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Abstract. In this work we consider conserved properties of the vector Nonlin-

ear Schrödinger Equations for linearly polarized solitons in the initial configura-

tion. We derive analytic formulae for the mass, pseudomomentum and energy and

compare results with the discrete formulae based on a conservative fully implicit

finite-difference scheme in complex arithmetic.

1. Introduction

The investigation of soliton supporting systems is of great importance both in view

of applications and for the fundamental understanding of the phenomena asso-

ciated with propagation of solitons. Recently, elaborate models such as vector

Nonlinear Schrödinger Equation (NLSE) appeared in the literature (see, for exam-

ple [4, 6]). They involve more parameters and have richer phenomenology but, as

a rule, they are not fully integrable and require numerical approaches. The non-

fully-integrable models possess as a rule three conservation laws: (wave) “mass”,

(wave) momentum, and energy and these have to be faithfully represented by the

numerical schemes.

An implicit scheme of Crank-Nicolson type was first proposed for the single NLS

in the extensive numerical treatise [9]. The concept of the internal iterations was

first applied to vector NLSE in [3] and extended in [7] in order to ensure the imple-

mentation of the conservation laws on difference level within the round-off error

of the calculations. Here, we follow generally the works [3, 7] but focus on the

conservative properties of the conservative scheme.

The comparison of both analytic and numerical calculations shows a significant

advantage in the efficiency of the finite difference scheme and algorithm.
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2. Vector Nonlinear Schrödinger Equation

In optics, the most popular model is the cubic Schrödinger equation which de-

scribes the single-mode wave propagation in a fiber [1, 2]. It has the form

iψt + βψxx + α|ψ|2ψ = 0 (1)

where i =
√
−1 and ψ(x, t) is a complex-valued wave function. Depending on the

sign of coefficient α, the localized solutions of equation (1) are either the hyper-

bolic secants (“bright solitons”) or hyperbolic tangents (“dark solitons”). Since the

fibers also allow propagation of multiple “orthogonal” modes, a multi-component

version of equation (1) has been actively investigated during the last decade.

A general form of the vector Nonlinear Schrodinger Equation (NLSE) reads

iψt = βψxx +
(
α1|ψ|

2 + (α1 + 2α2)|φ|
2
)
ψ + γψ + Γφ = 0

(2)
iφt = βφxx +

(
α1|φ|

2 + (α1 + 2α2)|ψ|
2
)
φ+ γφ+ Γψ = 0

where β is the dispersion coefficient and α1 describes the self-focusing of a signal

for pulses in birefringent media. Complex-valued coefficients γ and Γ are respon-

sible for the linear coupling between the two equations. Coefficient α2 governs

the nonlinear coupling between the equations. It is interesting to note that when

α2 = 0, the nonlinear coupling is not present despite the fact that “cross-terms”

proportional to α1 appear in the equations. In fact, when γ = Γ = α2 = 0, the

solution of the two equations are identical, ψ ≡ φ, and equal to the solution of

single NLSE, equation (1) with nonlinearity coefficient α = 2α1. The coefficient

α2 is called sometimes “cross-phase modulation” and its value when α2 
= 0 plays

the role of defining the elliptic, circular and linear polarizations. In this case, inte-

grability is lost, and numerical methods are to be used to study the evolution of the

system.

Here is to be mentioned that two main versions of equation (1) appear in the liter-

ature. In the first one, the sign of the time derivative is positive (as in equation (1),

which is the most popular version in nonlinear optics), and in the other one the

sign is negative. Unlike the parabolic equations, changing the sign does not make

the equation incorrect in the sense of Hadamard. Hence, it does not really make

difference which version will be used.

Functions ψ and φ have various interpretations in the context of optic pulses, in-

cluding the amplitudes of x and y polarizations in a birefringent nonlinear planar

waveguide, pulsed wave amplitudes of left and right circular polarizations, etc. The

quantity γ is called normalized birefringence, and Γ is the relative propagation con-

stant. The presence of the two new parameters, γ and Γ, in equations (2) makes the
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phenomenology of the system (2) much richer. In particular, they allow to study

the phenomena such as “self-dispersion”, “cross-dispersion”, and dissipation, etc.

