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Abstract. We present the results of studying free massive bosonic fields under

the formalism of topological quantization. We identify certain harmonic maps as a

geometric configuration equivalent to the classical system. We take as a concrete

example the case of free massive bosonic fields in two dimensions, and construct the

fiber bundle representing them and find its topological spectra. We found that the

appearance of singularities in Euler’s two form caused its integral to be dependent

on the order in which the variables are integrated. We discuss the implications of

this orientation dependency and formulate a well-defined expression for the Euler

invariant emerging from it.

1. Introduction

The formalism of topological quantization in the way we will understand it here

was formulated in [7, 12]. In general, this formalism, has been constructed to

find the discrete behaviour of physical quantities through topological properties

associated to the physical system.

In order to apply this formalism we need a geometrical configuration which must

be equivalent to the physical system we want to analyze, this means that the geo-

metrical configuration must encode all physical information of the physical system.

According to Patiño and Quevedo, we can apply this formalism in two ways: a)

intrinsic topological quantization and b) induced topological quantization.

Both ways analyze the properties of an associated principal fiber bundle (PFB).

The topological quantization is called intrinsic when the structure group of the

PFB to be studied is determined by the intrinsic symmetries of the base space.

In this case, the resulting PFB is equivalent to that of the tangent bundle. In the

intrinsic topological quantization, we need a base space manifold M covered by

open sets Ui and a metric g. The connection ω̃ on the tangent bundle TM , coming

from the lifting of the metric connection ω on M is the one satisfying the relation

σ∗
i ω̃ = ωi for any section σi defined over Ui, and the asterisk denotes the pullback
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of a mapping. To analyze the topology of TM we can use ω̃ to compute the

characteristic class of the corresponding PFB C(P ) = C(TM). The details of

how to perform this calculation will depend on the signature and dimensionality

of M , but the relevant part here is to notice that the integral of C(TM) over M is

bound to give an integer, i.e.,∫
C(TM) = χ, χ ∈ Z. (1)

The induced topological quantization takes its name from the fact that the fiber

bundle to be analyzed and its topological characteristics are dictated by a physical

gauge field living on the base space, so its standard fiber is not directly related to the

the tangent space at each point. A prominent example of this type of quantization

is that of Dirac’s monopole. In this case, the gauge field is commonly a one-form

A
1 with components taking values in the Lie algebra g of the structure group G.

The discrete conditions arise when we impose the regularity condition on the gauge

field to be well-defined over the entire PFB.

Let us remember that all the information of the physical system is contained in the

geometric construction, so, at least a fraction of it will be captured in M and its

metric g, information that we could capture in some parameters that we can call

aα. This part of the information will be carried to C(TM), so this will depend on

the parameters aα and the point p of the manifold where it is evaluated. Being χ
the integral of C(TM) over the manifold, it will only depend on the parameter aα
so it can be written as a function of the parameters, namely f(aα). Using (1) we

can write

f(aα) = χ, χ ∈ Z. (2)

This equation is what we called the topological spectrum and what gives us the

chance to analyze the physical meaning it could carry.

In this work, we will illustrate how to apply this formalism of topological quan-

tization in a particular case of free massive bosonic fields. Once we choose the

physical system, we can split the entire formalism in three steps:

1) Construct a geometrical configuration equivalent to that physical system

which is also called classical configuration in [7, 8] (Section 3)

2) Construct the PFB and compute the topological spectrum (Section 4 and

Section 5)

1This can be easily generalized to higher dimensions when the gauge field A is a n-form as is
shown in [10, 17].
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3) Analyze the physical meaning of the topological spectrum (Section 6).

2. Free Massive Bosonic Fields

The first step to apply this formalism is to find a geometric configuration that repre-

sents the physical system under consideration from which we will construct a PFB

over it. This formulation of topological quantization was presented and applied for

the first time to gravitational configurations in [11,12], after that it was carried out

in [7–9] to classical systems of n-degrees of freedom and recently was applied to

bosonic strings in different backgrounds in [1]. In this work, we are interested in

the free massive bosonic fields X i, i = 1, . . . , d, where i is the number of fields

considered, which has the associated action S given by [14]

S =
1

2

∫ d∑
i

(
∂μXi∂μX

i −m2Xi
)
dxn (3)

where μ = 1, . . . , n and n is the dimension of the spacetime and m is the mass

term associated to each field.

