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SYMMETRIC REDUCTION AND HAMILTON-JACOBI EQUATION
OF RIGID SPACECRAFT WITH A ROTOR
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Abstract. In this paper, we consider the rigid spacecraft with an internal rotor

as a regular point of reducible regular controlled Hamiltonian (RCH) system. In

the cases of coincident and non-coincident centers of buoyancy and gravity, we

give explicitly the equations of motion and Hamilton-Jacobi equations of reduced

spacecraft-rotor system on the symplectic leaves by calculation in detail, which

show the effect on controls in regular symplectic reduction and Hamilton-Jacobi

theory respectively.
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1. Introduction

It is well-known that the theory of controlled mechanical systems is an important

subject in the recent years. It gathers together some separate areas of research such
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as mechanics, differential geometry and nonlinear control theory, etc., and the em-

phasis on geometry is motivated by the aim of understanding the structure of the

equations of motion of the system in a way that helps both analysis and design.

There is a natural two-fold method in the study of controlled mechanical systems.

First, being a special class of nonlinear control systems one can study them by us-

ing the feedback control and optimal control methods. The second, as they are also

a special class of mechanical systems, one can study them combining the analysis

of dynamic systems and the geometric reduction theory of Hamiltonian and La-

grangian systems. Thus, as the theory of controlled mechanical systems presents

a challenging and promising research area between the classical mechanics and

modern nonlinear geometric control theory, a lot of researchers are absorbed to

pour into the area and there have been a lot of interesting results. Some of them, as

Bloch et al in [4–7], studied the symmetry and feedback control to realize a modi-

fication to the structure of a given mechanical system while, Nijmeijer and van der

Schaft in [27] studied the nonlinear dynamical control systems as well as the use

of feedback control to stabilize mechanical systems, and van der Schaft in [31,32]

referred to the reduction and control of implicit (port) Hamiltonian systems.

In particular, we note that in Marsden et al [22], the authors studied regular reduc-

tion theory of controlled Hamiltonian systems with symplectic structure and sym-

metry as an extension of regular symplectic reduction theory of Hamiltonian sys-

tems under regular controlled Hamiltonian equivalence conditions. In [33] Wang

generalized the work in [22] by treating the singular reduction theory of regular

controlled Hamiltonian systems, and Wang and Zhang in [36] generalized the work

in [33] and clarify the optimal reduction theory of controlled Hamiltonian sys-

tems with Poisson structure and symmetry by using optimal momentum map and

reduced Poisson tensor (or reduced symplectic form), and Ratiu and Wang [30]

studied the Poisson reduction of controlled Hamiltonian system by controllabil-

ity distribution. These works not only gave a variety of reduction methods for

controlled Hamiltonian systems, but also showed a variety of relationships of con-

trolled Hamiltonian equivalence of these systems.

At the same time, we note that Hamilton-Jacobi theory is an important part of

classical mechanics. On one hand, it provides a characterization of the generat-

ing functions of certain time-dependent canonical transformations. On the other

hand, in many cases it is possible that Hamilton-Jacobi theory provides an im-

mediate way to integrate the equations of motion of the system, even when the

problem of Hamiltonian system itself has not been or cannot be solved completely.

In addition, the Hamilton-Jacobi equation is also fundamental in the study of the

quantum-classical relationship in quantization, and plays also an important role in

the development of numerical integrators that preserve the symplectic structure and
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in the study of stochastic dynamical systems, see Woodhouse [37], Ge and Mars-

den [10], Marsden and West [23] and Lázaro-Camí and Ortega [13]. For these

reasons it is a useful tool in the study of Hamiltonian system theory, and has been

extensively developed during the years to become one of the most active subjects

in the study of modern applied mathematics and analytical mechanics. For more

details see Cariñena et al [8,9], Iglesias et al [11], León et al [3,14,15] and Ohsawa

and Bloch [28].

The variational point of view Hamilton-Jacobi theory was originally developed by

Jacobi in 1866, and states that the integral of Lagrangian of a system along the so-

lution of its Euler-Lagrange equation satisfies the Hamilton-Jacobi equation. The

classical description of this problem from the geometrical point of view is given by

Abraham and Marsden in [1], and was developed in the context of time-dependent

Hamiltonian system by Marsden and Ratiu in [21]. The Hamilton-Jacobi equa-

tion may be regarded as a nonlinear partial differential equation for some gen-

erating function S, and the problem becomes how to choose a time-dependent

canonical transformation Ψ : T ∗Q × R → T ∗Q × R, which transforms the dy-

namical vector field of the time-dependent Hamiltonian system to equilibrium,

such that the generating function S of Ψ satisfies the time-dependent Hamilton-

Jacobi equation. In particular, for the time-independent Hamiltonian system, one

may look for a symplectic map as the canonical transformation. This work of-

fers an important idea that one can use the dynamical vector field of the Hamil-

tonian system to describe the Hamilton-Jacobi equation. Moreover, assume that

γ : Q → T ∗Q is a closed one-form on the smooth configuratiomnal manifold

Q, and define X
γ
H = TπQ · XH · γ, where XH is the vector field of Hamilto-

nian system (T ∗Q,ω,H). Then the fact that X
γ
H and XH are γ-related, that is,

Tγ · Xγ
H = XH · γ is equivalent to d(H · γ) = 0, which is given in Cariñena

et al [8] and Iglesias et al [11]. Since the Hamilton-Jacobi theory is based on

the Hamiltonian picture of dynamics, Wang [34] has used the dynamical vector

field of Hamiltonian system and the regular reduced Hamiltonian system to de-

scribe the Hamilton-Jacobi theory for these systems. In [35] this was extended to

the Hamilton-Jacobi theory of the regular controlled Hamiltonian system, its reg-

ular reduced systems, and for clarification of the relationship between the RCH-

equivalence for RCH systems and the solutions of corresponding Hamilton-Jacobi

equations.

Now, it is a natural problem if there are controlled Hamiltonian systems and how

to show the effect on controls in regular symplectic reduction and Hamilton-Jacobi

theory of such systems. In this paper, as an application of the regular point sym-

plectic reduction and Hamilton-Jacobi theory of RCH system with symmetry, we

consider the case when the rigid spacecraft with an internal rotor is a regular point



90 Hong Wang

reducible RCH system given already in Marsden et al [22], where the rigid space-

craft with an internal rotor is modelled as a Hamiltonian system with control as

presented in Bloch and Leonard [5], Bloch et al [7]. In the cases of coincident and

non-coincident centers of buoyancy and gravity, we give explicitly the equations

of motion and the Hamilton-Jacobi equation of the reduced spacecraft-rotor sys-

tem on the symplectic leaves. These equations are more complex than that of the

Hamiltonian systems without control and describe explicitly the effect on controls

in regular symplectic reduction and Hamilton-Jacobi theory.

A brief outline of the paper is as follows. In the second section, we review some rel-

evant definitions and basic facts about rigid spacecraft with an internal rotor, which

will be used in the subsequent sections. As an application of the theoretical result

concerning the symplectic reduction of RCH system given by Marsden et al [22],

in the third section we consider the rigid spacecraft with an internal rotor as a regu-

lar point reducible RCH system on the extension of the rotation group SO(3)× S1

and on the that one of the Euclidean group SE(3) × S1, respectively, in the cases

of coincident and non-coincident centers of buoyancy and gravity, and we give ex-

plicitly the equations of motion of their reduced RCH systems on the symplectic

leaves. Moreover, as an application of the theoretical result about Hamilton-Jacobi

theory of regular reduced RCH system obtained by Wang [35], in the fourth sec-

tion, we give the Hamilton-Jacobi equations of the reduced rigid spacecraft-rotor

systems on the symplectic leaves in the cases of coincident and non-coincident

centers of buoyancy and gravity. This work develop the application of symplectic

reduction and Hamilton-Jacobi theory of RCH systems with symmetry with an aim

for much deeper understanding and recognition of the structure of the Hamiltonian

systems and RCH systems.

