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Abstract. We introduce ∇̇, a new invariant time derivative with respect to a mov-

ing surface that is a modification of the classical δ/δ-derivative. The new operator

offers significant advantages over its predecessor. In particular, it produces zero

when applied to the surface metric tensors Sαβ and Sαβ and therefore permits free

juggling of surface indices in the calculus of moving surfaces identities. As a result,

the table of essential differential relationships is cut in half. To illustrate the utility

of the operator, we present a calculus of moving surfaces proof of the Gauss-Bonnet

theorem for smooth closed two dimensional hypersurfaces.

1. Introductory Remarks

The δ/δt-derivative has been the cornerstone of the calculus of moving surfaces,

an extension of tensor calculus to deforming manifolds. Here, we introduce a new

invariant time derivative ∇̇ which, because of the several conveniences that it of-

fers over the δ/δt-derivative, will replace it in the future. As a demonstration of

the new operator’s utility, we will give a proof of a special case of the Gauss-

Bonnet theorem by showing that the integral of Gaussian curvature over a closed

surface remains unchanged under smooth surface evolutions that preserve its topol-

ogy. Naturally, the Gauss-Bonnet theorem, which is a statement about the intrinsic

geometry of a surface, is celebrated for its much deeper topological meaning. On

the other hand, the calculus of moving surfaces (CMS) is extrinsic by its very na-

ture. Nevertheless, the proof represents an effective application of the calculus of

moving surfaces to a problem in which there are no moving surfaces.

In differential geometry on stationary manifolds, invariance is achieved by intro-

ducing the covariant derivative ∇α that replaces the partial derivative ∂/∂Sα [13],

[8], [7], [9]. On moving surfaces, the calculus of moving surfaces plays a role

analogous to that of tensor calculus on stationary surfaces. The central operator

in the calculus of moving surfaces is the δ/δt-derivative, which is the analogue of

the covariant derivative ∇α. The calculus of moving surfaces has proven effective

at analyzing problems in dynamics [2], [5], boundary perturbation [4], shape opti-

mization [3] and, as seen in this paper, intrinsic problems on stationary surfaces.
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The δ/δt-derivative possessed most of the desirable properties of the covariant

derivative, the central of which is preserving the tensor property of its operands. On

the other hand, an application of the δ/δt-derivative applied to the metric tensors

Sαβ and Sαβ does not produce zero. As a result, surface indices cannot be juggled

freely in CMS identities and therefore the table of differentiation must contain

several rules for each object with surface indices. For example, for the curvature

tensor Bα
β , the CMS gives three rules depending on the flavor of the indices

δBαβ

δt
= ∇β∇

αC + 3CBα
γB

γ
β (1)

δBα
β

δt
= ∇β∇

αC + CBα
γB

γ
β (2)

δBαβ

δt
= ∇β∇

αC − CBα
γB

γ
β . (3)

The new operator ∇̇ proposed here overcomes these problems. It produces zero

when applied to the metric tensors and therefore permits free juggling of surface

indices. As a result, virtually all identities of the calculus of moving surfaces

are simplified and their overall number is reduced. For example, the three curva-

ture rules (1)-(3) are replaced by a single one (24). Furthermore, when applied

to the Levi-Civita symbols εαβ and εαβ , the ∇̇ operator operator also produces

zero. Thus, the ∇̇ operator possesses all of the desirable properties of the covari-

ant derivative ∇α.

The original prototype of the δ/δt-derivative was proposed by Hadamard, [6].

Hadamard gave the geometric definition illustrated in Fig. 1 and derived its an-

alytical represntation Hadamard’s definition applied to geometric invariants. The

extension to tensor operands was accomplished over the years by several authors,

including Thomas [10], [11], and Truesdell and Toupin [12]. A definition applica-

ble to arbitrary tensors was finally given by Grinfeld [1] . This definition turned the

moving surfaces framework into an algebraically completely calculus and serves

as a basis for the new operator given here.

2. Notation

Suppose that the ambient three dimensional space is referred to Cartesian coordi-

nates Zi (i = 1, 2, 3) and that the embedded manifold S is referred to coordinates

Sα (α = 1, 2). The smooth evolution of the manifold is given by

Zi = Zi (t, S) (4)
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P

P∗F (St)

F (St+h)

Figure 1. Illustration of Hadamard’s geometric definition of the δ/δt-
derivative for scalar fields. If F a scalar field defined on a deforming

surface St, δF/δt at a point P is defined as the limit as h → 0 of

(F (P ∗)− F (P )) /h where P ∗ is the point on St+h that intersects the nor-

mal to St at the point P . The δ/δt-derivative and the new ∇̇ operator produce

the same result when applied to invariants.

where we follow the convention of dropping the tensor indices of function argu-

ments. The coordinate velocity V i is defined by

V i (t, S) =
∂Zi (t, S)

∂t
· (5)

Let N i be contravariant components of the normal to the surface S. Then the

quantity

C = ViN
i (6)

is the Hadamard velocity of the interface S. It is invariant with respect to coordi-

nate changes in the ambient space and on the surface S.

