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Abstract. It is shown how one can apply the classification of the holonomy alge-

bras of Lorentzian manifolds to solve some problems. In particular, a new proof to

the classification of Lorentzian manifolds with recurrent curvature tensor is given

and the classification of two-symmetric Lorentzian manifolds is explained. Then

the conformally recurrent Lorentzian manifolds are classified and the recurrent sym-

metric bilinear forms on these manifolds are described.

1. Introduction

While the classification of the Riemannian holonomy algebras is a classical re-

sult that has many applications both to geometry and physics, see e.g. [4, 15],

the classification of the Lorentzian holonomy algebras has been achieved only re-

cently [10, 17]. We review it in Section 3. The holonomy algebra of a pseudo-

Riemannian manifold is an important invariant of the Levi-Civita connection. It

provides information about parallel and recurrent tensors on the manifold. Us-

ing that property, we solve some problems in Lorentzian geometry. As a first il-

lustration, in Section 6 we give a new and modern proof to the classification of

Lorentzian manifolds (M, g) with recurrent curvature tensor R, i.e., satisfying the

condition

∇XR = θ(X)R (1)

for all vector fields X and a one-form θ. Originally this classification is achieved

in [24]. In Section 7 we discuss the Lorentzian symmetric spaces. As a new re-

sult, in Section 9 we obtain a classification of Lorentzian manifolds with recurrent

conformal Weyl tensor W . This generalizes a result from [8, 9] that gives classifi-

cation of Lorentzian manifolds with parallel W . In Section 10 we explain the result

from [2] about the classification of two-symmetric Lorentzian manifolds (M, g),
i.e., manifolds satisfying the condition

∇2R = 0, ∇R 	= 0. (2)
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14 Anton Galaev

In Section 11 we study the recurrent symmetric bilinear forms on Lorentzian man-

ifolds.

2. Holonomy Algebras. Parallel and Recurrent Tensor Fields

Let (M, g) be a connected pseudo-Riemannian manifold of signature (r, s). The

holonomy group Gx of (M, g) at a point x ∈ M is the Lie group that consists

of the pseudo-orthogonal transformations given by the parallel transports along all

piecewise smooth loops at the point x. It can be identified with a Lie subgroup

of the pseudo-orthogonal Lie group O(r, s) = O(TxM, gx). The corresponding

subalgebra gx of so(r, s) = so(TxM, gx) is called the holonomy algebra of (M, g)
at the point x ∈ M .

The Ambrose-Singer Theorem states that the holonomy algebra gx is spanned by

the following endomorphisms of TxM

τ−1
γ ◦Ry(τγX, τγY ) ◦ τγ

where γ is a piecewise smooth curve starting at the point x with an end-point

y ∈ M , and X,Y ∈ TxM .

Since the manifold M is connected, the holonomy groups (holonomy algebras) of

(M, g) at different points are isomorphic, and one may speak about the holonomy

group G ⊂ O(r, s) (the holonomy algebra g ⊂ so(r, s)) of (M, g).

Recall that a tensor field T on (M, g) is parallel if ∇T = 0, where ∇ is the Levi-

Civita connection and T is called recurrent if ∇T = θ ⊗ T for a one-form θ.

The fundamental principle [4] states that there exists a one-to-one correspondents

between parallel tensor fields T on M and tensors T0 of the same type at x pre-

served by the holonomy group (more precisely, by its tensor extension of its rep-

resentation). Similarly, there exists a one-to-one correspondents between rank one

parallel subbundles of a tensor bundle over M and one-dimensional subspaces of

the space of tensors of the same type at x preserved by the holonomy group. Any

section of a rank one parallel subbundle of a tensor bundle is a recurrent tensor

field. Conversely, any non-vanishing recurrent tensor field defines such parallel

subbundle.

If the manifold M is simply connected, then the holonomy group is connected and

it is uniquely defined by the holonomy algebra. Then the parallel and the recurrent

tensors may be described in terms of the holonomy algebra.
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3. Classification of the Lorentzian Holonomy Algebras

Here we review results from [10,17]. Let (M, g) be a simply connected Lorentzian

manifold of dimension n+ 2, n ≥ 0. Fix an arbitrary point x∈M . The respective

tangent space (TxM, gx) can be identified with the Minkowski space (R1,n+1, η).
Then the holonomy algebra (M, g) at the point x is identified with a subalgebra

g ⊂ so(1, n+ 1).

We may assume that the holonomy algebra g ⊂ so(1, n + 1) of (M, g) is weakly

irreducible, i.e., it does not preserve any non-degenerate proper vector subspace of

the tangent space. Indeed, if g ⊂ so(1, n + 1) is not weakly irreducible, then by

the Wu theorem, (M, g) is at least locally can be decomposed into a product of a

Lorentzian manifold and a Riemannian manifold, see e.g. [10]. Thus we assume

that (M, g) is locally indecomposable. If g ⊂ so(1, n + 1) is irreducible, then

g ≡ so(1, n+1). Suppose that g ⊂ so(1, n+1) is not irreducible, then g preserves

an isotropic line in R
1,n+1.