(see [7] and the literature cited therein).

For Γ = γ = 0, equation (2) is alternatively called the Gross-Pitaevskii equation or

an equation of Manakov-Type. It was solved analytically for the case α2 = 0, β =
1
2 by Manakov [5] via inverse scattering transform, who generalized an earlier

result by Zakharov and Shabat [12, 13] for the scalar cubic NLSE (i.e., equation

(2)ψ with φ(x, t) = 0).

Let us define the mass M , the (pseudo)momentum P , and the energy E, of the

wave system as follows

M
def
=

1

2β

∞∫
−∞

(
|ψ|2 + |φ|2

)
dx, P

def
= −

∞∫
−∞

�(ψψ̄x + φφ̄x)dx, E
def
=

∞∫
−∞

Hdx

H
def
= β

(
|ψx|

2 + |φx|
2
)
−

α1

2
(|ψ|4 + |φ|4) (3)

−(α1+2α2)
(
|φ|2|ψ|2

)
−γ

(
|ψ|2+|φ|2

)
−2Γ�(φ̄ψ)

where H is the Hamiltonian density of the system. Note that the factor 1
2β is a

matter of definition and is added for the sake of further convenience. In the same

vein, the signs in the expression of the energy are up to a definition and the choice

in the present paper is based on considerations of further convenience when the

quasi-particles are considered. It is readily proved that these quantities are either

conserved on the solutions of equation (2), or a balance law holds, namely

dM

dt
= 0,

dP

dt
= H

∣∣
x=L2

−H
∣∣
x=−L1

,
dE

dt
= 0 (4)

where −L1 and L2 are the left end and the right end of the interval under consid-

eration. For asymptotic boundary conditions, the requirement ψ, φ = 0 at infinity

entails the requirement that the spatial derivatives also vanish. As a result, the

Hamiltonian density vanishes at infinity and the balance law for the pseudomo-

mentum becomes a conservation law.

We assume that for each of the functions φ, ψ the initial condition is of the form of

a single propagating soliton, namely

ψ(x, t), φ(x, t) = A sech [b(x−X − ct)] exp

[
i

(
c

2β
(x−X)− nt

)]

b2 =
1

β

(
n+ γ +

c2

4β

)
, A = b

√
2β

α1
, uc =

2nβ

c

(5)
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where X is the spatial position (center of soliton) where the modulus soliton has a

maximum, c is the phase speed, and n is the carrier frequency. Respectively b−1 is

a measure of the support of the localized wave.

In this paper we investigate the evolution of systems of waves which at initial

of time are superpositions of solitons of type of equation (5) and which evolve

according to system of equations (2).

To solve this problem numerically, we use the conservative scheme in complex

arithmetic described in [10]. If one is to construct a numerical algorithm, the

above conservation laws have to be embodied in the scheme in order to faithfully

represent the physics of the problem. We use different number of points in spatial

direction, typically of order between 8000-20000 points.

The parametric space of the problem is multidimensional, and it is impossible to

exhaust the different ranges in a single paper. We focus our attention here on

the effect of the nonlinear coupling and set Γ = γ = 0. We also fix β = 1,

because, in fact, the independent variable x can be scaled by β and the latter is

not an independent parameter. For the predominant set of numerical experiments,

we choose initial solitons which are moving envelopes over standing wave, i.e.,

n = 0. Similarly to the dispersion parameter β, the nonlinearity parameter α

can be absorbed in the amplitude of the solitons and can be held fixed. Thus, the

parameter to be varied is α2, and more specifically, its ratio to α1. For definiteness,

we fix α1 = 1.

The aim of our work is to better understand the particle-like behavior and properties

of the localized waves. We call a localized wave a quasi-particle (QP) if it survives

the collision with other QPs (or some other kind of interactions) without losing its

identity.

3. Analytic Expressions for Conserved Properties

Let us assume here that the two components of the vector soliton are moving to-

gether without changing their relative position. Then for both ψ and φ components

we have the same phase speed c, but the amplitudes A, the size of support b, and

the frequencies n can be different. A propagating soliton of this type is described

by the following formulas

ψ =Aψsech[bψ(x− ct)] exp

[
i

(
c

2β
x− nψt

)]

φ =Aφsech[bφ(x− ct)] exp

[
i

(
c

2β
x− nφt

)]
.