2. The Rigid Spacecraft with a Rotor

In this paper, our goal is to give the regular point reduction and Hamilton-Jacobi

theorem of rigid spacecraft with an internal rotor. In order to do this, we re-

view some relevant definitions and basic facts about rigid spacecraft with an in-

ternal rotor. We shall follow the notation and conventions introduced in Bloch and

Leonard [5], Bloch et al [7], Marsden [18], Marsden and Ratiu [21], and Marsden

et al [22]. In this paper, we assume that all manifolds are real, smooth and finite

dimensional and that all actions are smooth left actions. For convenience, we also

assume that all controls appearing in this paper are the admissible controls.
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2.1. The Spacecraft-Rotor System with Coincident Centers

We consider a rigid spacecraft (to be called the carrier body) carrying an internal

rotor, and assume that the only external forces and torques acting on the spacecraft-

rotor system are due to the buoyancy and the gravity. In general, it is possible

that the spacecraft’s center of buoyancy may not be coincident with its center of

gravity. But, in this subsection we assume that the spacecraft is symmetric and

has uniformly distributed mass, and that the center of buoyancy and the center of

gravity are coincident. Denote by O the center of mass of the system in the body

frame and let O is the origin of (orthogonal) body axes. Assume that the body

coordinate axes are aligned with principal axes of the carrier body, and that the

rotor is aligned along the third principal axis, see Bloch and Leonard [5] and Bloch

et al [7]. The rotor spins under the influence of a torque u acting on the rotor. If

translations are ignored and only rotations are considered, the configuration space

is Q = SO(3) × S1, with the first factor being the attitude of the rigid spacecraft

and the second factor being the angle of the rotor. The corresponding phase space

is the cotangent bundle T ∗Q = T ∗SO(3)× T ∗S1, where T ∗S1 ∼= T ∗
R ∼= R× R,

with the canonical symplectic form.

Let I = diag(I1, I2, I3) be the moment of inertia of the carrier body in the princi-

pal body-fixed frame, and J3 be the moment of inertia of rotor around its rotation

axis. Let J3k, k = 1, 2, be the moments of inertia of the rotor around the kth

principal axis with k = 1, 2, and denote by Īk = Ik + J3k, k = 1, 2, Ī3 = I3. Let

Ω = (Ω1,Ω2,Ω3) be the vector of body angular velocities computed with respect

to the axes fixed in the body and (Ω1,Ω2,Ω3) ∈ so(3). Let α be the relative an-

gle of rotor and α̇ the rotor relative angular velocity about the third principal axis

with respect to a carrier body fixed frame. Consider the Lagrangian of the system

L(A,Ω, α, α̇) : TQ ∼= SO(3) × so(3) × R × R → R, which is the total kinetic

energy of the rigid spacecraft plus the kinetic energy of rotor, given by

L(A,Ω, α, α̇) =
1

2
(Ī1Ω

2
1 + Ī2Ω

2
2 + Ī3Ω

2
3 + J3(Ω3 + α̇)2)

where A ∈ SO(3), Ω = (Ω1,Ω2,Ω3) ∈ so(3), α ∈ R, α̇ ∈ R. If we introduce

the conjugate angular momentum, given by Πk =
∂L

∂Ωk
= ĪkΩk, k = 1, 2, Π3 =

∂L

∂Ω3
= Ī3Ω3 + J3(Ω3 + α̇), l =

∂L

∂α̇
= J3(Ω3 + α̇), and make use of the

Legendre transformation FL : SO(3)×so(3)×R×R → SO(3)×so
∗(3)×R×R,

(A,Ω, α, α̇) → (A,Π, α, l), where Π = (Π1,Π2,Π3) ∈ so
∗(3), l ∈ R, we end up

with the Hamiltonian H(A,Π, α, l) : T ∗Q ∼= SO(3)× so
∗(3)×R×R → R given
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by the function

H(A,Π, α, l) = Ω ·Π+ α̇ · l − L(A,Ω, α, α̇)

(1)

=
1

2

(
Π2

1

Ī1
+

Π2
2

Ī2
+

(Π3 − l)2

Ī3
+

l2

J3

)
.

In order to derive the equations of motion of spacecraft-rotor system, in the fol-

lowing we need to consider the symmetry and reduced symplectic structure of the

configuration space Q = SO(3)× S1.

2.2. The Spacecraft-Rotor System with Non-Coincident Centers

Since it is possible that the spacecraft’s center of buoyancy may not be coincident

with its center of gravity, in this subsection then we consider the spacecraft-rotor

system with non-coincident centers of buoyancy and gravity. We fix an orthogonal

coordinate frame to the carrier body with origin located at the center of buoyancy

and axes aligned with the principal axes of the carrier body, and the rotor is aligned

along the third principal axis, see Bloch and Leonard [5], Bloch et al [7], and

Leonard and Marsden [16]. The rotor spins under the influence of a torque u

acting on the rotor. When the carrier body is oriented so that the body-fixed frame

is aligned with the inertial frame, the third principal axis aligns with the direction of

gravity. The vector from the center of buoyancy to the center of gravity with respect

to the body-fixed frame is hχ, where χ is an unit vector on the line connecting the

two centers which is assumed to be aligned along the third principal axis, and

h is the length of this segment. The mass of the carrier body is denoted by m,

the magnitude of the gravitational acceleration by g, and let Γ be the unit vector

viewed by an observer moving with the body. In this case, the configuration space

is Q = SO(3)�R
3 × S1 ∼= SE(3)× S1, where the first factor being the attitude of

rigid spacecraft and the drift of spacecraft in the rotational process and the second

factor being the angle of rotor. The corresponding phase space is the cotangent

bundle T ∗Q = T ∗SE(3)×T ∗S1, where T ∗S1 ∼= T ∗
R ∼= R×R, with its canonical

symplectic form.

Consider the Lagrangian of the system L(A, c,Ω,Γ, α, α̇) : TQ ∼= SE(3)×se(3)×
R×R → R, which is the total kinetic energy of the rigid spacecraft plus the kinetic

energy of the rotor minus the potential energy of the system, i.e.,

L(A, c,Ω,Γ, α, α̇) =
1

2
(Ī1Ω

2
1 + Ī2Ω

2
2 + Ī3Ω

2
3 + J3(Ω3 + α̇)2)−mghΓ · χ

where (A, c) ∈ SE(3), Ω = (Ω1,Ω2,Ω3) ∈ so(3), Γ ∈ R
3, (Ω,Γ) ∈ se(3),

α ∈ R, α̇ ∈ R. If we introduce the conjugate angular momentum, given by
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Πk =
∂L

∂Ωk
= ĪkΩk, k = 1, 2, Π3 =

∂L

∂Ω3
= Ī3Ω3 + J3(Ω3 + α̇), l =

∂L

∂α̇
=

J3(Ω3 + α̇), and via the Legendre transformation FL : SE(3) × se(3) × R ×
R → SE(3) × se

∗(3) × R × R, (A, c,Ω,Γ, α, α̇) → (A, c,Π,Γ, α, l), where

Π = (Π1,Π2,Π3) ∈ so
∗(3), (Π,Γ) ∈ se

∗(3), l ∈ R, we arrive at the Hamiltonian

H(A, c,Π,Γ, α, l) : T ∗Q ∼= SE(3)× se
∗(3)× R× R → R given by the function

H(A, c,Π,Γ, α, l) = Ω ·Π+ α̇ · l − L(A, c,Ω,Γ, α, α̇)

(2)

=
1

2
(
Π2

1

Ī1
+

Π2
2

Ī2
+

(Π3 − l)2

Ī3
+

l2

J3
) +mghΓ · χ.

In order to give the equation of motion of spacecraft-rotor system, in the following

we need to consider the symmetry and reduced symplectic structure of the cotan-

gent bundle of the configurational space Q = SE(3)× S1.

3. Symmetric Reduction of the Rigid Spacecraft with a Rotor

In the following we consider the rigid spacecraft with an internal rotor as a regular

point reducible RCH system on the extension of rotation group SO(3) × S1 and

on the extension of the Euclidean group SE(3) × S1, respectively, and give the

equations of motion of their reduced RCH systems on the respective symplectic

leaves. It is worth to note that it is different from the symmetric reduction of

Hamiltonian system in Bloch and Leonard [5], Bloch et al [7], Marsden [18], the

reductions in this paper only the controlled Hamiltonian reductions, that is, the

symmetric reductions of (regular) controlled Hamiltonian systems, see Marsden

et al [22]. We follow the notation and conventions introduced in Marsden et al
[19, 20], Marsden and Ratiu [21], Libermann and Marle [17], Ortega and Ratiu

[29].

3.1. Symmetric Reduction of Spacecraft-Rotor System with Coincident
Centers

We first give the regular point reduction of spacecraft-rotor system with coincident

centers of buoyancy and gravity. Assume that the Lie group G = SO(3) acts freely

and properly on Q = SO(3)× S1 by left translations on the first factor SO(3), and

via the trivial action on the second factor S1. By using the left trivialization of

T ∗SO(3) = SO(3) × so
∗(3), the action of SO(3) on the phase space T ∗Q =

T ∗SO(3) × T ∗S1 is by cotangent lift of left translations on SO(3) at the identity,

that is, Φ : SO(3) × T ∗SO(3) × T ∗S1 ∼= SO(3) × SO(3) × so
∗(3) × R × R →
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SO(3) × so
∗(3) × R × R, given by Φ(B, (A,Π, α, l)) = (BA,Π, α, l), for any

A,B ∈ SO(3), Π ∈ so
∗(3), α, l ∈ R, which is also free and proper, and the orbit

space (T ∗Q)/SO(3) is a smooth manifold with π : T ∗Q → (T ∗Q)/SO(3) being

a smooth submersion. Since SO(3) acts trivially on so
∗(3) and R, it follows that

(T ∗Q)/SO(3) is diffeomorphic to so
∗(3)× R× R.

