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Abstract. A mapping between the stationary solutions of nonlinear Schrödinger

equations with real and complex potentials is constructed and a set of exact solu-

tions with real energies are obtained for a large class of complex potentials. As

specific examples we consider the case of dissipative periodic soliton solutions of

the nonlinear Schrödinger equation with complex potential.

1. Introduction

Nonlinear wave phenomena with time evolutions governed by non hermitian Hamil-

tonians are presently attracting a great interest both from the theoretical and the

applicative point of view. The non hermiticity is in general due to the presence

of a complex potential in the Hamiltonian accounting for typical dissipative and

amplification effects met in classical and quantum contexts [5, 12]. In particular,

dissipative solitons [4] of the nonlinear Schrödinger (NLS) equation with peri-

odic complex potentials have been extensively investigated during the past years

in connections with the propagation of light in nonlinear optical fibers with peri-

odic modulations of the complex refractive index [13,18]. Recently similar studies

were done for matter wave solitons of Bose-Einstein condensates (BEC) trapped

in absorbing optical lattices [1, 7] and in the presence of three body interatomic

interactions [3]. In the linear context, the recent discovery [6] that the Schrödinger

eigenvalue problem with complex potentials that are invariant under the combined

parity and time reversal symmetry (so called PT -potentials), may have fully real

spectrum, has raised interest also in view of possible connection with the theory

of quantum dissipative systems [10]. Complex potentials with PT -symmetry are

presently investigated in nonlinear optics [11] where it has been demonstrated that

nonlinear media with linear damping and amplifications that are PT -symmetric

can support stable stationary localized and periodic states [14]. Also, quite re-

cently, physical systems with PT -symmetry have been successfully implemented

in real experiments [9, 15, 17]. Solutions of the NLS equation with a complex po-

tential which belong to the real part of the spectrum (real energies or real chemical
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potentials) can exist, however, for generic complex potentials and it is therefore of

interest to characterize them in general, independently from the PT -symmetry.

The aim of the present paper is to show how one can systematically construct sta-

tionary solutions of the complex nonlinear Schrödinger equation via a mapping

between real and complex NLS equations. The problem is formulated in terms of

a nonlocal eigenvalue problem which involves only real potentials, whose eigen-

functions and eigenvalues fix amplitudes and energies of the stationary solutions of

the complex NLS equation, respectively. The complex potentials and the phases of

the solutions are also determined self-consistently through the mapping. To illus-

trate our approach we discuss the case of the NLS equation with different complex

potentials for which we construct periodic dissipative solitons in the form of ellip-

tic functions.

The paper is organized as follows. In Section 2 we introduce model equations and

illustrate the mapping used to determine the solutions. In Section 3 we show how

to construct exact solutions of the NLS with periodic complex potentials while in

the last section the main results of the paper will be briefly summarized.

2. Model Equations and Mapping

The model equation we consider is the NLS equation with real and complex po-

tentials both of linear and nonlinear types, e.g.

iψt = −
1

2
ψxx + (Vl(x) + iWl(x))ψ + (σ + Vnl(x) + iWnl(x))|ψ|

2ψ. (1)

The case of the linear Schrodinger equation (e.g. σ = Vnl = Wnl = 0) can be

used as an example of quantum dissipative system. In the nonlinear case the above

equation can appear in connection with several interesting phenomena including

light propagation in photonic crystals and Bose-Einstein condensates. Due to the

possibility of different physical applications we shall keep equation (1) in normal-

ized form, looking for stationary solutions of the type

ψ(x, t) = A(x)eiθ(x)e−iωt (2)

with the amplitude A(x) and phase θ(x) as real functions. Substituting this expres-

sion into equation(1), we obtain the system of equations

ωA+
1

2
Axx − σA3 −

A

2
(θx)

2 − VlA− VnlA
3 = 0 (3)

1

2
Aθxx +Axθx −WlA−WnlA

3 = 0. (4)
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These equations can be easily separated. In this respect notice that by multiplying

equation (4) by A and integrating it twice one obtains

1

2
θ(x) = B2 +

∫ x

−∞

B1 + F (y)