The Lie algebra so(1, n+1) can be identified with the space of bivectors Λ2
R
1,n+1

in such a way that

(X ∧ Y )Z = η(X,Z)Y − η(Y, Z)X.

Let p ∈ R
1,n+1 be an isotropic vector. Fix an isotropic vector q ∈ R

1,n+1 such that

η(p, q) = 1. Let E be the orthogonal complement to Rp⊕ Rq, then E � R
n is an

Euclidean space and we get

R
1,n+1 = Rp⊕ E ⊕ Rq.

Denote by sim(n) the maximal subalgebra in so(1, n+1) preserving the isotropic

line Rp, then it holds

sim(n) = Rp ∧ q + so(n) + p ∧ E

in which so(n) = so(E) � ∧2E. Any weakly irreducible not irreducible subalge-

bra g ⊂ so(1, n + 1) preserves an isotropic line in R
1,n+1, hence g is conjugated

to a subalgebra of sim(n). The weakly irreducible Lorentzian holonomy algebras

g ⊂ sim(n) are the following

type I g = Rp ∧ q + h+ p ∧ E

type II g = h+ p ∧ E

type III g = {ϕ(A)p ∧ q +A ; A ∈ h}+ p ∧ E

type IV g = {A+ p ∧ ψ(A) ; A ∈ h}+ p ∧ E1
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where h ⊂ so(n) is a Riemannian holonomy algebra, ϕ : h → R is a linear map

that is zero on the commutant [h, h]. For the last algebra, E = E1 ⊕ E2 is an

orthogonal decomposition, h annihilates E2, i.e., h ⊂ so(E1), and ψ: h → E2 is a

surjective linear map that is zero on [h, h].

4. The Spaces of Curvature Tensors

We will need the following algebraic results. Let (W, η) be a pseudo-Euclidean

space and f ⊂ so(W ) be a subalgebra. The vector space

R(f)={R ∈ Λ2W ∗⊗f ; R(X,Y )Z+R(Y, Z)X+R(Z,X)Y= 0, X, Y, Z∈ W}
is called the space of algebraic curvature tensors of type f. The space R(f) is an

f-module with the action

(ξ ·R)(X,Y ) = [ξ, R(X,Y )]−R(ξX, Y )−R(X, ξY ), ξ ∈ f, R ∈ R(f).

From the Ambrose-Singer Theorem it follows that if f ⊂ so(W ) is the holonomy

algebra of a pseudo-Riemannian manifold (N, h), then the values of the curvature

tensor of (N, h) belong to R(f) and

f = span{R(X,Y ) ; R ∈ R(f), X, Y ∈ W}
i.e., f is spanned by the images of the elements R ∈ R(f).

The spaces R(g) for Lorentzian holonomy algebras g ⊂ sim(n) are found in [11,

12]. Let e.g. g = Rp ∧ q + h + p ∧ E. For the subalgebra h ⊂ so(n) define the

space

P(h) = {P ∈ E∗ ⊗ h · η(P (X)Y, Z)

+ η(P (Y )Z,X) + η(P (Z)X,Y ) = 0, X, Y, Z ∈ E}.
Any R ∈ R(g) is uniquely given by

λ ∈ R, �v ∈ E, P ∈ P(h), R0 ∈ R(h) and T ∈ End(E) with T ∗ = T

in the following way

R(p, q) =− λp ∧ q − p ∧ �v, R(X,Y ) = R0(X,Y )− p ∧ (P (Y )X−P (X)Y )

R(X, q) =− g(�v,X)p ∧ q + P (X)− p ∧ T (X), R(p,X) = 0

for all X,Y ∈ E. For the algebras g of the other types, any R ∈ R(g) can be

given in the same way and by the condition that R takes values in g. For example,

R ∈ R(h+ p ∧ E) if and only if λ = 0 and �v = 0.
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5. Walker Metrics and pp-Waves

Consider the local form of a Lorentzian manifold (M, g) with the holonomy alge-

bra g ⊂ sim(n). Since g preserves an isotropic line of the tangent space, (M, g)
locally admits a parallel distribution of isotropic lines. Locally there exist the so

called Walker coordinates v, x1, ..., xn, u and the metric g has the form

g = 2dvdu+ h+ 2Adu+H(du)2 (3)

where h = hij(x
1, ..., xn, u)dxidxj is an u-dependent family of Riemannian met-

rics, A = Ai(x
1, . . . , xn, u)dxi is an u-dependent family of one-forms, and H

is a local function on M , see e.g. [10]. The vector field ∂v defines the parallel

distribution of isotropic lines.