Further we know that so∗(3) is a Poisson manifold with respect to its rigid body

Lie-Poisson bracket defined by

{F,K}so∗(3)(Π) = −Π · (∇ΠF ×∇ΠK) (3)

where F,K ∈ C∞(so∗(3)), Π ∈ so
∗(3). For μ ∈ so

∗(3), the coadjoint or-

bit Oμ ⊂ so
∗(3) has an induced orbit symplectic form ω−

Oμ
, which coincides

with the restriction of the Lie-Poisson bracket on so
∗(3) to the coadjoint orbit

Oμ. From the Symplectic Stratification theorem we know that the coadjoint or-

bits (Oμ, ω
−
Oμ

), μ ∈ so
∗(3), form the symplectic leaves of the Poisson manifold

(so∗(3), {· , ·}so∗(3)). Let ωR be the canonical symplectic form on T ∗
R ∼= R × R,

which is given by

ωR((θ1, λ1), (θ2, λ2)) = 〈λ2, θ1〉 − 〈λ1, θ2〉 (4)

where (θi, λi) ∈ R× R, i = 1, 2, 〈· , ·〉 is the standard inner product on R× R. It

induces a canonical Poisson bracket {· , ·}R on T ∗
R, which is given by the formula

{F,K}R(θ, λ) =
∂F

∂θ

∂K

∂λ
−

∂K

∂θ

∂F

∂λ
· (5)

Thus, we can induce a symplectic form ω̃−
Oμ×R×R

= π∗
Oμ

ω−
Oμ

+ π∗
R
ωR on the

smooth manifold Oμ × R × R, where the maps πOμ
: Oμ × R × R → Oμ and

πR : Oμ×R×R → R×R are canonical projections, and induce a Poisson bracket

{· , ·}− = π∗
so∗(3){· , ·}so∗(3) + π∗

R
{· , ·}R on the smooth manifold so

∗(3)×R×R.

Respectively, the maps πso∗(3) : so
∗(3)×R×R → so

∗(3) and πR : so∗(3)×R×

R → R × R are canonical projections, and such that (Oμ × R × R, ω̃−
Oμ×R×R

) is

a symplectic leaf of the Poisson manifold (so∗(3)× R× R, {· , ·}−).

On the other hand, from the isomorphism T ∗Q ∼= T ∗SO(3)× T ∗S1 we know that

there is a canonical symplectic form ωQ = π∗
SO(3)ω0 + π∗

S1ωS1 on T ∗Q, where ω0

is the canonical symplectic form on T ∗SO(3) and the maps πSO(3) : Q = SO(3)×

S1 → SO(3) and πS1 : Q = SO(3)×S1 → S1 are canonical projections. Then the

cotangent lift of the left SO(3)-action Φ : SO(3)×T ∗Q → T ∗Q is also symplectic,

and admits an associated Ad∗-equivariant momentum map JQ : T ∗Q → so
∗(3)

such that JQ ·π∗
SO(3) = JSO(3), where JSO(3) : T

∗SO(3) → so
∗(3) is a momentum

map of the left SO(3)-action on T ∗SO(3), and π∗
SO(3) : T

∗SO(3) → T ∗Q. If μ ∈



Symmetric Reduction and Hamilton-Jacobi Equation of Rigid Spacecraft ... 95

so
∗(3) is a regular value of JQ, then μ ∈ so

∗(3) is also a regular value of JSO(3)

and J
−1
Q (μ) ∼= J

−1
SO(3)(μ)×R×R. Denote by SO(3)μ = {g ∈ SO(3); Ad∗g μ = μ}

the isotropy subgroup of coadjoint SO(3)-action at the point μ ∈ so
∗(3). It fol-

lows that SO(3)μ acts also freely and properly on J
−1
Q (μ), and that the regular

point reduced space (T ∗Q)μ = J
−1
Q (μ)/SO(3)μ ∼= (T ∗SO(3))μ × R × R of

(T ∗Q,ωQ) at μ is a symplectic manifold with symplectic form ωμ uniquely char-

acterized by the relation π∗
μωμ = i∗μωQ = i∗μπ

∗
SO(3)ω0 + i∗μπ

∗
S1ωS1 , where the map

iμ : J−1
Q (μ) → T ∗Q is the inclusion and πμ : J−1

Q (μ) → (T ∗Q)μ is the projec-

tion. Due to Abraham and Marsden [1], we know also that ((T ∗SO(3))μ, ωμ) is

symplectically diffeomorphic to (Oμ, ω
−
Oμ

), and hence we have that ((T ∗Q)μ, ωμ)

is symplectically diffeomorphic to (Oμ×R×R, ω̃−
Oμ×R×R

), which is a symplectic

leaf of the Poisson manifold (so∗(3)× R× R, {· , ·}−).

From the expression (1) for the Hamiltonian, we know that H(A,Π, α, l) is in-

variant under the left SO(3)-action Φ : SO(3) × T ∗Q → T ∗Q. In the case

when μ ∈ so
∗(3) is a regular value of JQ, we have the reduced Hamiltonian

hμ(Π, α, l) : Oμ × R × R(⊂ so
∗(3) × R × R) → R given by hμ(Π, α, l) =

πμ(H(A,Π, α, l)) = H(A,Π, α, l)|Oμ×R×R. Using the rigid body Poisson bracket

on so
∗(3) and the Poisson bracket on T ∗

R, we can write the Poisson bracket on

so
∗(3)× R× R, of F,K : so∗(3)× R× R → R, in the form

{F,K}−(Π, α, l) = −Π · (∇ΠF ×∇ΠK) + {F,K}R(α, l) (6)

see Krishnaprasad and Marsden [12]. In particular, for Fμ,Kμ : Oμ × R × R →
R, we have that ω̃−

Oμ×R×R
(XFμ

, XKμ
) = {Fμ,Kμ}−|Oμ×R×R. Moreover, for

reduced Hamiltonian hμ(Π, α, l) : Oμ × R × R → R, we have the Hamiltonian

vector field Xhμ
(Kμ) = {Kμ, hμ}−|Oμ×R×R, and hence

dΠ

dt
= Xhμ

(Π)(Π, α, l) = {Π, hμ}−(Π, α, l)

= −Π · (∇ΠΠ×∇Πhμ) + (
∂Π

∂α

∂hμ

∂l
−

∂hμ

∂α

∂Π

∂l
)

= −∇ΠΠ · (∇Πhμ ×Π) = Π× Ω

dα

dt
= Xhμ

(α)(Π, α, l) = {α, hμ}−(Π, α, l)

= −Π · (∇Πα×∇Πhμ) + (
∂α

∂α

∂hμ

∂l
−

∂hμ

∂α

∂α

∂l
)

= −
(Π3 − l)

Ī3
+

l

J3
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dl

dt
= Xhμ

(l)(Π, α, l) = {l, hμ}−(Π, α, l)

= −Π · (∇Πl ×∇Πhμ) + (
∂l

∂α

∂hμ

∂l
−

∂hμ

∂α

∂l

∂l
) = 0

since ∇ΠΠ = 1, ∇Πα = ∇Πl = 0, ∇Πhμ = Ω, and ∂Π
∂α = ∂l

∂α =
∂hμ

∂α = 0. If we

consider the rigid spacecraft-rotor system with a control torque u : T ∗Q → T ∗Q

acting on the rotor, and u ∈ J
−1
Q (μ) is invariant under the left SO(3)-action, and its

reduced control torque uμ : Oμ×R×R → Oμ×R×R is given by uμ(Π, α, l) =

πμ(u(A,Π, α, l)) = u(A,Π, α, l)|Oμ×R×R, where πμ : J−1
Q (μ) → Oμ × R × R.

Thus, in the case of coincident centers of buoyancy and gravity, the equations of

motion for reduced spacecraft-rotor system with the control torque u acting on the

rotor are given by the system

dΠ

dt
= Π× Ω

dα

dt
= −

(Π3 − l)

Ī3
+

l

J3
dl

dt
= υ(uμ)Xhμ

.