A2(y)
dy (5)

with

F (y) =

∫ y

−∞

[
Wl(z) +Wnl(z)A

2(z)
]
A2(z)dz (6)

and B1, B2 integration constants. By substituting equation (5) into equation (3) we

obtain the following nonlinear eigenvalue problem for the real amplitude A{
−
1

2

∂

∂x2
+ Vl + (σ + Vnl)A

2 + 2

(
F (x)

A2

)2
}
A = ωA (7)

where the integration constants B1, B2, have been fixed to zero for simplicity. Note

that for stationary solutions equation (7) is completely equivalent to equation (1)

in the sense that any solution of (7) gives a stationary solution of (1) with the

phase fixed by (5). Also note that the dependence on the complex potentials in

the eigenvalue problems comes through the function F and for an arbitrary F (x)
(e.g. arbitrary complex potentials) the problem can become singular. It is possible,

however, to construct potentials Wl and Wnl (e.g. functions F ) so that the solutions

of (7) are regular. This establishes a mapping between stationary solutions of the

NLS equation with real potentials and stationary solution of equation (1) with the

phase given by (5). In this respect, one can take F in general to be an analytical

function of A2 and derivatives e.g. F (x) ≡ F (A2, (A2)x, ...). In the simplest case

F can be taken of the form

F (x) =
1

2
CnA

n+2, n = 0, 1, 2... (8)

with Cn constants to be determined. Equation (7) then reduces to the following

NLS real eigenvalue problem{
−
1

2

∂

∂x2
+ Vl + (σ + Vnl)A

2 +
C2
n

2
A2n

}
A = ωA (9)

which can be solved analytically for particular forms of the potentials Vl, Vnl, or

numerically with high accuracy (using for example the self-consistent method dis-

cussed in [16]) for generic real potentials. In the following we therefore assume

that the real amplitudes A and frequencies ω for given Vl and Vnl are exactly ob-

tained from (9), either analytically or numerically.
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On the other hand from equation (8) one can characterize the complex potentials

which support such solutions. Using equation (6) we have indeed that equation (8)

is satisfied if the amplitude A is related to Wl and Wnl by the relation

Wl +WnlA
2 = Cn

(
n+ 2

2n

)
dAn

dx
(10)

and from equations (5), (8), one gets that the phase is given by

θ(x) = Cn

∫ x

−∞
Andy. (11)

Note that in this case equation (10) allows to relate the constant Cn to the amplitude

of the solution, A0, and the amplitudes W0l, W0nl, of the linear and nonlinear

complex potentials, respectively. In particular, for the case Wnl = 0 we have that

Cn =
2

n+ 2

W0l

An
0

, W0nl = 0 (12)

while for Wl = 0 one obtains

Cn =
2

n+ 2

W0nl

An−2
0

, W0l = 0. (13)

It is worth to note that while the case n = 1 leads to a pure cubic NLS eigenvalue

problem, the case n > 1 introduces higher order nonlinearities in equation (9)

which can however be eliminated by redefying the linear real potential as

Vl = Ṽl −
Cn

2

2
A2n (14)

or the nonlinear real potential as

Vnl = Ṽnl −
Cn

2

2
A2n−2 (15)

(or a combination of both). Also notice that equations (2), (10) - (13) allow to map

solutions of the real eigenvalue problem (9) into solutions of the NLS equation (1)

with the corresponding complex potentials determined as in (10). It is clear that

this approach can be extended to functions of the type

F (x) =
1

2

k∑
n=0

CnA
n+2, k = 0, 1, 2 . . . (16)
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In this case coefficient Cn are self-consistently determined from the real eigenvalue

problem ⎧⎨
⎩−

1

2

∂

∂x2
+ Vl + (σ + Vnl)A

2 +
1

2

(∑
n

CnA
n

)2
⎫⎬
⎭A = ωA. (17)

and complex potentials and phase are given by

Wl +WnlA
2 =

1

A2

dF

dx
(18)

θ(x) =
∑
n

Cn

∫ x

−∞
Andy. (19)

Note that the sum in equation (16) can include infinite terms and to have a map

between real and complex NLS equations it is necessary to subtract higher order

nonlinearities from the real linear and nonlinear potentials as done in equations

(14)-(15). Finally we remark that if the functions Ax/A,Axx/A, ... are bounded,

the expression (16) can be further generalized as

F (x) =
k∑

n,m

Cn,m
dmAn+2

dxm
(20)

with Cn,m suitable constants and with the complex potentials determined as (18).