Consider the fields of frames

p = ∂v, Xi = ∂i −Ai∂v, q = ∂u − 1

2
H∂v

and the distribution E = span{X1, ..., Xn}. At each point m of the coordinate

neighborhood we get the decomposition

TmM = Rpm ⊕ Em ⊕ Rqm

hence the value Rm of the curvature tensor can be expressed in terms of some λm,

�vm, R0m, Rm and Tm as above. The space Em is isomorphic to the tangent space

of a Riemannian manifolds with a metric from the family h, then R0 is defined by

the curvature tensor of the family of the Riemannian metrics h.

It is known [10] that the holonomy algebra of the manifold (M, g) is contained in

p ∧ E ⊂ sim(n) if and only if the metric can be locally written in the form

g = 2dvdu+
n∑

i=1

(dxi)2 +H(du)2, ∂vH = 0. (4)

Such spaces are called pp-waves.

6. Lorentzian Manifolds with Recurrent Curvature Tensor

In this section we consider Lorentzian manifolds (M, g) with recurrent curvature

tensor R, i.e., satisfying (1). Note that for Riemannian manifolds (1), implies

θ = 0, i.e., the manifold is locally symmetric [16].

Many facts about recurrent spaces, or more generally about r-recurrent spaces,

and a long list of literature on this topic can be found in the fundamental review
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of Kaigorodov [16]. There is a recent review by Senovilla [20], where similar

problems are considered.

In this section we give a new proof to the following theorem proven by Walker

in [24].

Theorem 1. Let (M, g) be a Lorentzian manifold of dimension n + 2 ≥ 3. Then
(M, g) is recurrent and not locally symmetric if and only if in a neighborhood
of each point of M there exist coordinates v, x1, ..., xn, u such that one of the
following holds:

I. there exists a function H(x1, u) such that

g = 2dvdu+
n∑

i=1

(dxi)2 +H(x1, u)(du)2. (5)

II. There exist real numbers λ1, ..., λn with |λ1| ≥ · · · ≥ |λn|, λ2 	= 0, and a
function F : U ⊂ R → R such that

g = 2dvdu+
n∑

i=1

(dxi)2 + F (u)λ2
i (x

i)(du)2. (6)

Moreover, for some system of coordinates ∂2
1H is not constant or

dF

du
	= 0.

The form of the metric may change from one system of coordinates to another, i.e.,

it can be flat for some systems of coordinates. Examples of such spaces can be

constructed taking the metrics of the form (6) with F (u) = 0 if |u| ≥ ε for some

ε > 0, any such metric is flat on the spaces {(v, x1, . . . xn, u) ; |u| ≥ ε}, hence we

may glue these metrics on such flat spaces. In this example the function F (u) is

not analytic. Theorem 3 below states that if the manifold (M, g) is analytic, then

the metric is the same for all systems of coordinates.

Note that the local metric (6) is symmetric if and only the function F is a constant,

i.e.,
dF (u)

du
= 0. In this case we get the so called Cahen-Wallach space [6]. Next,

the local metric (6) is two-symmetric, i.e., ∇2R = 0, if and only if
d2F (u)

(du)2
= 0,

see Section 10 below. Finally, it is conformally flat if and only if λ1 = · · · = λn

[13].
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6.1. Proof of Theorem 1

First we reduce the problem to the case when (M, g) is locally indecomposable.

Lemma 2. Let (M, g) be a recurrent and not locally symmetric Lorentzian man-
ifold. Suppose that (M, g) is locally decomposable, i.e., each point of M has an
open neighborhood U such that (U, g|U ) is isometric to the product of a Lorentzian
manifold (M1, g1) and a Riemannian manifold (M2, g2). If ∇R|U 	= 0, then
(M1, g1) is recurrent and (M2, g2) is flat. If ∇R|U = 0, then both (M1, g1) and
(M2, g2) are locally symmetric.

Proof: Since (U, g|U ) = (M1 × M2, g1 + g2), for the corresponding curvature

tensors and their covariant derivatives it holds

R|U = R1 +R2, ∇R|U = ∇R1 +∇R2.

Suppose that ∇R|U 	= 0. Restricting the equality ∇R = θ ⊗ R to (M2, g2), we

get ∇R2 = θ|M2
⊗ R2. Since (M2, g2) is a Riemannian manifold, θ|M2

= 0. Let

X1 ∈ Γ(TM1) and X2, Y2 ∈ Γ(TM2), then

0 = ∇X1
R1(X2, Y2) +∇X1

R2(X2, Y2)

= θ(X1)R1(X2, Y2) + θ(X1)R2(X2, Y2) = θ(X1)R2(X2, Y2).

Since θ|U 	= 0, R2 = 0. This proves the lemma. �

The condition (1) implies that for any point m ∈ M , the holonomy algebra gm of

(M, g) preserves the line RRm ⊂ R(gm) in the space of possible values of the

curvature tensor at the point m.