(7)

Here υ(uμ)Xhμ
∈ T (Oμ × R× R). Note that υ(uμ)Xhμ

is the vertical lift of the

vector field Xhμ
under the action of uμ along fibers, that is

υ(uμ)Xhμ
(Π, α, l)=υ((TuμXhμ

)(uμ(Π, α, l)), (Π, α, l))=(TuμXhμ
)vσ(Π, α, l)

where σ is a geodesic in Oμ×R×R connecting the points uμ(Π, α, l) and (Π, α, l),
and (TuμXhμ

)vσ(Π, α, l) is just the parallel displacement of the vertical vector

field (TuμXhμ
)v(Π, α, l) along the geodesic σ from uμ(Π, α, l) to (Π, α, l), (see

Marsden et al [22] and Wang [35]). To sum up the above discussion, we state the

following theorem.

Theorem 1. In the case of coincident centers of the buoyancy and the gravity, the
spacecraft-rotor system with the control torque u acting on the rotor, that is, the
five-tuple (T ∗Q, SO(3), ωQ, H, u), where Q = SO(3) × S1, is a regular point
reducible RCH system. For a point μ ∈ so

∗(3), the regular value of the momentum
map JQ : SO(3) × so

∗(3) × R × R → so
∗(3), the regular point reduced system

is the four-tuple (Oμ × R × R, ω̃−
Oμ×R×R

, hμ, uμ), where Oμ ⊂ so
∗(3) is the

coadjoint orbit, ω̃−
Oμ×R×R

is orbit symplectic form on Oμ ×R×R, hμ(Π, α, l) =
πμ(H(A,Π, α, l)) = H(A,Π, α, l)|Oμ×R×R, uμ(Π, α, l) = πμ(u(A,Π, α, l)) =
u(A,Π, α, l)|Oμ×R×R, and its equations of motion are given by (7).
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Remark 2. When the rigid spacecraft does not carry any internal rotor, the config-

uration space is Q = G = SO(3), the motion of rigid spacecraft is just the rotation

motion of a rigid body, the above symmetric reduction of spacecraft-rotor system

is just the Marsden-Weinstein reduction of a rigid body at a regular value of mo-

mentum map, and the equation of motion (7) of reduced spacecraft-rotor system

becomes the equation of motion of a reduced rigid body on a coadjoint orbit of Lie

group SO(3). See Marsden and Ratiu [21].

3.2. Symmetric Reduction of Spacecraft-Rotor System with Non-Coincident
Centers

In the following we shall give the regular point reduction of spacecraft-rotor sys-

tem with non-coincident centers of buoyancy and gravity. Because the drift in

the direction of gravity breaks the symmetry and the spacecraft-rotor system is no

longer SO(3) invariant. In this case, its physical phase space is T ∗SO(3) × T ∗S1

and the symmetry group is S1, regarded as rotations about the third principal axis,

that is, the axis of gravity. By the semidirect product reduction theorem, see

Marsden et al [19], we know that the reduction of T ∗SO(3) by S1 gives a space

which is symplectically diffeomorphic to the reduced space obtained by the reduc-

tion of T ∗SE(3) by the left action of SE(3), that is, the coadjoint orbit O(μ,a) ⊂
se

∗(3) ∼= T ∗SE(3)/SE(3). In fact, in this case, we can identify the phase space

T ∗SO(3) with the reduction of the cotangent bundle of the special Euclidean group

SE(3) = SO(3)�R
3 by the Euclidean translation subgroup R

3 and identify the

symmetry group S1 with the isotropy group Ga = {A ∈ SO(3) ; Aa = a} = S1,

which is Abelian and (Ga)μa
= Ga = S1, for all μa ∈ g

∗
a, where a is a vector

aligned with the direction of gravity and where SO(3) acts on R
3 in the standard

way.

Assume that the Lie group G = SE(3) acts freely and properly on Q = SE(3)×S1

by left translations on the first factor SE(3), and the trivial action on the second

factor S1. By using the left trivialization of T ∗SE(3) = SE(3) × se
∗(3), the

action of SE(3) on phase space T ∗Q = T ∗SE(3) × T ∗S1 is just the cotangent

lift of left translations on SE(3) at the identity, that is, Φ : SE(3) × T ∗SE(3) ×
T ∗S1 ∼= SE(3) × SE(3) × se

∗(3) × R × R → SE(3) × se
∗(3) × R × R, given

by Φ((B, b)(A, c,Π,Γ, α, l)) = (BA, c,Π,Γ, α, l), for any A,B ∈ SO(3), Π ∈
so

∗(3), b, c,Γ ∈ R
3, α, l ∈ R, which is also free and proper, and the orbit

space (T ∗Q)/SE(3) is a smooth manifold and π : T ∗Q → (T ∗Q)/SE(3) is a

smooth submersion. Since SE(3) acts trivially on se
∗(3) and R, it follows that

(T ∗Q)/SE(3) is diffeomorphic to se
∗(3)× R× R.
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We know also that se∗(3) is a Poisson manifold with respect to its heavy top Lie-

Poisson bracket defined by

{F,K}se∗(3)(Π,Γ)=−Π·(∇ΠF×∇ΠK)−Γ·(∇ΠF×∇ΓK−∇ΠK×∇ΓF ) (8)

where F,K ∈ C∞(se∗(3)), (Π,Γ) ∈ se
∗(3). For (μ, a) ∈ se

∗(3), the coad-

joint orbit O(μ,a) ⊂ se
∗(3) has an induced orbit symplectic form ω−

O(μ,a)

, which

coincides with the restriction of the Lie-Poisson bracket on se
∗(3) to the coad-

joint orbit O(μ,a), and the coadjoint orbits (O(μ,a), ω
−
O(μ,a)

), (μ, a) ∈ se
∗(3),

form the symplectic leaves of the Poisson manifold (se∗(3), {· , ·}se∗(3)). Let ωR

be the canonical symplectic form on T ∗
R ∼= R × R given by (4), which induces

a canonical Poisson bracket {· , ·}R on T ∗
R given by (5). Thus, we can induce

a symplectic form ω̃−
O(μ,a)×R×R

= π∗
O(μ,a)

ω−
O(μ,a)

+ π∗
R
ωR on the smooth man-

ifold O(μ,a) × R × R, where the maps πO(μ,a)
: O(μ,a) × R × R → O(μ,a) and

πR : O(μ,a)×R×R → R×R are the canonical projections, and the Poisson bracket

on the smooth manifold se
∗(3)×R×R is {· , ·}− = π∗

se∗(3){· , ·}se∗(3)+π∗
R
{· , ·}R.

Here the maps πse∗(3) : se
∗(3)×R×R → se

∗(3) and πR : se∗(3)×R×R → R×R

are canonical projections, and such that (O(μ,a) × R× R, ω̃−
O(μ,a)×R×R

) is a sym-

plectic leaf of the Poisson manifold (se∗(3)× R× R, {· , ·}−).

On the other hand, from T ∗Q = T ∗SE(3)×T ∗S1 we know that there is a canonical

symplectic form ωQ = π∗
SE(3)ω1+π∗

S1ωS1 on T ∗Q, where ω1 is the canonical sym-

plectic form on T ∗SE(3) and the maps πSE(3) : Q = SE(3)×S1 → SE(3) and πS1 :

Q = SE(3)×S1 → S1 are canonical projections. Then the cotangent lift of the left

SE(3)-action Φ : SE(3) × T ∗Q → T ∗Q is also symplectic, and admits an associ-

ated Ad∗-equivariant momentum map JQ : T ∗Q → se
∗(3) such that JQ ·π∗

SE(3) =

JSE(3), where JSE(3) : T
∗SE(3) → se

∗(3) is the momentum map of the left SE(3)-
action on T ∗SE(3), and π∗

SE(3) : T
∗SE(3) → T ∗Q. If (μ, a) ∈ se

∗(3) is a regular

value of JQ, then (μ, a) ∈ se
∗(3) is also a regular value of JSE(3) and J

−1
Q (μ, a) ∼=

J
−1
SE(3)(μ, a)×R×R. Denote by SE(3)(μ,a) = {g ∈ SE(3) ; Ad∗g(μ, a) = (μ, a)}

the isotropy subgroup of coadjoint SE(3)-action at the point (μ, a) ∈ se
∗(3). It

follows that SE(3)(μ,a) acts also freely and properly on J
−1
Q (μ, a), the regular

point reduced space (T ∗Q)(μ,a) = J
−1
Q (μ, a)/SE(3)(μ,a) ∼= (T ∗SE(3))(μ,a)×R×

R of (T ∗Q,ωQ) at (μ, a) is a symplectic manifold with symplectic form ω(μ,a)

uniquely characterized by the relation π∗
(μ,a)ω(μ,a) = i∗(μ,a)ωQ = i∗(μ,a)π

∗
SE(3)ω1 +

i∗(μ,a)π
∗
S1ωS1 , where the map i(μ,a) : J

−1
Q (μ, a) → T ∗Q is the inclusion and

π(μ,a) : J−1
Q (μ, a) → (T ∗Q)(μ,a) is the projection. Due to the work of Abraham
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and Marsden [1], we know that ((T ∗SE(3))(μ,a), ω(μ,a)) is symplectically diffeo-

morphic to (O(μ,a), ω
−
O(μ,a)

), and hence we have that ((T ∗Q)(μ,a), ω(μ,a)) is sym-

plectically diffeomorphic to (O(μ,a)×R×R, ω̃−
O(μ,a)×R×R

), which is a symplectic

leaf of the Poisson manifold (se∗(3)× R× R, {· , ·}−).