(6)
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When the compound solution, the vector (ψ, φ), propagates steadily, the above

parameters are related as in equation (5).

For a solution of type equation (6) the mass is given by the following formula

M =
1

2β

∞∫
−∞

(|ψ|2 + |φ|2)dx =
1

2β
A2

ψ

∞∫
−∞

sech2[bψ(x− ct)]dx

+
1

2β
A2

φ

∞∫
−∞

sech2[bφ(x− ct)]dx =
1

2β

A2
ψ

bψ
tanh[bψ(x− ct)]

∣∣∣∣∣
∞

−∞

(7)

+
1

2β

A2
φ

bφ
tanh[bφ(x− ct)]

∣∣∣∣∣
∞

−∞

=
1

β

(
A2

ψ

bψ
+

A2
φ

bφ

)
.

For the wave momentum (pseudomomentum), we get in a similar fashion

P =

∞∫
−∞

�[ψψ̄x + φφ̄x]dx

=

∞∫
−∞

(
A2

ψc

2β
sech2[bψ(x− ct)] +

A2
φc

2β
sech2[bφ(x− ct)]

)
dx (8)

=
1

β

(
A2

ψ

bψ
+

A2
φ

bφ

)
c ≡ Mc.

The momentum of the quasi-particle is exactly the product of the mass and the

phase speed.

Now, for the energy we get

E =

∞∫
−∞

[
β(|ψx|

2 + |φx|
2)−

1

2
α1

(
|ψ|4 + |φ|4

)

−(α1 + 2α2)(|φ|
2|ψ|2)− γ(|ψ|2 + |φ|2)− 2ΓR(ψ̄ψ)

]
dx
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=
2

3
β(A2

ψbψ +A2
φbφ) +

c2

2β

(
A2

ψ

bψ
+

A2
φ

bφ

)
−

2

3
α1

(
A4

ψ

bψ
+

A4
φ

bφ

)

−(α1 + 2α2)A
2
ψA

2
φ

∞∫
−∞

sech2[bψ(x− ct)]sech2[bφ(x− ct)]dx

−2

[
γ

(
A2

ψ

bψ
+

A2
φ

bφ

)
+ 2Γ

A2
ψ

bψ

]
.

In the above formula one of the integrals cannot be found analytically directly

unless bψ = bφ. Yet, we can have a reasonable approximation after noting that

sech2[bψ(x− ct)]sech2[bφ(x− ct)]

=
4

{cosh[(bψ + bφ)(x− ct)] + cosh[(bψ − bφ)(x− ct)]}2

and additionally for the cases treated in this work,bψ ≈ bφ, i.e., |bφ − bψ| �
|bφ + bψ|. In such a case, in the region where cosh[(bψ − bφ)(x − ct)] changes

rapidly, one can assume that cosh[(bψ − bφ)(x− ct)] ∼ 1. Then

∞∫
−∞

4dx

{cosh[(bψ + bφ)(x− ct)] + cosh[(bψ − bφ)(x− ct)]}2

≈

∞∫
−∞

4dx

[1 + cosh(bψ + bφ)(x− ct)]2
(9)

=

∞∫
−∞

dx

cosh4
[
1
2(bψ + bφ)(x− ct)

] =
8

3

1

bψ + bφ
·

The accuracy of this formula can be easily verified for a couple of specific values

of bψ and bφ for which the original integral can also be found analytically. For

specific ratios bφ/bψ, both the approximate and exact integrals can be represented

as κ/bψ, where κ is a different coefficient for the different cases. The results for

several different ratios bφ/bψ show that up to bφ = 2bψ the approximation is very

reasonable – it does not exceed 3.5%, and hence can be used to get an approximate

analytical expression for the integral and compare the energy to the numerically

obtained value.

