanded in power series as

Ω(P1, P2) =
( 1

(tP1
− t′P2

)2
+ d≥(1)

)
dtP1

⊗ dtP2
, as P1 → P2 (4)

where tP is a local coordinate at a point P ∈ X .

Here we use the convention that for Pa ∈ X , Pa is represented by (xa, y4,a, y5,a)
or (xPa

, y4,Pa
, y5,Pa

) and for P ∈ X , P is expressed by (x, y4, y5). Then the

following propositions holds.

Proposition 10. By letting

Σ
(
P,Q

)
:=

y4,P y5,P + y4,P y5,Q + y4,Qy5,P
(xP − xQ)3y4,P y5,P

dxP

Σ(P,Q) has the properties
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1) Σ(P,Q) as a function of P is singular at Q = (xQ, y4,Q, y5,Q) and ∞, and
vanishes at ζ̂�3(Q) = (xQ, ζ

�
3y4,Q, ζ

2�
3 y5,Q), � = 1, 2, and

2) Σ(P,Q) as a function of Q is singular at P and at ∞.

Proof: Direct computations provide the results. �

Proposition 11. There exist differentials νIIj = νIIj (x, y4, y5), j = 1, 2 of the
second kind such that they have their only pole at ∞ and satisfy the relation

dQΣ
(
P,Q

)− dPΣ
(
Q,P

)
=

2∑
i=1

(
νIi (Q)⊗ νIIi (P )− νIi (P )⊗ νIIi (Q)

)
(5)

where dQΣ
(
P,Q

)
:= dxP ⊗ dxQ

∂

∂xQ

y4,P y5,P + y4,P y5,Q + y4,Qy5,P
(xP − xQ)3y4,P y5,P

·

The differentials {νII1 , νII2 } are determined modulo the C-linear space spanned by
〈νIj 〉j=1,2 and we fix

{
νII1 , νII2

}
=

⎧⎨
⎩
−
(
2x+ λ

(2)
1

)
dx

3y4
,
−xdx

3y5

⎫⎬
⎭

as their representative.

Proof:
∂

∂xQ

y4,P y5,P + y4,P y5,Q + y4,Qy5,P
(xP − xQ)3y4,P y5,P

dxP is equal to

1

(xP − xQ)9y4,P y5,P y4,Qy5,Q

[3(y4,P y5,P + y4,P y5,Q + y4,Qy5,P )y4,Qy5,Q
(xP − xQ)

+
(
y4,P

y4,Q
y5,Q

(2k2,Qk
′

2,Qk1,Q + k22,Qk
′

1,Q) + y5,P
y5,Q
y4,Q

(2k2,Qk1,Qk
′

1,Q + k′2,Qk
2

1,Q)
)]

.

Here ka,P = ka(xP ) and k′a,P = dka(xP )/dxP . We have

∂

∂xQ

y4,P y5,P + y4,P y5,Q + y4,Qy5,P
(xP − xQ)3y4,P y5,P

− ∂

∂xP

y4,Qy5,Q + y4,Qy5,P + y4,P y5,Q
(xQ − xP )3y4,Qy5,Q

=
1

(xP − xQ)9y4,P y5,P y4,Qy5,Q
(B2(P,Q)−B2(Q,P ))

where B2(P,Q) = y4,P y5,Q

(
2xQ + λ

(2)
1 − xP

)
. Then we obtain the statements.

�
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Corollary 12. 1) The one form, ΠP2

P1
(P ) := Σ(P, P1)−Σ(P, P2), is a differential

of the third kind, whose only (first-order) poles are P = P1 and P = P2, and
residues +1 and −1 respectively.

2) Ω(P1, P2) is defined by dP2
Σ(P1, P2) +

2∑
i=1

νIi (P1)⊗ νIIi (P2)

Ω(P1, P2) =
F (P1, P2)dx1 ⊗ dx2

(xP1
− xP2

)29y4,P1
y5,P1

y4,P2
y5,P2

where F is an element of R⊗R.

Proof: Direct computations give the claims. �

Lemma 13. We have lim
P1→∞

F (P1, P2)

φ
H11

(P1)(xP1
− xP2

)2
= φH12(P2) = xP2

y4,P2
.