From the expression (2) of the Hamiltonian, we know that H(A, c,Π,Γ, α, l) is

invariant under the left SE(3)-action Φ : SE(3) × T ∗Q → T ∗Q. In the case

when (μ, a) ∈ se
∗(3) is a regular value of JQ, we have the reduced Hamilto-

nian h(μ,a)(Π,Γ, α, l) : O(μ,a) × R × R(⊂ se
∗(3) × R × R) → R given by

h(μ,a)(Π,Γ, α, l) = π(μ,a)(H(A, c,Π,Γ, α, l)) = H(A, c,Π,Γ, α, l)|O(μ,a)×R×R.

From the heavy top Poisson bracket on se
∗(3) and the Poisson bracket on T ∗

R, we

can write the Poisson bracket on se
∗(3)×R×R, of F,K : se∗(3)×R×R → R,

(see Krishnaprasad and Marsden [12]) in the form

{F,K}−(Π,Γ, α, l) = −Π · (∇ΠF ×∇ΠK)

− Γ · (∇ΠF ×∇ΓK −∇ΠK ×∇ΓF ) + {F,K}R(α, l). (9)

In particular, for F(μ,a),K(μ,a) : O(μ,a)×R×R → R, we have the symplectic form

ω̃−
O(μ,a)×R×R

(XF(μ,a)
, XK(μ,a)

) = {F(μ,a),K(μ,a)}−|O(μ,a)×R×R and the reduced

Hamiltonian h(μ,a)(Π,Γ, α, l) : O(μ,a)×R×R → R. The respective Hamiltonian

vector field is Xh(μ,a)
(K(μ,a)) = {K(μ,a), h(μ,a)}−|O(μ,a)×R×R, and hence

dΠ

dt
=Xh(μ,a)

(Π)(Π,Γ, α, l) = {Π, h(μ,a)}−(Π,Γ, α, l)

=−Π · (∇ΠΠ×∇Πh(μ,a))− Γ · (∇ΠΠ×∇Γh(μ,a) −∇Πh(μ,a) ×∇ΓΠ)

+ (
∂Π

∂α

∂h(μ,a)

∂l
−

∂h(μ,a)

∂α

∂Π

∂l
) = Π× Ω−mghχ× Γ

=Π× Ω+mghΓ× χ

dΓ

dt
=Xh(μ,a)

(Γ)(Π,Γ, α, l) = {Γ, h(μ,a)}−(Π,Γ, α, l)

=−Π · (∇ΠΓ×∇Πh(μ,a))− Γ · (∇ΠΓ×∇Γh(μ,a) −∇Πh(μ,a) ×∇ΓΓ)

+ (
∂Γ

∂α

∂h(μ,a)

∂l
−

∂h(μ,a)

∂α

∂Γ

∂l
) = ∇ΓΓ · (Γ×∇Πh(μ,a)) = Γ× Ω

dα

dt
=Xh(μ,a)

(α)(Π,Γ, α, l) = {α, h(μ,a)}−(Π,Γ, α, l)

=−Π · (∇Πα×∇Πh(μ,a))− Γ · (∇Πα×∇Γh(μ,a) −∇Πh(μ,a) ×∇Γα)

+ (
∂α

∂α

∂h(μ,a)

∂l
−

∂h(μ,a)

∂α

∂α

∂l
) = −

(Π3 − l)

Ī3
+

l

J3
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dl

dt
=Xh(μ,a)

(l)(Π,Γ, α, l) = {l, h(μ,a)}−(Π,Γ, α, l)

=−Π · (∇Πl ×∇Πh(μ,a))− Γ · (∇Πl ×∇Γh(μ,a) −∇Πh(μ,a) ×∇Γl)

+ (
∂l

∂α

∂h(μ,a)

∂l
−

∂h(μ,a)

∂α

∂l

∂l
) = 0

since ∇ΠΠ = ∇ΓΓ = 1, ∇ΓΠ = ∇ΠΓ = ∇Πα = ∇Πl = ∇Γα = ∇Γl =

0, ∇Πh(μ,a) = Ω, and ∂Π
∂α = ∂Γ

∂α = ∂l
∂α =

∂h(μ,a)

∂α = 0. If we consider the

rigid spacecraft-rotor system with a control torque u : T ∗Q → T ∗Q acting on

the rotor, such that u ∈ J
−1
Q (μ, a) is invariant under the left SE(3)-action, then its

reduced control torque u(μ,a) : O(μ,a) × R × R → O(μ,a) × R × R is given by

u(μ,a)(Π,Γ, α, l) = π(μ,a)(u(A, c,Π,Γ, α, l)) = u(A, c,Π,Γ, α, l)|O(μ,a)×R×R,

where π(μ,a) : J
−1
Q (μ, a) → O(μ,a) × R × R. Thus, in the case of non-coincident

centers of buoyancy and gravity, the equations of motion for reduced spacecraft-

rotor system with the control torque u acting on the rotor are given by

dΠ

dt
= Π× Ω+mghΓ× χ

dΓ

dt
= Γ× Ω

dα

dt
= −

(Π3 − l)

Ī3
+

l

J3
dl

dt
= υ(u(μ,a))Xh(μ,a)

(10)

where υ(u(μ,a))Xh(μ,a)
∈ T (O(μ,a) × R × R). Note that υ(u(μ,a))Xh(μ,a)

is the

vertical lift of the vector field Xh(μ,a)
under the action of u(μ,a) along fibers, that

is,

υ(u(μ,a))Xh(μ,a)
(Π,Γ, α, l)

= υ((Tu(μ,a)Xh(μ,a)
)(u(μ,a)(Π,Γ, α, l)), (Π,Γ, α, l))

= (Tu(μ,a)Xh(μ,a)
)vσ(Π,Γ, α, l)

see Marsden et al [22] and Wang [35]. To sum up the above discussion, we state

the following theorem.

Theorem 3. In the case of non-coincident centers of buoyancy and gravity, the
spacecraft-rotor system with the control torque u acting on the rotor, that is, the
five-tuple (T ∗Q, SE(3), ωQ, H, u), where Q = SE(3) × S1, is a regular point re-
ducible RCH system. For a point (μ, a) ∈ se

∗(3), which is a regular value of
the momentum map JQ : SE(3) × se

∗(3) × R × R → se
∗(3), the regular point
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reduced system is the four-tuple (O(μ,a) × R × R, ω̃−
O(μ,a)×R×R

, h(μ,a), u(μ,a)),

where O(μ,a) ⊂ se
∗(3) is the coadjoint orbit, ω̃−

O(μ,a)×R×R
is the orbit symplec-

tic form on O(μ,a) × R × R, h(μ,a)(Π,Γ, α, l) = π(μ,a)(H(A, c,Π,Γ, α, l)) =
H(A, c,Π,Γ, α, l)|O(μ,a)×R×R, u(μ,a)(Π,Γ, α, l) = π(μ,a)(u(A, c,Π,Γ, α, l)) =

u(A, c,Π,Γ, α, l)|O(μ,a)×R×R, and its equations of motion are given by (10).

Remark 4. When the rigid spacecraft does not carry any internal rotor, the con-

figuration space is Q = G = SE(3), the motion of the rigid spacecraft is just

the rotation motion with drift of a rigid body, the above symmetric reduction of

spacecraft-rotor system is just the Marsden-Weinstein reduction of a heavy top at

a regular value of momentum map, and the equation of motion (10) of the reduced

spacecraft-rotor system becomes the equation of motion of the reduced heavy top

on the coadjoint orbit of Lie group SE(3). See Marsden and Ratiu [21].