The only possible irreducible holonomy algebra of (M, g) is the Lorentzian Lie

algebra so(1, n + 1) [10]. Form the results of [1] it follows that the only line

preserved by so(1, n+1) in the space R(so(1, n+1)) consists of curvature tensors

defined by the scalar curvature. Consequently the manifold is Einstein and locally

symmetric. Hence the holonomy algebra of (M, g) is weakly irreducible and not

irreducible and it is contained in sim(n).

The condition that the holonomy algebra gm at the point m ∈ M preserves the line

RRm ⊂ R(gm) can be expressed as

ξ ·Rm = μ(ξ)Rm, ξ ∈ gm

where μ: gm → R is a linear map. Let e.g. gm = Rpm ∧ qm + h+ pm ∧ Em. As

the h-module, the space R(gm) admits the decomposition

R(g) = R⊕ Em ⊕R(h)⊕ P(h)⊕�2Em.
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The space P(h) does not contain any h-invariant one-dimensional subspace [12],

hence Pm = 0. For X,Y, Z ∈ Em it holds

μ(pm ∧ Z)R0m(X,Y ) = μ(pm ∧ Z)Rm(X,Y ) = ((pm ∧ Z) ·Rm)(X,Y )

= [pm ∧ Z,R0m(X,Y )] = −pm ∧R0m(X,Y )Z.

This implies R0m = 0. Thus over the current coordinate neighborhood it holds

R0 = 0 and P = 0. The same can be shown for the other possible holonomy alge-

bras. We get R(p⊥, p⊥) = 0. In [18] it is proved that in this case the coordinates

can be chosen in such a way that

g = 2dvdu+
n∑

i=1

(dxi)2 +H(du)2. (7)

In particular, h = 0 and either gm = pm ∧ Em, or gm = Rpm ∧ qm + pm ∧ Em.

Let us consider these two cases.

Case 1. Suppose that gm = pm ∧ Em. Then ∂vH = 0. In [2] it is shown that the

covariant curvature tensor and its covariant derivative have the form

R =
1

2
(∂i∂jH)(q′ ∧ ei ∨ q′ ∧ ej) (8)

∇R =
1

2
(∂k∂i∂jH)ek ⊗ (q′ ∧ ei ∨ q′ ∧ ej)

+
1

2
(∂u∂i∂jH)q′ ⊗ (q′ ∧ ei ∨ q′ ∧ ej) (9)

where ei = dxi and q′ = du. The condition (1) is equivalent to

∂k∂i∂jH = θk∂i∂jH, ∂u∂i∂jH = θu∂i∂jH

where θk = θ(∂k) and θu = θ(∂u). If ∂i∂jH 	= 0 for some i, j on some open

subspace, then

θk = ∂k ln |∂i∂jH|, θu = ∂u ln |∂i∂jH|
i.e., dθ = 0 and there exists a function f such that θ = df . We get

∂k(ln |∂i∂jH| − f) = ∂u(ln |∂i∂jH| − f) = 0

i.e.,

ln |∂i∂jH| = f + cij , cij ∈ R, cij = cji.

Thus

∂i∂jH = efCij , Cij = ecij .
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Consider the new coordinates

ṽ = v, x̃i = aijx
j , ũ = u

where aij is an orthogonal matrix. With respect to these coordinates the metric g
takes the same form and it holds

∂̃i∂̃jH̃ = ef̃aria
s
jCrs.

The orthogonal transformation aji can be chosen in such a way that the matrix

C̃ij = aria
s
jCrs is diagonal with the diagonal elements λ1, ..., λn. Assume that

|λ1| ≥ · · · ≥ |λn|. Thus it holds

∂i∂jH = efδijλi, λi ∈ R.

If λ2 = · · · = λn = 0, then

H = F (x1, u) +
n∑

i=2

Gi(u)x
i.

Consider the new coordinates given by the inverse transformation

u = ũ, xi = x̃i + bi(ũ), v = ṽ −
∑
j

dbj(ũ)

dũ
x̃j (10)

such that 2d2bj(u)

(du)2
= Gj(u) and b1(u) = 0. With respect to the new coordinates it

holds H = F (x1, u) and we obtain the Case I of the formulation of the theorem.

Suppose that λ2 	= 0. From the above we get that if i 	= j, then ∂i∂jH = 0,

i.e., H is of the form H =
∑

iHi(x
i), and d2Hi

(dxi)2
= efλi. Taking i = 1, 2 and

differentiating the last equality with respect to ∂j , we get ∂jf = 0, i.e., f depends

only on u. Now it is clear that

H =
1

2
ef(u)λ2

i (x
i) +Bi(u)x

i +K(u).

Let F (u) = 1

2
ef(u). From the results of [2] it follows that the coordinates can be

chosen in such a way that H = F (u)λ2
i (x

i).