In all these cases a map between solutions of the real eigenvalue problem (17) and

solutions of the NLS equation (1) is constructed.

The mapping guarantees that the constructed solutions always have real energies

and may be therefore of physical interest. We finally remark that a similar ap-

proach based on a priori fixing of the solution and a posteriori determination of

the complex potential, has been considered also in [2, 8], although not in terms of

a mapping between stationary solutions of NLS equations. In the following we

illustrate how the mapping works on some specific example.

3. Nonlinear Schrödinger Equation with Complex Potentials

3.1. Case n = 1

Let us consider first the simplest ansatz (8) with n = 1. We fix the nonlinearity to

be attractive (σ < 0) and restrict to linear complex potentials (i.e., Wnl = Vnl = 0)
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and with linear potential of the form Vl = V0l cn2(x, k). In this case the real

eigenvalue problem (9)[
−
1

2

∂

∂x2
+ V0l cn(x, k)2 +

(
σ +

C2
1

2

)
A2

]
A = ωA (21)

admits the following exact solutions in terms of elliptic functions

a) A(x) = A0 cn(x, k)

A0 = ±

√
2(k2 + V0l)

2|σ| − C2
1

, ω =
1− 2k2

2

(22)

b) A(x) = A0 sn(x, k)

A0 = ±

√
2(k2 + V0l)

C2
1 − 2|σ|

, ω =
1 + k2

2
+ V0l

(23)

c) A(x) = A0 dn(x, k)

A0 = ±
1

k

√
2(k2 + V0l)

2|σ| − C2
1

, ω =
k2

2
− 1 + V0l

(
1−

1

k2

)
.

(24)

Similar solutions can be constructed for the case of a repulsive nonlinearity σ > 0
with linear potentials of the form Vl = V0l sn2(x, k). In this case we have

d) A(x) = A0 cn(x, k)

A0 = ±

√
2(V0l − k2)

C2
1 + 2σ

, ω =
1− 2k2

2
+ V0l

(25)

e) A(x) = A0 sn(x, k)

A0 = ±

√
2(k2 − V0l)

C2
1 + 2σ

, ω =
1 + k2

2

(26)

f) A(x) = A0 dn(x, k)

A0 = ±
1

k

√
V0l − k2

C2
1 + 2σ

, ω =
k2

2
− 1 +

V0l

k2
·

(27)

Using the above mapping we can readily construct the stationary solutions of the

corresponding complex NLS with linear complex potentials given by

Wl =
3

2
C1Ax, C1 =

2

3

W0l

A0
(28)
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and with the phase given by θ(x) = C1

∫ x
−∞A(y)dy. Thus, for example, from the

solution a) we get

A = A0cn(x, k), Vl(x) = V0l cn2(x, k)

A0 =

√
9 (k2 + V0l) + 2W0l

2

3
√
|σ|

, ω =
1− 2k2

2

Wl = −W0l sn(x)dn(x), θ(x) =
2W0l

3k
arccos(dn(x)).

(29)

In similar manner one proceeds with the other solutions above. It is also clear that

exact solutions of this type can be constructed also for other types of linear elliptic

potentials (we omit them for brevity).

3.2. Case n = 2

As a further application of the ansatz (8) we consider the case n = 2 for which the

mappings involves higher order nonlinearities. We assume as before that Vnl =
Wnl = 0. In order to balance the quintic nonlinearity in equation (9), the potential

Vl must be taken as in equation (14). We take Ṽl = V0l cn 2(x, k) and consider a

solution of the form A(x) = A0 cn(x, k). One can then check that this is a solution

of (9) with

Vl(x) = V0lcn2(x, k)−
C2
2

2
A4

0 cn4(x, k) (30)

if A2
0 = V0l + k2 and ω = 1−2k2

2 · From the mapping we then have that

C2 =
W0l

2A2
0

=
W0l

2(V0 + k2)