4. Hamilton-Jacobi Equation of the Rigid Spacecraft with a Rotor

It is well-known that Hamilton-Jacobi theory provides a characterization of the

generating functions of certain time-dependent canonical transformations. The so-

lutions of such systems are extremely easy to find by reduction to the equilibrium,

see Abraham and Marsden [1], Arnold [2] and Marsden and Ratiu [21]. In general,

we know that it is not easy to find the solutions of Hamilton’s equation. But, if

we can get a solution of Hamilton-Jacobi equation of the Hamiltonian system, by

using the relationship between the Hamilton equations and the Hamilton-Jacobi

equation, it is easy to give a special solution of the Hamilton equations. Thus, it

is very important to find explicitly the Hamilton-Jacobi equation of a Hamiltonian

system. Recently, the present author [35] proved the following Hamilton-Jacobi

theorem for regular point reducible RCH system on the generalization of a Lie

group.

Theorem 5. Let us have a regular point reducible RCH system (T ∗Q,G, ωQ, H,

F,W ) on Q = G×V , where G is a Lie group, V is a k-dimensional vector space,
γ : Q → T ∗Q is an one-form on Q, γ∗ : T ∗T ∗Q → T ∗Q is symplectic with an
induced symplectic form π∗

QωQ on T ∗T ∗Q, π∗
Q : T ∗Q → T ∗T ∗Q, πQ : T ∗Q →

Q. Let us assume that γ is closed with respect to TπQ : TT ∗Q → TQ, and
X̃γ = TπQ · X̃ · γ, where X̃ = X(T ∗Q,G,ωQ,H,F,u) is the dynamical vector field
of the regular point reducible RCH system (T ∗Q,G, ωQ, H, F,W ) with a control
law u. Let us assume also that μ ∈ g

∗ is the regular reducible point of the RCH

system, and that the image im(γ) ⊂ J
−1
Q (μ), is Gμ-invariant, γ̄ = πμ(γ) : Q →
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Oμ × V × V ∗, where Gμ is the isotropy subgroup of coadjoint action at μ, and
πμ : J−1

Q (μ) → Oμ × V × V ∗. Then the following two assertions are equivalent

i) X̃γ and X̃μ are γ̄-related, where X̃μ = X(Oμ×V×V ∗,ω̃−

Oμ×V ×V ∗ ,hμ,fμ,uμ)
is

the dynamical vector field of regular point reduced RCH system (Oμ × V ×
V ∗, ω̃−

Oμ×V×V ∗ , hμ, fμ, uμ)

ii) Xhμ·γ̄ + υ(fμ · γ̄) + υ(uμ · γ̄) = 0, or Xhμ·γ̄ + υ(fμ · γ̄) + υ(uμ · γ̄) = X̃γ .

Here γ is a solution of the Hamilton-Jacobi equation XH·γ+υ(F ·γ)+υ(u·γ) = 0,

if and only if γ̄ is a solution of the Hamilton-Jacobi equation Xhμ·γ̄ + υ(fμ · γ̄) +
υ(uμ · γ̄) = 0. For convenience, υ(fμ · γ̄)Xhμ·γ̄ and υ(uμ · γ̄)Xhμ·γ̄ are written

simply as υ(fμ · γ̄) and υ(uμ · γ̄).

As an application of the above result, we consider the rigid spacecraft with an

internal rotor as a regular point reducible RCH system on the generalization of

rotation group SO(3)×S1 and on the generalization of Euclidean group SE(3)×S1,

respectively, and give the Hamilton-Jacobi equations of their reduced RCH systems

on the symplectic leaves which show the effect on controls in Hamilton-Jacobi

theory.

4.1. H-J Equation of Spacecraft-Rotor System with Coincident Centers

In the following we first derive the Hamilton-Jacobi equation for regular point

reduced spacecraft-rotor system with coincident centers of buoyancy and grav-

ity. From the expression for the Hamiltonian (1), we know that H(A,Π, α, l) is

invariant under the left SO(3)-action. When μ ∈ so
∗(3) is a regular value of

JQ, the reduced Hamiltonian hμ(Π, α, l) : Oμ × R × R → R, which is given

by hμ(Π, α, l) = πμ(H(A,Π, α, l)) = H(A,Π, α, l)|Oμ×R×R, and the reduced

Hamiltonian vector field Xhμ
(Kμ) = {Kμ, hμ}−|Oμ×R×R.

Assume that γ : SO(3) × S1 → T ∗(SO(3) × S1) is an one-form on SO(3) × S1,

the γ∗ : T ∗T ∗(SO(3) × S1) → T ∗(SO(3) × S1) is symplectic, γ is closed with

respect to TπSO(3)×S1 : TT ∗(SO(3) × S1) → T (SO(3) × S1), im(γ) ⊂ J
−1
Q (μ),

is SO(3)μ-invariant, and γ̄ = πμ(γ) : SO(3) × S1 → Oμ × R × R. Denote by

γ̄(A,α) = (γ̄1, γ̄2, γ̄3, γ̄4, γ̄5)(A,α) ∈ Oμ × R × R(⊂ so
∗(3) × R × R), and

(γ̄1, γ̄2, γ̄3)(A,α) ∈ Oμ, then hμ · γ̄ : SO(3)× S1 → R is given by

hμ · γ̄(A,α) = H · γ̄(A,α)|Oμ×R×R =
1

2

(
γ̄21
Ī1

+
γ̄22
Ī2

+
(γ̄3 − γ̄5)

2

Ī3
+

γ̄25
J3

)
(11)
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and the Hamiltonian vector field is

Xhμ·γ̄(Π) = {Π, hμ · γ̄(A,α)}−|Oμ×R×R

= −Π · (∇ΠΠ×∇Π(hμ · γ̄)) + {Π, hμ · γ̄(A,α)}R|Oμ×R×R

= −∇ΠΠ · (∇Π(hμ · γ̄)×Π) +

(
∂Π

∂α

∂(hμ · γ̄)

∂l
−

∂(hμ · γ̄)

∂α

∂Π

∂l

)

= (Π1,Π2,Π3)×

(
γ̄1

Ī1
,
γ̄2

Ī2
,
(γ̄3 − γ̄5)

Ī3

)

=

(
Ī2Π2(γ̄3 − γ̄5)− Ī3Π3γ̄2

Ī2Ī3
,
Ī3Π3γ̄1 − Ī1Π1(γ̄3 − γ̄5)

Ī3Ī1
,
Ī1Π1γ̄2 − Ī2Π2γ̄1

Ī1Ī2

)

since ∇ΠΠ = 1, and ∇Πj
(hμ · γ̄) = γ̄j/Īj , j = 1, 2, ∇Π3

(hμ · γ̄) = (γ̄3− γ̄5)/Ī3,

and ∂Π
∂α =

∂(hμ·γ̄)
∂α = 0. Then we have also

Xhμ·γ̄(α) = {α, hμ · γ̄(A,α)}−|Oμ×R×R

= −Π · (∇Πα×∇Π(hμ · γ̄)) + {α, hμ · γ̄(A,α)}R|Oμ×R×R

= −∇Πα · (∇Π(hμ · γ̄)×Π) + (
∂α

∂α

∂(hμ · γ̄)

∂l
−

∂(hμ · γ̄)

∂α

∂α

∂l
)

= −
(γ̄3 − γ̄5)

Ī3
+

γ̄5

J3

Xhμ·γ̄(l) = {l, hμ · γ̄(A,α)}−|Oμ×R×R

= −Π · (∇Πl ×∇Π(hμ · γ̄)) + {l, hμ · γ̄(A,α)}R|Oμ×R×R

= −∇Πl · (∇Π(hμ · γ̄)×Π) + (
∂l

∂α

∂(hμ · γ̄)

∂l
−

∂(hμ · γ̄)

∂α

∂l

∂l
) = 0

since ∇Πα = 0, ∇Πl = 0, and ∂l
∂α = ∂α

∂l =
∂(hμ·γ̄)

∂α = 0. If we consider the

rigid spacecraft-rotor system with a control torque u : T ∗Q → T ∗Q acting on the

rotor, and u ∈ J
−1
Q (μ) is invariant under the left SO(3)-action, then its reduced

control torque uμ : Oμ × R × R → Oμ × R × R is given by uμ(Π, α, l) =

πμ(u(A,Π, α, l)) = u(A,Π, α, l)|Oμ×R×R, where πμ : J−1
Q (μ) → Oμ × R × R.