Finally, under the above assumption that the scales of the supports for the two

components are not very different, we have the following analytical approximation
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of the energy

E ≈
c2

2

[
1

β

(
A2

ψ

bψ
+

A2
φ

bφ

)]
+

2

3
β(A2

ψbψ +A2
φbφ)−

2

3
α1

(
A4

ψ

bψ
+

A4
φ

bφ

)

(10)

−
8

3
(α1 + 2α2)

A2
ψA

2
φ

bψ + bφ
− 2

[
γ

(
A2

ψ

bψ
+

A2
φ

bφ

)
+ 2Γ

A2
ψ

bψ

]
.

The term c2

2

[
1
β

(
A2

ψ

bψ
+

A2

φ

bφ

)]
≡ Mc2

2 can be called the “kinetic energy” of the

quasi-particle, while the rest of the terms can be called “internal energy” of the

quasi-particle.

4. Elastic Head-on Collision

As an illustration, we computed the solution for α2 = 0 (known as Manakov’s

solution). As expected, no interaction between the two components of the vector

soliton was observed, which confirms that only α2 governs the nonlinear effects,

not the full coefficient (α1+2α2). As should have been expected, our computations

showed that for α2 = 0, there was no interaction between the two orthogonal

modes ψ and φ, despite the fact that α1 
= 0 means that terms proportional to |ψ|2

are present in the equation for φ, and vice versa.

We chose for the phase speeds of solitons cl = 1 and cr = −0.5 which does not

restrict us very much because in absence of linear coupling, γ = Γ = 0, one can

change the phase speed, but still obtains the same results provided that α1 is also

changed. The selected values for the phase speeds give for the amplitudes of the

initial solitons the following

Al ≡ Aψ =

√
2

2
≈ 0.7075, Ar ≡ Aφ =

√
2

4
≈ 0.3537. (11)

According to the analytical expression, equation (7), the masses of the two quasi-

particles are Ml ≡ Mψ = 1 and Mr ≡ Mφ = 0.5. The total pseudomomentum is

clMl − crMr = 0.75. Since at initial time the two QPs are strictly 90◦ polarized,

we have only one of the amplitudes Aψ, Aφ not equal to zero. Then equation (10)



58 Michail Todorov

can be applied to the left and right solitons separately to get the equalities

Ek
l =

1

2
c2lMl = 0.5, E

p
l =

2

3

(
A2

l bl −
A4

l

bl

)
=
2

3

(
1

4
−

1

2

)
= −

1

6
≈ −0.1667

El = Ek
l + E

p
l =

1

3
≈ 0.3333, Ek

r =
1

2
c2rMr =

1

16
= 0.0625

Ep
r =

2

3

(
A2

rbr −
A4

r

br

)
=

2

3

(
1

32
−

1

16

)
= −

1

48
≈ −0.0208

Er = Ek
r + Ep

r =
1

24
≈ 0.0408, E = El + Er =

3

8
= 0.375

where the superscripts k and p stand for “kinetic” and “potential” energies respec-

tively.

Note that the actual values obtained from the initial condition after being dis-

cretized on the chosen grid (see the discrete analogues in [7] and [11]), are

Ml = 1.0000000, Mr = 0.50000000, P = 0.74921909, E = 0.37462784.

The small deviations for P and E of order of 0.1% are the effect of the truncation

error. Since the scheme is conservative, the above values are the one which are

kept constant during the time stepping.

5. Conclusion

In this paper, we have develop a complex-arithmetic implementation of a conser-

vative difference scheme for vector NLSE.

The new tool developed here allowed us to investigate physically important sets

of parameters of the vector NLSE. This means that although the initial conditions

are nontrivial for only one of the functions in each of the initial locations, after the

interaction both functions can acquire nontrivial amplitudes in both locations.

We consider as an initial profile the superposition of solitons with linear polariza-

tions, one of them having only ψ-component, and the other – only φ-component.

Then this initial profile is allowed to evolve according to the vector NLSE and

the results of the collision depend mostly on the nonlinear coupling parameter α2

(cross-modulation parameter) on the dynamics of quasi-particles [11]. The exact

formulae for the masses, pseudomomenta, and energy of the initial solitons in the

case of initial linear polarization allow to check the validity and relevance of their

discrete analogues and to get significant knowledge about the behavior of the in-

teracted soliton envelops considered as quasi-particles.
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