Wl(x) = 2C2AAx = −W0l cn(x)sn(x)dn(x) (31)

and the phase is

θ(x) = x−
x

k2
+

1− k2 + k2cn2(x, k)

k2dn2(x, k)
E(am(x, k), k). (32)

As a further example of n = 2 we consider the case of pure nonlinear optical

lattices, i.e., Vl = Wl = 0. Fixing Ṽnl = 0 and looking for solutions of the type

A(x) = A0cn(x, k), we have from equation (15) that that

Vnl(x) = −
C2
2

2
A2

0 cn2(x, k). (33)
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with C2 fixed according to equation (13) as C2 = W0nl/2. One can easily check

that this is indeed a solution of the eigenvalue problem (9) if

ω =
1

2
− k2, A0 =

k√
|σ|

(34)

(we consider σ < 0). From the mapping we have that this is also a solution of the

NLS with the complex part of the nonlinear potential fixed according to equation

(10) as

Wnl(x) = 2C2
Ax

A
= −W0nl

sn(x, k)dn(x, k)

cn(x, k)
· (35)

For the cases n > 2 one can proceed in similar manner.

3.3. General Case

Let us now consider an example with the more general ansatz (16). To this regard

we take F (x) = 1
2(C0 + C2A

2)A2 and look for solutions of the form A(x) =
A0dn(x, k). Let us fix the linear potentials as Vl = Wl = 0 and the real nonlinear

potential as Vnl = V0nl − α2
2A

2 with V0nl a constant and with αn = Cn√
2
, n = 0, 2

(notice that we fixed all coefficients for n 
= 0, 2, equal to zero). By substituting

these expressions into the real eigenvalue problem we find that A(x) is indeed a

solution if

ω = α2
0 +

k2

2
− 1, α0 = −

1 +A2
0(σ + V0nl)

2A2
0α2

· (36)

Thus, for example, if we fix V0nl = 2/k2, α2 = −1/k and consider σ = 1
(repulsive interactions), we have

Vnl =
2− dn2(x, k)

k2
=

1

k2
+ sn2(x, k)). (37)

From equation (36) we have

ω = σ − 1 +
1

A2
0

+
k2

[
(1 + 2σA2

0) + (σ2 + 2)A4
0

]
4A4

0

+
1

k2

α0 =
1

k
+

k(1 + σA2
0)

2A2
0

(38)

and from (16) we get the function F as

F (x) =
1
√
2
(α0 + α2A

2)A2
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=
A2

0dn2(x, k)

2
√
2k

[
2 +

k2

A2
0

(1 + σA2
0)− 2A2

0dn2(x, k)

]
.

Substituting into equations (18) we finally get the complex potential as

Wnl =
√
2k

sn(x, k)cn(x, k)

dn3(x, k)
×

[
2−

1

A2
0

−
k2

2A4
0

(1 + σA2
0)− 2k2sn2(x, k)

]
. (39)

The phase of the solution can be readily obtained from equation (19). Notice that

in the case σ = 1, A0 = 1, this solution coincides with the one derived in [2]

with a slightly different approach. We remark that the above solutions of the com-

plex NLS equations not only have real energies but are also stable (not shown for

brevity) under time evolution.

4. Conclusions

In conclusion we have demonstrated the possibility to construct stationary solu-

tions of the linear and nonlinear Schrodinger equation with complex potentials via

a mapping with stationary solutions of the NLS equation with suitable real po-

tentials. In particular we showed that by means of this mapping it is possible to

construct sets of exact solutions with real energies for different types of complex

potentials. The presented approach can be applied to other types equations, includ-

ing the linear Schrödinger equation describing quantum dissipative oscillators, and

the NLS equation with arbitrary higher order nonlinearities, as it will be discussed

elsewhere.

Acknowledgements

It is a pleasure to dedicate this paper to Professor Vladimir Gerdjikov on the

occasion of his 65th birthday in 2012. Partial support from the Ministero dell’

Istruzione, dell’ Università e della Ricerca (MIUR) through a Programma di Ricerca
Scientifica di Rilevante Interesse Nazionale (PRIN) 2010-2011 initiative, is ac-

knowledged.