Case 2. Suppose that gm = Rpm ∧ qm + pm ∧ Em. The curvature tensor Rm is

given by the elements λm, �vm and Tm. It holds

μ(pm ∧ qm)(−λmpm ∧ qm − pm ∧ �vm)

= ((pm ∧ qm) ·Rm)(pm, qm) = [pm ∧ qm, R(pm, qm)] = pm ∧ �vm
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hence

μ(pm ∧ qm)λm = 0, (μ(pm ∧ qm) + 1)�vm = 0.

Similarly, ((pm ∧ qm) · Rm)(X, qm) = μ(pm ∧ qm)Rm(X, qm), for X ∈ Em

implies

μ(pm ∧ qm)�vm = 0, (μ(pm ∧ qm) + 1)Tm = 0.

In the same way, using an element pm ∧X ∈ gm, we get

μ(pm ∧X)λm = 0, μ(pm ∧X)�vm = λmX

μ(pm ∧X)�vm = 0, g(�vm, Y )X = μ(pm ∧X)Tm(Y ).

The obtained equalities imply �vm = 0 and λm = 0. Consequently, over this

coordinate neighborhood, λ = 0 and �v = 0. This shows that this coordinate

neighborhood is the same as in Case 1. �

6.2. The Case of Analytic (M, g)

Suppose that (M, g) is analytic. In this case, Theorem 1 can be reformulated in the

following way

Theorem 3. Let (M, g) be analytic Lorentzian manifold of dimension n+ 2 ≥ 3.
Then (M, g) is recurrent and not locally symmetric if and only if one of the follow-
ing holds

I. In a neighborhood of each point of M there exist coordinates v, x1, ..., xn, u
and a function H(x1, u) such that

g = 2dvdu+
n∑

i=1

(dxi)2 +H(x1, u)(du)2 (11)

and ∂2
1H is not constant for some system of coordinates. In this case if

n ≥ 2, the manifold is locally a product of the three-dimensional recurrent
Lorentzian manifold with the coordinates v, x1, u and of the flat Riemannian
manifold with the coordinates x2, ..., xn.

II. There exist real numbers λ1, ..., λn with |λ1| ≥ · · · ≥ |λn|, λ2 	= 0, and an
analytic function F : U ⊂ R → R with dF

du
	= 0, and in a neighborhood of

each point of M there exist coordinates v, x1, ..., xn, u such that

g = 2dvdu+
n∑

i=1

(dxi)2 + F (u)λ2
i (x

i)(du)2. (12)
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The manifold (M, g) is locally indecomposable if and only if all λi are non-
zero. If for some r (2 ≤ r < n) it holds λr 	= 0 and λr+1 = · · · = λn = 0,
then (M, g) is locally a product of the recurrent Lorentzian manifold with
the coordinates v, x1, . . . , xr, u and of the flat Riemannian manifold with
the coordinates xr+1, ..., xn.

In particular, the theorem states that in the second case the metric is the same in

each coordinate neighborhood.

Proof: Suppose that a point m belongs to two coordinate neighborhoods with the

coordinates v, x1, . . . , xn, u and ṽ, x̃1, . . . , x̃n, ũ. Suppose that for the first system

of coordinates it holds H = F (u)λ2
i (x

i), λ1, λ2 	= 0, and dF
du

	= 0, i.e., the metric

restricted to the first coordinate neighborhood is not flat. If in the second coordi-

nate system the metric is flat, then on the intersection of the coordinate domains

it holds dF
du

= 0. Since F is analytic, this implies dF
du

= 0 for all points of the

first coordinate neighborhood and we get a contradiction (this is the only place,

where we use the analyticity). Since the metric restricted to the second coordinate

neighborhood is not flat, the parallel vector field ∂̃v is defined up to a constant and

we may assume that ∂̃v = ∂v. Then the transformation of coordinates must have

the form

u = ũ+ c, xi = aij x̃
j + bi(ũ), v = ṽ −

∑
j

aji
dbj(ũ)

dũ
x̃i + d(ũ)

where c ∈ R, aji is an orthogonal matrix, and bi(ũ), d(ũ) are some functions of

ũ [2]. Clearly, the metric written in the second coordinate system can not be as in

Case I of Theorem 1, i.e., it holds

H̃ = F̃ (ũ)λ̃i(x̃
i)2.

Note that

F̃ (ũ)δij λ̃i = F (ũ+ c)δklλka
k
i a

l
j .