Proof: B2 which appears in the proof of Proposition 11 ensures the result. �

For later convenience we introduce the quantity, ΩP1,P2

Q1,Q2
:=

∫ P1

P2

∫ Q1

Q2

Ω(P,Q),

ΩP1,P2

Q1,Q2
=

∫ P1

P2

(Σ(P,Q1)− Σ(P,Q2)) +
4∑

i=1

∫ P1

P2

νIi (P )

∫ Q1

Q2

νIIi (P ). (6)

4. The sigma Function for (3, 4, 5) Curve

4.1. Generalized Legendre Relation

Corresponding to the complete integral of the first kind, we define the complete

integral of the second kind

[
η′ η′′

]
:=

1

2

[∫
α
i

νIIj

∫
β
i

νIIj

]
i,j=1,2

.

Let τQ1,Q2
be the normalized differential of the third kind such that τQ1,Q2

has

residues +1 and −1 at Q1 and Q2 respectively, is regular everywhere else, and is

normalized,
∫
αi

τP,Q = 0 for i = 1, 2 [7, p.4]. The following Lemma correspond-

ing to Corollary 2.6 (ii) in [7] holds
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Lemma 14. By letting γ = ω′−1η′, we have

ΩP1,P2

Q1,Q2
=

∫ P1

P2

τQ1,Q2
+

2∑
i,j=1

γij

∫ P1

P2

νIi

∫ Q1

Q2

νIj .

Proof: The same as [20, I: Lemma 4.1]. �

The following Proposition provides a symplectic structure in the Jacobian J2,

known as generalized Legendre relation [3, 4, 20]

Proposition 15. M

[ −1
1

]
tM = 2π

√−1

[ −1
1

]
for M :=

[
2ω′ 2ω′′

2η′ 2η′′

]
.

Proof: The same as [20, I: Propositon 4.2]. �

4.2. The σ Function

Due to the Riemann relations [7], Im (ω′−1ω′′) is positive definite. Theorem 1.1

in [7] gives δ :=

[
δ′′

δ′

]
∈
(
Z

2

)4

be the theta characteristic which is equal to the

Riemann constant ξR and the period matrix [ 2ω′ 2ω′′]. We note that ξR = û(PR)
for a point PR ∈ X satisfying 2PR+2B0−4∞ ∼ 0. We define an entire function

of (a column-vector) u = t(u1, u2) ∈ C
2

σ(u) = ce−
1
2

tuη′ω′−1
u
∑
n∈Z2

e

[
π
√
−1
{

t(n+δ′′)ω′−1
ω′′(n+δ′′)+ t(n+δ′′)(ω′−1

u+δ′)
}]

where c is a certain constant as in (7).

For a given u ∈ C
2, we introduce u′ and u′′ in R

2 so that u = 2ω′u′ + 2ω′′u′′.

Proposition 16. For u, v ∈ C
2, � (= 2ω′�′ + 2ω′′�′′) ∈ Π2, and introducing

L(u, v) := 2 tu(η′v′ + η′′v′′), χ(�) := exp[π
√−1

(
2(t�′′δ′ − t�′δ′′) + t�′�′′

)
], we

have the translational relation

σ(u+ �) = σ(u) exp(L(u+
1

2
�, �))χ(�).

Proof: The same as [20, I: Proposition 4.3]. �

The vanishing locus of σ is simply given by Θ1 := (W1 ∪ [−1]W1) = W1.
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4.3. The Riemann Fundamental Relation

As in [20, I: Proposition 4.4], we have the Riemann fundamental relation

Proposition 17. For (P,Q, Pi, P
′
i ) ∈ X2 × (S2(X)\S2

1(X))× (S2(X)\S2
1(X))

exp

⎛
⎝ 2∑

i,j=1

ΩP,Q

Pi,P
′

j

⎞
⎠ =

σ(ûo(P )− û(P1, P2))σ(ûo(Q)− û(P ′
1, P

′
2))

σ((ûo(Q)− û(P1, P2))σ(ûo(P )− û(P ′
1, P

′
2))

·

Using the differential identity,

2∑
i,j=1

φH1 i−1(P
′
1)φH1j−1(P

′
2)

∂2

∂ûi(P ′
1)∂ûj(P

′
2)

= 9y4,P ′

1
y5,P ′

1
y4,P ′

2
y5,P ′

2

∂2

∂x′1∂x
′
2

, taking logarithm of both sides of the relation and

differentiating them along P ′
1 = P and P ′

2 = Pa, we have the differential expres-

sions of the relation, as mentioned in [20, I: Proposition 4.5]

Proposition 18. For (P, P1, P2) ∈ X × S2(X)\S2
1(X) and u := û(P1, P2), the

equality

2∑
i,j=1

℘i,j (ûo(P )− u)φH1 i−1(P )φH1j−1(Pa) =
F (P, Pa)

(x− xa)2

holds for every a = 1, 2, where we set

℘ij(u) := −σi(u)σj(u)− σ(u)σij(u)

σ(u)2
≡ − ∂2

∂ui∂uj
log σ(u).