We now list the essential differential objects in the ambient space and on the surface

[13], [8], [7], [9]. In the ambient space, Zij is the covariant metric tensor, Z ij is

the contravariant metric tensor, εijk and εijk are the Levi-Civita symbols, ∇i and

∇
i and the covariant and the contravariant metric tensors, Γi

jk is the Christoffel

symbol, and Rijkl is the Riemann-Christoffel tensor. On the surface, Z i
α is the shift

tensor, Sαβ is the covariant metric tensor, Sαβ is the contravariant metric tensor,

Bαβ is the curvature tensor, εαβ and εαβ are the Levi-Civita symbols, ∇α and

∇
α and the covariant and contravariant surface derivatives, Γα

βγ is the Christoffel

symbol and Rαβγδ is the Riemann-Christoffel tensor. The Riemann-Christoffel

tensor is skew-symmetric in the first and the second pairs of indices and can be

represented as

Rαβγδ = Kεαβεγδ (7)
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where K is Gaussian curvature. Multiplying both sides by εαβεγδ yields an ex-

plicit expression for K

K =
1

4
εαβεγδRαβγδ. (8)

The ambient and the surface Riemann-Christoffel tensors are connected by the

formula

Rαβγδ = RijklZ
i
αZ

j
βZ

k
γZ

l
δ +BαγBβδ −BαδBβγ . (9)

When the ambient space is Euclidean, this formula reduces to

Rαβγδ = BαγBβδ −BαδBβγ (10)

known as Gauss’s Theorema Egregium. The combination BαγBβδ −BαδBβγ can

be expressed in terms of the Levi-Civita symbols

BαγBβδ −BαδBβγ = Bεαβεβγ (11)

where B is the determinant of the curvature tensor Bα
β with a raised index

B =
1

2
δαβγδ B

γ
αB

β
δ . (12)

The delta system δαβγδ is defined in terms of the Levi-Civita symbols

δαβγδ = εαβεγδ (13)

and can be represented in terms of the Kronecker delta

δαβγδ = δαγ δ
β
δ − δβγ δ

α
δ . (14)

From equations (7), (10) and (11), we conclude that Gaussian curvature K of a

surface embedded in a Euclidean space equals B

K = B. (15)

We will employ the calculus of moving surfaces to show that

d

dt

∫
S

KdS = 0. (16)

In words, the total curvature of a closed surfaces in unchanged under smooth de-

formations.
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3. Definition of the Invariant Time Derivative ∇̇

Denote the projection of the coordinate velocity V i onto the surface by V α

V α = V iZα
i (17)

and define the object Γ̇α
β according to

Γ̇α
β = ∇βV

α
− CBα

β . (18)

Suppose that T iα
jβ is a tensor with a representative collection of indices defined on

the surface S. Then the invariant derivative ∇̇T iα
jβ is defined according to

∇̇T iα
jβ =

∂T iα
jβ

∂t
−V γ

∇γT
iα
jβ +V kΓi

kmTmα
jβ −V kΓm

kjT
iα
mβ+Γα

ωT
iω
jβ −Γω

βT
iα
jω . (19)

Thus, the invariant time derivative ∇̇ differs from the δ/δt-derivative in its treat-

ment of surface indices.

The single most essential advantage that ∇̇ offers over the δ/δt-derivative is that it

eliminates the surface metric tensors

∇̇Sαβ = 0, ∇̇S
αβ

= 0. (20)

It also eliminates the surface Levi-Civita symbol

∇̇εαβ = 0, ∇̇εαβ = 0. (21)

The former property allows for free index juggling across the operator. This leaves

us with only three essential identities that a practitioner of this calculus ought to

memorize

∇̇Zi
α = N i

∇αC (22)

∇̇N i = −Zi
α∇

αC (23)

∇̇Bα
β = ∇

α
∇βC + CBα

γB
γ
β . (24)

The remaining properties of the ∇̇ operator are identical to those of the δ/δt-

derivative. The ∇̇ operator satisfies the product rule and the chain rule that governs

the differentiation of surface restrictions of ambient tensor fields

∇̇T i
j =

∂T i
j

∂t
+ CNk

∇kT
i
j . (25)
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4. Gauss-Bonnet Theorem in Euclidean spaces

We next calculate the derivative ∇̇K of Gaussian curvature K for two-dimensional

surfaces S embedded in a Euclidean space. Since ∇̇ eliminates the Levi-Civita

symbols εαβ and εαβ it also eliminates δαβγδ = εαβεγδ. Therefore

∇̇K =
1

2
δαβγδ ∇̇Bγ

αB
δ
β +

1

2
δγδαβB

γ
α∇̇Bδ

β . (26)

According to equation (24) we find that

1

2
δαβγδ ∇̇Bγ

αB
δ
β =

1

2
δαβγδ (∇α∇

γC + CBω
αB

γ
ω)B

δ
β . (27)

Since the combination δαβγδ B
ω
αB

δ
β is skew-symmetric in ω and δ, we have

δγδαβB
α
ωB

β
δ = Bδγδωδ = Bδγω. (28)