Since the matrix aji is orthogonal, after some change

(F (ũ), λ̃i) �→
(
1

C
F (ũ), Cλ̃i

)
, C 	= 0

we obtain λ̃i = λi and F̃ (ũ) = F (ũ+ c). After the transformation ũ �→ ũ− c we

get F̃ = F . This proves the theorem. �
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7. Lorentzian Symmetric Spaces

Classification of simply connected Riemannian symmetric spaces is a classical re-

sult of Élie Cartan [4]. Simply connected Lorentzian symmetric spaces are clas-

sified by Cahen and Wallach [6, 7]. Here we show how the last result can be

reproved using the holonomy theory. It is well-known that a simply connected

pseudo-Riemannian symmetric space is uniquely defined by the pair (g, R), where

g is its holonomy algebra and R is its curvature tensor at a fix point. Such pair

satisfies R ∈ R(g), g annihilates R and the image of R coincides with g. Note

that R can be defined up to a positive constant. Now we describe such pairs for

g ⊂ so(1, n + 1). It is enough to consider indecomposable spaces, i.e., we may

assume that g ⊂ so(1, n + 1) is weakly irreducible. If g = so(1, n + 1), then

such R constitute a one-dimensional space without the zero. The connected com-

ponents of this space define de Sitter and Anti de Sitter spaces. These are the only

indecomposable simply connected Lorentzian symmetric spaces with semi-simple

isometry group (equivalently, with reductive holonomy algebra). Now we sup-

pose that g ⊂ sim(n). In the same way as we did in Section 6, we conclude that

g = p ∧ E and R is given by a symmetric endomorphism T of E (in notation of

Section 4). Thus such pair corresponds to a pp-wave (4). Equation (9) shows that

∂k∂i∂jH = ∂u∂i∂jH = 0 i.e., H = aijx
ixj + bi(u)x

i + c(u). Changing the

coordinates, we get H =
∑

i λi(x
i)2, λi ∈ R. Metric (4) with such H is defined

on R
n+2 and it is complete. These symmetric spaces are called the Cahen-Wallach

spaces.

8. The Weyl Conformal Curvature Tensor of a Walker Metric

Below we will need the expression for the Weyl tensor W of a Walker metric in

terms of notations of Section 4. This expression is obtained in [13]. One has

W = R+RL

where RL is defined via

RL(p,X) =
1

n
p ∧

(
Ric(h) +

(n− 1)λ− s0
n+ 1

id

)
X (13)

RL(p, q) =
1

n

(
2nλ− s0
n+ 1

p ∧ q + p ∧ (�v − R̃icP )

)
(14)
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RL(X,Y ) =
1

n
(p ∧ ((X ∧ Y )�v)

(15)

+

(
Ric(h)− s

2(n+ 1)

)
X ∧ Y +X ∧

(
Ric(h)− s

2(n+ 1)

)
Y

)

RL(X, q) =
1

n

(
(trT )p ∧X + g(X,�v − R̃icP )p ∧ q +X ∧ (�v − R̃icP )

(16)

+

(
Ric(h) +

(n− 1)λ− s0
n+ 1

id

)
X ∧ q

)
and where Ric(h) is the Ricci operator of the metric h, s = 2λ + s0 is the scalar

curvature of g and S0 is the scalar curvature of h. This expression is used in [13]

to find all conformally flat Walker metrics.

9. Lorentzian Manifolds with Recurrent and Parallel Weyl Tensor

Conformally symmetric Lorentzian manifolds, i.e., Lorentzian manifolds with par-

allel Weyl tensor W are classified by Derdzinski and Roter [8,9]. These spaces are

exhausted by conformally flat spaces, i.e., with W = 0, by locally symmetric

spaces, i.e., with ∇R = 0, and by some special pp-waves. As a generalization of

this condition one consider conformally recurrent spaces, i.e., with recurrent Weyl

tensor, ∇W = θ ⊗W , see e.g. [19, 23]. We prove the following theorem.

Theorem 4. Let (M, g) be a locally indecomposable Lorentzian manifold of di-
mension n + 2 ≥ 4 with a recurrent Weyl tensor W , then either W = 0, or
∇R = 0, or locally g has the form

g = 2dv2du+
n∑

i=1

(dxi)2 +

(
a(u)

n∑
i=1

(xi)2 + F (u)
n∑

i=1

λ2
i (x

i)

)
(du)2

where a(u), F (u) are functions, and λi ∈ R,
∑n

i=1
λi = 0.

Note that the for the above metric it holds ∇W = 0 if and only if
dF (u)
du

= 0. In

particular, we recover the result by Derdzinski and Roter. Next, ∇R = 0 if and

only if
da(u)
du

= dF (u)
du

= 0. Also, ∇R = θ ⊗ R if and only if a(u) = F (u), or

a(u) = 0, or all λi = 0. Finally, W = 0 if and only if all λi = 0 or F (u) = 0 [13].

Proof of Theorem 4. The proof is very similar to the proof of Theorem 1 and

we omit some obvious computations. Suppose that W 	= 0 and ∇R 	= 0. Let

g ⊂ so(1, n + 1) be the holonomy algebra of (M, g) at a point m ∈ M . Then g

preserves the line in the space R(g) spanned by Wm. For g = so(1, n + 1) this
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would imply Wm = 0, which follows from [1]. Hence, g ⊂ sim(n). Suppose that

Wm 	= 0.