4.4. Jacobi Inversion Formulae

As in [20], we introduce meromorphic functions on the curve X

Definition 19. For P, P1, . . . , Pn ∈ (X\∞)× Sn(X\∞), n = 1, 2, we define

μ1(P ;P1) := y5 − y5,1
y4,1

y4

μ2(P ;P1, P2) := xy4 − y4,1x2y4,2 − y4,2x1y4,1
y4,1y4,2 − y4,2y4,1

y5 +
y5,1x2y4,2 − y5,2x1y4,1

y4,1y4,2 − y4,2y4,1
y4.

We note that μn for X is characterized by the condition on the polynomial μn =∑n
i=0 aiφH1 i

(P ), ai ∈ C and an = 1, which has a zero at each point Pi and
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has the smallest possible order such that it multiplied by dx/3y4y5 belongs to

H1(X \∞,OX). For given P1, the solution of μ1(P ;P1) = 0 corresponds to a

point Q1 = [−1]P1 with Ba, a = 0, 1, 2, and for given P1 and P2, the solution

of μ2(P ;P1, P2) = 0 gives two points Q1, Q2 with Ba, a = 0, 1, 2 such that

Q1 +Q2 = [−1](P1 + P2). Here we use B0 +B1 +B2 − 3∞ ∼ 2B0 − 2∞.

Using μn, we have our main theorem in this article

Theorem 20. 1) For (P, P1, P2) ∈ X × (S2(X)\S2
1(X)

)
, we have

1-1) μ2(P ;P1, P2) = xy4 − ℘22(û(P1, P2))y4 + ℘21(û(P1, P2))y5.

1-2) ℘22(û(P1, P2)) =
y4,1x2y4,2 − y4,2x1y4,1

y4,1y4,2 − y4,2y4,1

℘21(û(P1, P2)) =
y5,1x2y4,2 − y5,2x1y4,1

y4,1y4,2 − y4,2y4,1
·

2) For (P, P1) ∈ X × (X\S1
1(X)) and u = û(P1) ∈ κ−1(W1)

μ1(P ;P1) = y5 − σ1(u)

σ2(u)
y4, and

σ1(u)

σ2(u)
=

y5
y4

·

Proof: 1) is the same as [20, I: Proposition 4.6]. As in [20, I: Theorem 5.1], by

considering lim
P2→∞

℘21(û(P1, P2))

℘22(û(P1, P2))
, we have the second result. �

Following the statement by Buchstaber, Leykin and Enolskii, Nakayashiki showed

that the leading of the sigma function for (r, s) curve is expressed by Schur func-

tion [21]. Noting (3) and degrees of u, the above Jacobi inversion formulae gives

σ(u) =
1

2
u22 − u1 +

∑
|α|>2

aαu
α

where aα ∈ Q[b1, · · · , b5], α = (α1, α2), |α| = α1 + α2 and uα = uα1

1 uα2

2 . The

prefactor c is determined by this relation. Since for a Young diagram Λ, SΛ and sΛ
are the Schur functions defined by

SΛ(T1, T2) = t1t2 =
1

2
T 2
1 − T2 (7)

where T1 := t1 + t2 and T2 :=
1
2(t

2
1 + t22), we have

σ(u) = SΛ(u1, u2)+
∑
|α|>2

aαu
α.
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Remark 21. We showed that the EEL construction works well even for a space

curve, and the sigma function associated with the curve is naturally defined. Since

this construction is very natural, this study sheds a new light on the way to con-

struction of the sigma functions for space curves. We conjectured that the EEL

construction could be applied to every space curve if it is Weierstrass.

As an interesting example of a space curve, we will give a comment on a problem

as follows, for which we started to study sigma functions for affine space curves.