Therefore

1

2
δαβγδ ∇̇Bγ

αB
δ
β =

1

2
∇α∇

αC Bβ
β −

1

2
∇α∇

βC Bα
β +

1

2
CBBα

α . (29)

The two terms in (26) are equivalent and therefore

∇̇K = ∇α∇
αC Bβ

β −∇α∇
βC Bα

β + CKBα
α . (30)

The rate of change of integrals over closed surfaces is given by the formula

d

dt

∫
S

FdS =

∫
S

(
∇̇F − CBα

αF
)
dS. (31)

Therefore

d

dt

∫
S

KdS =

∫
S

(
∇α∇

αC Bβ
β −∇α∇

βC Bα
β

)
dS. (32)

Since S does not have a boundary, then by Gauss’s theorem

d

dt

∫
S

KdS =

∫
S

(
−∇αC ∇

αBβ
β +∇αC ∇

βBα
β

)
dS. (33)

However, according to Codazzi relations the object ∇αBβγ is symmetric in α
and β

∇αBβγ = ∇βBαγ . (34)

By raising α and β in this equation and contracting, we conclude that the integral

in (33) vanishes, which proves (16) in Euclidean spaces.
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5. The Gauss-Bonnet Theorem in Riemann Spaces

Equations (24) and (34) are not valid in Riemann spaces and we will now give their

proper generalizations. The derivative ∇̇Bαβ of the curvature tensor Bαβ is given

by

∇̇Bαβ = ∇α∇βC + CBγ
αBγβ + CRijklN

iZj
βN

kZ l
α. (35)

The Codazzi relations read

∇αBβγ −∇βBαγ = −RijklZ
i
αZ

j
βZ

k
γN

l. (36)

Finally, the Gaussian curvature K no longer equals the determinant B, but rather

related to it by the formula

K = B +
1

2
Ri

i +RijN
iN j . (37)

Adapting the Euclidean derivation of ∇̇B to Riemann spaces, we find

∇̇B = ∇α∇
αCBβ

β −∇α∇
βCBα

β + 2CBBα
α − CKBα

α

+ CRi
iB

α
α − CRijN

iN jBα
α − CRijZ

iβZj
αB

α
β (38)

and, by applying the chain rule, we find from equation (37) we find

∇̇K = ∇̇B+
1

2
CNk

∇kR
i
i − C∇kRij N

iN jNk + 2RijZ
i
α∇

αC N j . (39)

From the second Bianchi identity, we find

∇kR
i
i = 2∇iR

i
k. (40)

Thus

∇̇K = ∇̇B + C∇iR
i
kN

k
− C∇kRijN

iN jNk + 2RijZ
i
α∇

αC N j . (41)

We now sketch the rest of the derivation. The expression for ∇̇K includes three

terms that contain the surface derivative ∇αC of C: ∇α∇
αCBβ

β , ∇α∇
βCBα

β ,

and 2RijZ
i
α∇

αC N j . These terms are analyzed by Gauss’s theorem. The first

two terms produce an expression that can be advanced by the Codazzi relations

(36) followed by a second application of Gauss’s theorem. We ultimately arrive

the integral

d

dt

∫
S

KdS =

∫
S

2C

(
B −K +

1

2
Ri

i −RijN
iN j

)
Bα

αdS. (42)

The integrand vanishes identically by equation (37) and we have therefore demon-

strated (16) in Riemann spaces.
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6. Fluid Film Equations

The fluid film equations, first introduced in [2], are formulated in terms of the

δ/δt-derivative. The last equation in the system, governs the evolution of the con-

travariant components V α of the tangential velocity field and features the term

δV α/δt on the left hand side. Therefore, the corresponding equation for the evo-

lution of the covariant components Vα is different. The new operator ∇̇ eliminates

this incovenience and yields a system that is valid for covariant and contravariant

components. In the new form, the system reads

∇̇ρ+∇α (ρV
α) = ρCBα

α

ρ
(
∇̇C + 2V α

∇αC +Bα
βVαV

β
)
= −ρ2eρB

α
α (43)

ρ
(
∇̇Vα + Vβ∇

βVα − C∇αC − CVβB
β
α

)
= −∇α

(
ρ2eρ

)
.

Note we in fact mixed the covariant and contraviant components Vα and V α which

we can now do more freely than before.

7. Conclusion

We introduced a new differential operator ∇̇ for the calculus of moving surfaces.

The definition is given in equations (17)-(19) and yields the highly desirable prop-

erty that the derivative of the metric tensors Sαβ and Sαβ vanishes. As a result,

surface indices can be juggled freely in tensor identities involving the operator.

This was not the case for the δ/δt-derivative. Therefore, the new operator ∇̇ sim-

plifies the calculations and cuts in half the table of essential relationships. As a

demonstration of the new operator, we gave a proof of a special case of the Gauss-

Bonnet theorem which shows that, in addition to dynamic problems, boundary

perturbation problems and shape optimization problems, the calculus of moving

surfaces finds applications in problems that do not have moving surfaces.
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