Lemma 5. The manifold (M, g) is a pp-wave, i.e., g = pm ∧ Em.

Proof: For each ξ ∈ g it holds ξ · Wm = μ(ξ)Wm, where μ : g → R is a linear

map.

First let us suppose that h = 0. Then we have either g = Rpm ∧ qm+ pm ∧Em, or

g = pm∧Em. Suppose that g = Rpm∧qm+pm∧Em. Then we may assume also

that λm 	= 0 or �vm 	= 0. Let Z ∈ Em be not proportional to �vm. By considering

((pm ∧ Z) · Wm)(pm, qm), we obtain λm = 0. In a similar way considering

((pm ∧ Z) ·Wm)(Zm, qm), we get �vm = 0. We conclude that g = pm ∧ Em.

Suppose now that h 	= 0. Let A ∈ h and let ξ be either A, or A + ϕ(A)pm ∧ qm,

or A + pm ∧ ψ(A) depending on the type of g. Note that any one-dimensional

representation of h is trivial, consequently, μ(ξ) = 0. Using this and considering

the projection of (ξ ·Wm)(X,Y ) to so(n), for X,Y ∈ Em, we get

A ·
(
1

n
(· ∧ (�vm − R̃icPm)) + Pm

)
= 0

where we consider the representation of h in the space P(so(n)). The module P(h)
never contains non-zero elements annihilated by h [12]. If Pm = 0, then from the

above equality it follows that �vm = 0. Otherwise, since h 	= 0, there exists A ∈ h

such that A · Pm 	= 0. This implies that 0 	= · ∧ A(�vm − R̃icPm) ∈ P(h).
Consequently, h = so(n). We conclude that

Pm =
1

n
(· ∧ (�vm − R̃icPm)).

Applying R̃ic, we get R̃icPm = (1− n)�vm, and we conclude that

Pm = − · ∧�vm.

This shows that the expression of Wm does not include �vm and Pm. Considering

((pm∧Z) ·Wm)(pm, qm), Z ∈ Em, we get that Ric(h)m = c1idEm
, where c1 can

be expressed in terms of λm and s0m. Taking the trace, we get a relation between

λm and s0m. Taking ξ as above, using the equality prso(n)((ξ · W )(X,Y )) = 0,

X,Y ∈ Em, and expressing R(h)m in terms of the Weyl tensor of h, Ric(h)m
and s0m, we get another relation between λm and s0m. Then we conclude that

λm = s0m = 0, Ric(h)m = 0, and R(h)m = 0. Now Wm depends only on Tm.

Since h 	= 0 and R(h) = 0, we may assume that Pm 	= 0, and we have just seen

that this implies h = so(n). Taking A ∈ so(n) and considering (A ·Wm)(X, qm),
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we get TmA = ATm. The Schur Lemma implies that Tm is proportional to id Em
.

Thus, Wm = 0. And we get a contradiction. Thus, h = 0 and g = pm ∧ Em, this

proves the lemma. �

Now we should find all functions H such the Weyl tensor of metric (4) of a pp-

wave is recurrent, i.e., ∇W = θ ⊗ W for a one-form θ. For W and ∇W we

get the formulas (8) and (9) with ∂i∂jH replaced by ∂i∂jH − 1

n
δijΔH , where

Δ =
∑n

k=1
∂2
k . We obtain the equations

∂k

(
∂i∂jH − 1

n
δijΔH

)
= θk

(
∂i∂jH − 1

n
δijΔH

)
∂u

(
∂i∂jH − 1

n
δijΔH

)
= θu

(
∂i∂jH − 1

n
δijΔH

)
where θk = θ(∂k) and θu = θ(∂u). As in Section 6, we get

∂i∂jH − 1

n
δijΔH = efCij , Cij = Cji ∈ R

for all i, j. Since Δ is invariant with respect to an orthogonal transformation of the

coordinates x1, ..., xn, we may apply a transformation as in Section 6, ad we may

assume that

∂i∂jH − 1

n
δijΔH = efδijλi, λi ∈ R.

If i 	= j, then ∂i∂jH = 0, i.e., H is of the form H =
∑n

i=1
Hi(x

i, u). We get the

system of equations

∂2
i Hi − 1

n

n∑
k=1

∂2
kHk = efλi.

We may view this system as a system of linear equations with respect to the un-

knowns ∂2
i Hi. The rank of this system is equal to n − 1. Summarizing the equa-

tions, we see that if a solution exists, then
∑n

i=1
λi = 0. In this case the dimension

of solutions equals to one, and we have ∂2
i Hi =

1

2
a + efλi for a function a. This

implies that both a and f are functions depending only on u. We obtain

H = a(u)
n∑

i=1

(xi)2 + F (u)λ2
i (x

i)

where F (u) = 1

2
ef(u) and we assume that the terms linear in xi are zero, since we

can get read of them using a transformation of coordinates. The theorem is proved.
�

Results about four-dimensional conformally recurrent Lorentzian spaces are col-

lected in [21, Ch. 35].
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10. Two-Symmetric Lorentzian Manifolds

In this section we consider two-symmetric Lorentzian manifolds, i.e., manifolds

satisfying (2). The following theorem is proved in [2].