The dynamical vector field of the regular point reduced spacecraft-rotor system

(Oμ × R× R, ω̃−
Oμ×R×R

, hμ, uμ) is given by

X(Oμ×R×R,ω̃−

Oμ×R×R
,hμ,uμ)

= Xhμ
+ υ(uμ)

where υ(uμ) = υ(uμ)Xhμ
∈ T (Oμ × R× R). Assume that

υ(uμ · γ̄)Xhμ
(A,α) = (U1, U2, U3, U4, U5)(A,α) ∈ T (Oμ × R× R).
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Thus, in the case of coincident centers of buoyancy and gravity, the Hamilton-

Jacobi equations for the reduced spacecraft-rotor system with control torque u act-

ing on the rotor are

Ī2Π2(γ̄3 − γ̄5)− Ī3Π3γ̄2 + Ī2Ī3U1 = 0

Ī3Π3γ̄1 − Ī1Π1(γ̄3 − γ̄5) + Ī3Ī1U2 = 0

Ī1Π1γ̄2 − Ī2Π2γ̄1 + Ī1Ī2U3 = 0

−J3(γ̄3 − γ̄5) + Ī3γ̄5 + Ī3J3U4 = 0

U5 = 0.

(12)

To sum up the above discussion, we state the following theorem.

Theorem 6. In the case of coincident centers of buoyancy and gravity, for a point
μ ∈ so

∗(3), which is a regular value of the momentum map JQ : SO(3) ×
so

∗(3) × R × R → so
∗(3), the reduced system of spacecraft-rotor system with

the control torque u acting on the rotor (T ∗Q, SO(3), ωQ, H, u), where Q =
SO(3) × S1, is the four-tuple (Oμ × R × R, ω̃−

Oμ×R×R
, hμ, uμ), in which Oμ ⊂

so
∗(3) is the coadjoint orbit, ω̃−

Oμ×R×R
is orbit symplectic form on Oμ × R × R,

hμ(Π, α, l) = H(A,Π, α, l)|Oμ×R×R, and uμ(Π, α, l) = u(A,Π, α, l)|Oμ×R×R.
Assume that γ : SO(3) × S1 → T ∗(SO(3) × S1) is one-form on SO(3) × S1,
γ∗ : T ∗T ∗(SO(3) × S1) → T ∗(SO(3) × S1) is symplectic, γ is closed with
respect to TπQ : TT ∗Q → TQ, and im(γ) ⊂ J

−1
Q (μ), is SO(3)μ-invariant,

where SO(3)μ is the isotropy subgroup of coadjoint SO(3)-action at the point
μ ∈ so

∗(3), and γ̄ = πμ(γ) : SO(3) × S1 → Oμ × R × R. Then γ̄ is a solu-
tion to either of the Hamilton-Jacobi equation of reduced spacecraft-rotor system
given by (12), or to the equation Xhμ·γ̄ + υ(uμ · γ̄) = X̃γ , if and only if X̃γ

and X̃μ are γ̄-related, where X̃γ = TπQ · X̃ · γ, X̃ = X(T ∗Q,SO(3),ωQ,H,u), and

X̃μ = X(Oμ×R×R,ω̃−

Oμ×R×R
,hμ,uμ)

.

Remark 7. When the rigid spacecraft does not carry any internal rotor, the con-

figuration space is Q = G = SO(3), the above Hamilton-Jacobi equation (12) of

the reduced spacecraft-rotor system is just the Lie-Poisson Hamilton-Jacobi equa-

tion of the Marsden-Weinstein reduced Hamiltonian system (Oμ, ω
−
Oμ

, hOμ
) on the

coadjoint orbit of Lie group SO(3) since the symplectic structure on the coadjoint

orbit Oμ is induced by the (-)-Lie-Poisson brackets on so
∗(3). See Marsden and

Ratiu [21], Ge and Marsden [10], and Wang [34].
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4.2. H-J Equation of Spacecraft-Rotor System with Non-Coincident Centers

In the following we shall give the Hamilton-Jacobi equation for regular point re-

duced spacecraft-rotor system with non-coincident centers of buoyancy and grav-

ity. From the expression (2) of the Hamiltonian, we know that H(A, c,Π,Γ, α, l) is

invariant under the left SE(3)-action. In the case when (μ, a) ∈ se
∗(3) is a regular

value of JQ, we have the reduced Hamiltonian h(μ,a)(Π,Γ, α, l) : O(μ,a)×R×R(⊂
se

∗(3)×R×R) → R, which is given by h(μ,a)(Π,Γ, α, l) = π(μ,a)(H(A, c,Π,Γ, α,
l)) = H(A, c,Π,Γ, α, l)|O(μ,a)×R×R, and the reduced Hamiltonian vector field

Xh(μ,a)
(K(μ,a)) = {K(μ,a), h(μ,a)}−|O(μ,a)×R×R.

Assume that γ : SE(3) × S1 → T ∗(SE(3) × S1) is an one-form on SE(3) × S1,

γ∗ : T ∗T ∗(SE(3)× S1) → T ∗(SE(3)× S1) is symplectic, γ is closed with respect

to TπSE(3)×S1 : TT ∗(SE(3)×S1) → T (SE(3)×S1), im(γ) ⊂ J
−1((μ, a)), which

is SE(3)(μ,a)-invariant, and γ̄ = π(μ,a)(γ) : SE(3)× S1 → O(μ,a) × R× R. If we

denote by γ̄(A, c, α) = (γ̄1, γ̄2, γ̄3,Γ1,Γ2,Γ3, γ̄4, γ̄5)(A, c, α) ∈ O(μ,a)×R×R(⊂

se
∗(3)× R× R), then h(μ,a) · γ̄ : SE(3)× S1 → R is given by the formula

h(μ,a) · γ̄(A, c, α) = H · γ̄(A, c, α)|O(μ,a)×R×R

(13)

=
1

2

(
γ̄21
Ī1

+
γ̄22
Ī2

+
(γ̄3 − γ̄5)

2

Ī3
+

γ̄25
J3

)
+mghΓ · χ

and the Hamiltonian vector field is

Xh(μ,a)·γ̄(Π) = {Π, h(μ,a) · γ̄(A, c, α)}−|O(μ,a)×R×R

= −Π · (∇ΠΠ×∇Π(h(μ,a) · γ̄))− Γ · (∇ΠΠ×∇Γ(h(μ,a) · γ̄)

−∇Π(h(μ,a) · γ̄)×∇ΓΠ) + {Π, h(μ,a) · γ̄(A, c, α)}R|O(μ,a)×R×R

= −∇ΠΠ · (∇Π(h(μ,a) · γ̄)×Π)−∇ΠΠ · (∇Γ(h(μ,a) · γ̄)× Γ)

+ (
∂Π

∂α

∂(h(μ,a) · γ̄)

∂l
−

∂(h(μ,a) · γ̄)

∂α

∂Π

∂l
)

= (Π1,Π2,Π3)×(
γ̄1

Ī1
,
γ̄2

Ī2
,
(γ̄3 − γ̄5)

Ī3
)+mgh(Γ1,Γ2,Γ3)×(χ1, χ2, χ3)

= (
Ī2Π2(γ̄3 − γ̄5)− Ī3Π3γ̄2

Ī2Ī3
+mgh(Γ2χ3 − Γ3χ2),

Ī3Π3γ̄1 − Ī1Π1(γ̄3 − γ̄5)

Ī3Ī1
+mgh(Γ3χ1 − Γ1χ3),

Ī1Π1γ̄2 − Ī2Π2γ̄1

Ī1Ī2
+mgh(Γ1χ2 − Γ2χ1))
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since ∇ΠΠ = 1, ∇ΓΠ = 0, ∂Π
∂α = ∂Π

∂l = 0, Γ = (Γ1,Γ2,Γ3), χ = (χ1, χ2, χ3),

and ∇Πj
(h(μ,a) · γ̄) = γ̄j/Īj , j = 1, 2, ∇Π3

(h(μ,a) · γ̄) = (γ̄3 − γ̄5)/Ī3.

In a similar way we have

Xh(μ,a)·γ̄(Γ) = {Γ, h(μ,a) · γ̄(A, c, α)}−|O(μ,a)×R×R

= −Π · (∇ΠΓ×∇Π(h(μ,a) · γ̄))− Γ · (∇ΠΓ×∇Γ(h(μ,a) · γ̄)

−∇Π(h(μ,a) · γ̄)×∇ΓΓ) + {Γ, h(μ,a) · γ̄(A, c, α)}R|O(μ,a)×R×R

= ∇ΓΓ · (Γ×∇Π(h(μ,a) · γ̄)) +

(
∂Γ

∂α

∂(h(μ,a) · γ̄)

∂l
−

∂(h(μ,a) · γ̄)

∂α

∂Γ

∂l

)

= (Γ1,Γ2,Γ3)×

(
γ̄1

Ī1
,
γ̄2

Ī2
,
(γ̄3 − γ̄5)

Ī3

)

=

(
Ī2Γ2(γ̄3 − γ̄5)− Ī3Γ3γ̄2

Ī2Ī3
,

Ī3Γ3γ̄1 − Ī1Γ1(γ̄3 − γ̄5)

Ī3Ī1
,

Ī1Γ1γ̄2 − Ī2Γ2γ̄1

Ī1Ī2

)

since ∇ΓΓ = 1, ∇ΠΓ = 0, ∂Γ
∂α = ∂Γ

∂l = 0.