The variation of this action leads us to the equation of motion(
∂μ∂μ +m2

)
Xi = 0.

In equation (3) we have encoded all the dynamical information of the physical

system.

3. Harmonic Maps

Consider two differential manifolds M and N with metrics g(x) and G(X), re-

spectively, where x and X are the corresponding local coordinates. A harmonic

map is a smooth mapping X : M �→ N such that it satisfies the equations of motion

that follow from the variation of the Dirichlet energy functional

Sh =

∫ √
g gab(x)∂aX

i∂bX
jGij(X)dmx. (4)

This set of equations is

1√
g
∂a(g

ab∂bX
i) + Γi

jk(X)∂aX
j∂aX

kgab = 0
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where Γi
jk are the Christoffel symbols for Gij . We can understand the mapping X

as a minimal embedding of M into N . Now, if we take M to be a two-dimensional

differential manifold with metric gab given by

gab = ηab (5)

where ηab is the Minkowskian two-dimensional metric (η = diag(−1, 1)) and

we denote the coordinates as τ and σ. The target space N is a ten-dimensional

differential manifold with a metric G which components in terms of the light-

cone coordinates X+ = 1√
2
(X0 +X1), X− = 1√

2
(X0 −X1) and XI=1,...,8 are

respectively [4, 15, 16]

G+− = G−+ = −1, G−− = 0, G++ = −μ2

8∑
I=1

XIXI

(6)
GIJ = δIJ , I, J = 1, . . . , 8.

In the light cone coordinates, the explicit form of the action (4) is

S = − 1

4πα′

∫ √−ggab

[
−2∂aX

+∂bX
− +

8∑
I=1

∂aX
I∂bX

I

(7)

− μ2

(
8∑

I=1

XIX
I

)
∂aX

+∂bX
+

]
dσdτ.

We will use the light-cone gauge given by

X+ = α′p+τ, p+ ≥ 0. (8)

Using (5) and (8) we fix all gauge symmetries of the action and vary the action

with respect to the metric gab, i.e.,

δS

δgτσ
= 0,

δS

δgττ
= − δS

δgσσ
= 0.

In this way we obtain

∂σX
− =

1

αp+

8∑
I=1

∂σX
I∂τX

I

∂τX
− =

1

2αp+

8∑
I=1

[∂τX
I∂τX

I + ∂σX
I∂σX

I − (μα′p+)2XIXI ].

(9)
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From the above equations, we can see that X− is not a dynamical variable, and

considering (8), we can write the action (7) as

S = − 1

4πα′

∫ ∫
2πα′p+

0

8∑
I=1

[−∂τX
I∂τX

I+∂σX
I∂σX

I+μ2XIX
I ]dσ dτ (10)

where we rescaled τ and σ by α′p+ and periodic conditions on σ have been im-

posed. Observe that we can describe eight non-interacting massive Klein-Gordon

fields in two dimensions as the harmonic map given by (10).

We notice that there are two manifolds involved in the equivalent geometric system,

so both are in principle subject to the procedure of topological quantization.

4. Topological Spectrum From the Target Space

The metric (6) together with the five-form

F+1234 = F+5678 = 2μ (11)

and a constant dilation field

φ = const.

constitute a solution of Supergravity IIB [15] representing a pp-wave [13].

For this space-time, a quick calculation shows that Euler’s form computed from the

metric connection associated to (6) turns out to be zero, and therefore the intrinsic

topological quantization does not impose any restrictions.

Interestingly, the five-form (11) is known to be subject to Dirac quantization [3, 6,

10, 17] this leads to the condition

μ = φ
√
(π/2)n, n ∈ Z

which will be used later in this work.

5. Topological Quantization From the Embedded Space

The other possibility to construct a PFB is to take the embedded manifold as a base

space with induced metric given by

hab = ∂aX
i∂bX

jGij . (12)

Using (8) and (9), the induced metric is conformally flat

hab = fηab = f

(−1 0
0 1

)
(13)
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where f =
∑

8

I=1
∂σX

I∂σX
I .