References

[1] Abdullaev F., Gammal A., da Luz H. and Tomio L., Dissipative Dynamics of
Matter-Wave Solitons in a Nonlinear Optical Lattice, Phys. Rev. A 76 (2007)

043611-1-9.



34 Mario Salerno

[2] Abdullaev F., Konotop V., Salerno M. and Yulin A., Dissipative Periodic
Waves, Solitons, and Breathers of the Nonlinear Schrödinger Equation with
Complex Potentials, Phys. Rev. E 82 (2010) 056606-1-6.

[3] Abdullaev F. and Salerno M., Gap-Townes Solitons and Localized Excitations
in Low-Dimensional Bose-Einstein Condensates in Optical Lattices, Phys.

Rev. A 72 (2005) 033617-1-12.

[4] Akhmediev N. and Ankiewicz A. (Eds), Dissipative Solitons, Lecture Notes

in Physics 661, Springer, Berlin 2005.

[5] Aranson I. and Kramer L., The World of the Complex Ginzburg-Landau Equa-
tion, Rev. Mod. Phys. 74 (2002) 99-143.

[6] Bender C., Boettcher S., Real Spectra in Non-Hermitian Hamiltonians Hav-
ing PT Symmetry, Phys. Rev. Lett. 80 (1998) 5243-5246.

[7] Bludov Yu. and Konotop V., Nonlinear Patterns in Bose-Einstein Conden-
sates in Dissipative Optical Lattices, Phys. Rev. A 81 (2010) 013625-1-8.

[8] Brazhnyi V. and Konotop V., Theory of Nonlinear Matter Waves in Optical
Lattices, Mod. Phys. Lett. B 18 (2004) 627-651.

[9] Guo A., Salamo G., Duchesne D., Morandotti R., Volatier-Ravat M., Aimez

V., Siviloglou G., and Christodoulides D., Observation of PT-Symmetry
Breaking in Complex Optical Potentials, Phys. Rev. Lett. 103 (2009) 093902-

1-4.

[10] See e.g. the special issue of # 32: The Physics Non-Hermitian Operators, J.

Phys. A 39 (2006)

[11] Longhi S., Bloch Oscillations in Complex Crystals with PT Symmetry, Phys.

Rev. Lett. 103 (2009) 123601-1-4.

[12] Muga J., Palao J., Navarro B. and Egusquiza I., Complex Absorbing Poten-
tials, Phys. Rep. 395 (2004) 357-426.

[13] Musslimani Z., Markis K., El-Ganainy R. and Christodoulides D., Optical
Solitons in PT Periodic Potentials, Phys. Rev. Lett. 100 (2008) 030402-1-4.

[14] Musslimani Z., Markis K., El-Ganainy R. and Christodoulides D., Analyti-
cal Solutions to a Class of Nonlinear Schrödinger Equations with PT-Like
Potentials, J. Phys. A 41 (2008) 244019 .

[15] Reuter C., Makris K., El-Ganainy R., Christodoulides D., Segev M. and Kip

D., Observation of Parity-Time Symmetry in Optics, Nature Phys. 6 (2010)

192-195.

[16] Salerno M., Laser Physics, Macroscopic Bound States and the Josephson Ef-
fect in Bose-Einstein Condensates in Optical Lattices 14 (2005) 620-625.

[17] Schindler J., Li A., Zheng M., Ellis F. and Kottos T., Experimental Study of
Active LRC Circuits with PT Symmetries, Phys. Rev. A 84 (2011) 040101-1-5.



Mapping Between Nonlinear Schrödinger Equations with Real and Complex ... 35

[18] Staliunas K., Herrero R. and Vilaseca R., Subdiffraction and Spatial Filtering
due to Periodic Spatial Modulation of the Gain-Loss Profile, Phys. Rev. A 80
(2009) 013821-1-6.

Mario Salerno

Dipartimento di Fisica “E.R. Caianiello” and INFN

Sezione di Napoli-Gruppo Collegato di Salerno

Università di Salerno

via Giovanni Paolo II, Stecca 8-9

84084 Fisciano (SA), ITALY

E-mail address: salerno@sa.infn.it