Finally

Xh(μ,a)·γ̄(α) = {α, h(μ,a) · γ̄(A, c, α)}−|O(μ,a)×R×R

= −Π · (∇Πα×∇Π(h(μ,a) · γ̄))− Γ · (∇Πα×∇Γ(h(μ,a) · γ̄)

−∇Π(h(μ,a) · γ̄)×∇Γα) + {α, h(μ,a) · γ̄(A, c, α)}R|O(μ,a)×R×R

= (
∂α

∂α

∂(h(μ,a) · γ̄)

∂l
−

∂(h(μ,a) · γ̄)

∂α

∂α

∂l
) = −

(γ̄3 − γ̄5)

Ī3
+

γ̄5

J3

and

Xh(μ,a)·γ̄(l) = {l, h(μ,a) · γ̄(A, c, α)}−|O(μ,a)×R×R

= −Π · (∇Πl ×∇Π(h(μ,a) · γ̄))− Γ · (∇Πl ×∇Γ(h(μ,a) · γ̄)

−∇Π(h(μ,a) · γ̄)×∇Γl) + {l, h(μ,a) · γ̄(A, c, α)}R|O(μ,a)×R×R

= (
∂l

∂α

∂(h(μ,a) · γ̄)

∂l
−

∂(h(μ,a) · γ̄)

∂α

∂l

∂l
) = 0

since ∇Πα = ∇Γα = 0, ∇Πl = ∇Γl = 0, ∂α
∂l = ∂l

∂α = 0, and
∂(h(μ,a)·γ̄)

∂α = 0.
If we consider the spacecraft-rotor system with a control torque u : T ∗Q → T ∗Q

acting on the rotor, and u ∈ J
−1
Q ((μ, a)) is invariant under the left SE(3)-action,

then its reduced control torque u(μ,a) : O(μ,a)×R×R → O(μ,a)×R×R is given by

u(μ,a)(Π,Γ, α, l) = π(μ,a)(u(A, c,Π,Γ, α, l)) = u(A, c,Π,Γ, α, l)|O(μ,a)×R×R,

where π(μ,a) : J
−1
Q ((μ, a)) → O(μ,a)×R×R. The dynamical vector field of regular
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point reduced spacecraft-rotor system (O(μ,a)×R×R, ω̃−
O(μ,a)×R×R

, h(μ,a), u(μ,a))

is given by

X(O(μ,a)×R×R,ω̃−

O
(μ,a)

×R×R
,h(μ,a),u(μ,a))

= Xh(μ,a)
+ υ(u(μ,a))

where υ(u(μ,a)) = υ(u(μ,a))Xh(μ,a)
∈ T (O(μ,a) × R× R). Assume that

υ(u(μ,a) · γ̄)Xh(μ,a)
(A, c, α) = (U1, U2, U3, U4, U5, U6, U7, U8)(A, c, α).

Thus, in the case of non-coincident centers of buoyancy and gravity, the Hamilton-

Jacobi equations for reduced spacecraft-rotor system with the control torque u act-

ing on the rotor are given by the following system of equations

Ī2Π2(γ̄3 − γ̄5)− Ī3Π3γ̄2 +mghĪ2Ī3(Γ2χ3 − Γ3χ2) + Ī2Ī3U1 = 0

Ī3Π3γ̄1 − Ī1Π1(γ̄3 − γ̄5) +mghĪ3Ī1(Γ3χ1 − Γ1χ3) + Ī3Ī1U2 = 0

Ī1Π1γ̄2 − Ī2Π2γ̄1 +mghĪ1Ī2(Γ1χ2 − Γ2χ1) + Ī1Ī2U3 = 0

Ī2Γ2(γ̄3 − γ̄5)− Ī3Γ3γ̄2 + Ī2Ī3U4 = 0

Ī3Γ3γ̄1 − Ī1Γ1(γ̄3 − γ̄5) + Ī3Ī1U5 = 0

Ī1Γ1γ̄2 − Ī2Γ2γ̄1 + Ī1Ī2U6 = 0

−J3(γ̄3 − γ̄5) + Ī3γ̄5 + Ī3J3U7 = 0

U8 = 0.

(14)

To sum up the above discussion, we formulate the following proposition theorem.

Theorem 8. In the case of non-coincident centers of buoyancy and gravity and
when the point (μ, a) ∈ se

∗(3), is as regular value of the momentum map JQ :
SE(3)× se

∗(3)×R×R → se
∗(3), one obtains a regular point reduced system of

spacecraft-rotor system with the control torque u acting on the rotor (T ∗Q, SE(3),
ωQ, H, u), where Q = SE(3) × S1, presented by the four-tuple (O(μ,a) × R ×

R, ω̃−
O(μ,a)×R×R

, h(μ,a), u(μ,a)), in which O(μ,a) ⊂ se
∗(3) is the coadjoint orbit,

ω̃−
O(μ,a)×R×R

is orbit symplectic form on O(μ,a)×R×R, h(μ,a)(Π,Γ, θ, l) = H(A,

v,Π,Γ, θ, l)|O(μ,a)×R×R, and u(μ,a)(Π,Γ, θ, l) = u(A, v,Π,Γ, θ, l)|O(μ,a)×R×R.

Assume that γ : SE(3)×S1 → T ∗(SE(3)×S1) is an one-form on SE(3)×S1, and
γ∗ : T ∗T ∗(SE(3) × S1) → T ∗(SE(3) × S1) is symplectic, and γ is closed with
respect to TπQ : TT ∗Q → TQ, and im(γ) ⊂ J

−1(μ, a), and it is SE(3)(μ,a)-
invariant, where SE(3)(μ,a) is the isotropy subgroup of coadjoint SE(3)-action at
the point (μ, a) ∈ se

∗(3), and γ̄ = π(μ,a)(γ) : SE(3) × S1 → O(μ,a) × R × R.
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Then γ̄ is a solution to either the Hamilton-Jacobi equation of reduced spacecraft-
rotor system given by (14), or to the equation XhO

(μ,a)
·γ̄ + υ(u(μ,a) · γ̄) = X̃γ ,

if and only if X̃γ and X̃(μ,a) are γ̄-related, where X̃γ = TπQ · X̃ · γ, X̃ =

X(T ∗Q,SE(3),ωQ,H,u), and X̃(μ,a) = X(O(μ,a)×R×R,ω̃−

O
(μ,a)

×R×R
,h(μ,a),u(μ,a))

.

Remark 9. When the rigid spacecraft does not carry any internal rotor, the con-

figuration space is Q = G = SE(3), the above Hamilton-Jacobi equation (14) of

reduced spacecraft-rotor system is just the Lie-Poisson Hamilton-Jacobi equation

of the Marsden-Weinstein reduced Hamiltonian system (O(μ,a), ω
−
O(μ,a)

, hO(μ,a)
)

on the coadjoint orbit of Lie group SE(3), and the symplectic structure on the

coadjoint orbit O(μ,a) is induced by the (-)-Lie-Poisson brackets on se
∗(3).

5. Conclusions

In this paper, as an application of the symplectic reduction and Hamilton-Jacobi

theory of regular controlled Hamiltonian systems with symmetry, in both cases of

coincident and non-coincident centers of the buoyancy and gravity, we have pre-

sented explicitly the equations of the motion and the Hamilton-Jacobi equations

of the reduced spacecraft-rotor systems on the symplectic leaves which show the

effect of controls in regular symplectic reduction and Hamilton-Jacobi theory. We

have to note also that in [24–26], the authors study the dynamics of a rigid space-

craft under the influence of gravity torques and solve the dynamical equations in a

first-order form with a special coefficient matrix.

In the future, we hope to study the stabilization of rigid spacecraft with an internal

rotor and to describe the action of controls of the system. On the other hand, if

we define a controlled Hamiltonian system on the cotangent bundle T ∗Q by using

the Poisson structure, see Wang and Zhang in [36] and Ratiu and Wang in [30],

and the symplectic reduction for regular controlled Hamiltonian system cannot be

used, what and how we could do? This is a problem worthy to be considered in

detail. In addition, we have to mention also that there have been a lot of beau-

tiful results concerning the reduction theory of Hamiltonian systems in celestial

mechanics, hydrodynamics and plasma physics. Thus, it is an important topic to

study the application of reduction theory of controlled Hamiltonian systems in ce-

lestial mechanics, hydrodynamics and plasma physics. These will be our goals in

the future research.
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