McKay considers a relation between dispersionless KP hierarchy and the repli-

cable functions in order to obtain a further profound interpretation of the moon-

shine phenomena of Monster group [22]. He conjectured that it might be re-

lated to the quantised elastica [18, 19]. By studying a relation between a repli-

cable function and an algebraic curve associated with elastica, Matsutani found

that a semigroup H12 generated by M12 := 〈6, 13, 14, 15, 16〉 has gap sequence,

L(H12) = {1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 17, 23}, which is identical to the Norton

number, N12 := {1, 2, 3, 4, 5, 7, 8, 9, 11, 17, 19, 23} by exchanging 10 and 19. The

Norton number plays the essential role in the moonshine phenomena for the Mon-

ster group [22]. The replicable function is given as an element of Q[a1, a2, a3, a4,
a5, a7, a8, a9, a11, a17, a19, a23][[t]]. The replicable function is a generalization of

the elliptic J-function, which causes the moonshine phenomena of the Monster

group.

After then, Komeda proved that H12 is the Weierstrass semigroup and gave the

fundamental relations Propositions 23 as given in Appendix, which is reported

more precisely in [13]. Then we applied the EEL-construction to the curve and

obtain a sigma function for a Jacobi variety J12 for C(H12) [13]. Since the Jacobi

variety J12 is given as 12-dimensional complex torus whose real dimension is 24, it

might remind us of Witten conjecture associated with Monster group problem [8];

Witten conjectured that a 24 dimensional manifold exists such that the Monster

group acts on it via Weierstrass sigma function.

Appendix (by J. Komeda). Weierstrass Properties of (6, 13, 14, 15, 16)

The proofs of these propositions are given in the article [13]. Here we show only

the sketch of the first one because the second one is not difficult.

Proposition 22. The numerical semigroup 〈6, 13, 14, 15, 16〉 is Weierstrass.

Proof: Let (C,P ) be a pointed curve with H(P ) = 〈3, 7, 8〉. Then

2 = h0(4P ) = 4 + 1− 4 + h0(K − 4P ) = 1 + h0(K − 4P )
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which implies that K − 4P ∼ P1 + P2 for some points P1 and P2 ∈ C. Here K
is a canonical divisor on C. Moreover,

2 = h0(5P ) = 5 + 1− 4 + h0(K − 5P ) = 2 + h0(K − 5P )

which implies that h0(K − 5P ) = 0. Hence, we get Pi �= P for i = 1, 2. Thus,

K ∼ 4P + P1 + P2 with Pi �= P for i = 1, 2. We set D = 7P − P1 − P2. Then

deg(2D − P ) = 9 = 2 × 4 + 1, which implies that the complete linear system

|2D−P | is very ample, hence base-point free. Therefore, 2D ∼ P+Q1+. . .+Q9

(= a reduced divisor). Let L be the invertible sheaf OC(−D) on C and φ an

isomorphism L⊗2 ≈ OC(−P − Q1 − · · · − Q9) ⊂ OC . Then the vector bundle

OC ⊕L has an OC-algebra structure through φ. The canonical morphism π : C̃ =
Spec (OC⊕L) → C, is a double covering. Its branch locus of π is {P,Q1, ..., Q9}.

Let P̃ be the ramification point of π over P . Then it can be showed that H(P̃ ) =

〈6, 13, 14, 15, 16〉 using the formula, h0(2nP̃ ) = h0(nP ) + h0(nP −D) for any

non-negative integer n.

By considering h0(2nP̃ ) for n = 3, 4, 5, 6, 7, 8, 9, we show H(P̃ ) = 〈6, 13, 14,
15, 16〉. �

Proposition 23. Let B12 a monomial ring which is given by k[ta]a∈M12
for the

numerical semigroup H12. For a k-algebra homomorphism

ϕ12 : k[Z] := k[Z6, Z13, Z14, Z15, Z16] → k[ta]a∈M12

where Za is the weight of a = 6, 13, 14, 15, 16, the kernel of ϕ12 is generated by
the following relations f (Z)

12,b (b = 1, · · · , 9)

f
(Z)
12,1 = Z2

13 − Z2
6Z14, f

(Z)
12,2 = Z13Z14 − Z2

6Z15, f
(Z)
12,3 = Z2

14 − Z13Z15

f
(Z)
12,4 = Z2

14 − Z2
6Z16, f

(Z)
12,5 = Z13Z16 − Z14Z15, f

(Z)
12,6 = Z2

15 − Z5
6

f
(Z)
12,7 = Z14Z16 − Z5

6 , f
(Z)
12,8 = Z15Z16 − Z3

6Z13, f
(Z)
12,9 = Z2

16 − Z3
6Z14.
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