Theorem 6. Let (M, g) be a locally indecomposable Lorentzian manifold of di-
mension n + 2. Then (M, g) is two-symmetric if and only if locally there exist
coordinates v, x1, ..., xn, u such that

g = 2dvdu+
n∑

i=1

(dxi)2 + (Hiju+ Fij)x
ixj(du)2

where Hij is a nonzero diagonal real matrix with the diagonal elements λ1 ≤
· · · ≤ λn, and Fij is a symmetric real matrix.

Detailed investigation of two-symmetric Lorentzian spaces initiated Senovilla in

[20], where it is proven that any two-symmetric Lorentzian space admits a parallel

isotropic vector field, i.e., locally the metric has the form (3) with ∂vH = 0.

Now we explain the proof of the above theorem from [2]. The assumption that a

Lorentzian manifold (M, g) is two-symmetric implies that the holonomy algebra

g ⊂ so(1, n + 1) of (M, g) at a point m ∈ M annihilates the tensor ∇Rm 	= 0.

The tensor ∇Rm belongs to the g-module ∇R(g) that consists of linear maps from

R
1,n+1 to R(g) satisfying the second Bianchi identity. The results from [22] show

that the space ∇R(so(1, n+1)) does not contain any non-zero element annihilated

by so(1, n + 1). Hence, g can not coincide with so(1, n + 1), and g must be

contained in sim(n). We show that the holonomy algebras g of types I and III do

not annihilate any non-zero element in ∇R(g), i.e., g must be of type II or IV. In

this case (M, g) admits a parallel isotropic vector field, i.e., we reprove the result

of [20]. Next, we prove a reduction lemma that allows to consider the following

two cases: g = h + p ∧ E, where h ⊂ so(n) is an irreducible subalgebra, and

g = p ∧ E.

We prove that the first case is impossible. For this we find the form of all tensors in

∇R(g) annihilated by g, it turns out that this space is one-dimensional. Then we

may find the form of ∇R. We calculate ∇Ric, and show that the Weyl conformal

tensor W is parallel (∇W = 0). Then, using the results of Derdzinski and Roter

[8, 9] and of [13], we get a contradiction.

The second case corresponds to pp-waves (4). The condition ∇2R = 0 and simple

computations allow us to find the coordinate form of the metric.
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The proof of this result from [2] especially shows the power of the methods intro-

duced in this paper, since lately there appeared another more technical proof [5]

that uses computations in local coordinates for metric (3).

11. Recurrent Symmetric Bilinear Forms

In [3] Aminova proved that if an indecomposable Lorentzian manifold (M, g) ad-

mits a parallel symmetric bilinear form not proportional to the metric, then the

manifold admits a parallel isotropic vector field p, and the space of parallel sym-

metric bilinear forms is spanned over R by the metric g and by τ ⊗ τ , where

τ = g(p, ·) is the dual one-form to p. We generalize this result to the case of

recurrent symmetric bilinear forms.

Theorem 7. If an indecomposable Lorentzian manifold (M, g) admits a recur-
rent symmetric bilinear form not proportional to the metric, then the manifold has
holonomy algebras contained in sim(n), in particular locally it is given by the
metric (3) and locally it admits recurrent isotropic vector fields.

Let g be given by (3) and suppose that it is indecomposable. If ∂2
vH = ∂i∂vH = 0,

then the coordinates can be chosen in such a way that ∂vH = 0, in this case any
recurrent symmetric bilinear form equals to f(αg + βτ ⊗ τ), where α, β ∈ R,
τ = du = g(∂v, ·), and f is a function. If ∂2

vH 	= 0 or ∂i∂vH 	= 0, then any
recurrent symmetric bilinear is proportional either to g, or to τ ⊗ τ .

For the proof it is enough to find for the holonomy algebra g ⊂ sim(n) at a point

m ∈ M all invariant one-dimensional subspaces in �2(R1,n+1)∗ preserved by g.

For algebras of type I and III these subspaces are Rgm and Rτm⊗τm. For algebras

of type II and IV these subspaces are one-dimensional subspaces in Rgm⊕Rτm⊗
τm. The condition ∂2

vH = ∂i∂vH = 0 holds only for the holonomy algebras of

type II and IV.

The above theorem can be used for studying Lorentzian manifolds with recurrent

Ricci tensors. We see that one deals with a Walker metric, and the equations will

be very similar to the Einstein equation on the Walker metric, see [14].
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