We can now carry the intrinsic topological quantization of the embedded mani-

fold with metric (12). We will use for the tangent space at each point a semi-

orthonormal basis eμ = eμadσa, σa = {τ, σ}, satisfying

eμae
ν
bημν = hab

and accordingly, the spin connection ω in the standard way

(ωμ
ν)a = eμb ∂ae

b
ν + eμbΓ

b
ace

c
ν .

Given the signature and dimensionality of M , the components (ωμν) of the one-

form ω take values in the Lie algebra of SO(1, 1), therefore the characteristic class

we need to compute is the Euler class e(TM) given by

e(TM) =
−1

4π
ενμR

μ
ν (14)

where ενμ is the Levi-Civita tensor and R
μ
ν is the curvature two-form Rμ

νabdσ
a∧dσb

with components

Rμ
νab = ∂aω

μ
νb − ∂bω

μ
νa + ωμ

γaω
γ
νb − ωμ

γbω
γ
νa.

From the metric (13), the expression (14) simplifies to

e(TM) =
1

4π

[
∂σ

(
∂σf

f

)
− ∂τ

(
∂τf

f

)]
dτ ∧ dσ. (15)

Thus, to compute f , we make use of the explicit expression for the fields X I . The

equation of motion for each XI is

(∂2
τ − ∂2

σ + μ2)XI = 0

with general solution, satisfying the right periodic conditions, given by

XI = xI0 cosμτ +
pI0
μp+

sinμτ
(16)

+

√
α′

2

∞∑
n=1

1√
ωn

[
αI
ne

−iω̃+
n + α̃I

ne
−iω̃−

n + α†I
n eiω̃

+
n + α̃†I

n eiω̃
−

n

]
where

ω̃+
n =

ωn + nσ

α′p+
, ω̃−

n =
ωn − nσ

α′p+
, ωn =

√
n2 + (μα′p+)2, n ∈ N
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and αI
n, α̃I

n are the coefficients of the right and left modes, respectively.

From the above solutions, we observe that the values we assign to the αI
n and α̃I

n

will determine e(TM) and so, its integral over M∫
M

e(TM) = ξTM . (17)

Then the characteristic invariant will be a function ξTM (αn, α̃n) of these coeffi-

cients.

From the Gauss-Bonnet theorem applied to (17), we know that ξTM (αn, α̃n) ∈ Z,

and this condition is the one determining the topological spectrum for the physical

parameters αn, α̃n and ωn.

What is left for us to do now is to compute the explicit form of ξTM (αn, α̃n) ∈ Z,

extract the topological spectrum and analyze its physical content.

It would seem natural to try to integrate (15) over M in its more general form to

get the topological spectrum. Nonetheless, by doing so we would get one single

condition ξTM (αn, α̃n) ∈ Z for an infinite set of α’s and α̃’s coefficients.

Alternatively, we can start by considering the solutions (16) with the fewest number

of coefficients different from zero that still give a non-trivial result for ξTM (αn, α̃n)
and extract a condition from each of these cases. The topological spectrum will be

the set of values that satisfy all the constrains obtained by iterating this process.

The simplest solution leading to a non-trivial Euler invariant is given by (16) with

only α1
n and α̃2−n different from zero, hence all the fields X i�={1,2} vanish identi-

cally, while for X1 and X2 we have

X1 = x10 cos(μτ) +
p10
μp+

sin(μτ) +

√
α′

2

2rn√
ωn

cos[ω̃+
n + γ]

(18)

X2 = x20 cos(μτ) +
p20
μp+

sin(μτ) +

√
α′

2

2r̃n√
ωn

cos[ω̃−
n + γ̃]

where we wrote α1
n and α̃2−n in their polar representation rne

−iγ and respectively

r̃ne
−iγ̃ .

The Euler form of this field configuration is

e(TM) =
{
r2nr̃

2
n

[
(ω2

n − n2)
(
cos

[
2
(
ω̃+
n + γ

)])
+cos

[
2
(
ω̃−
n + γ̃

)]
−2ω2

n cos

(
2(γ−γ̃)+

4nσ

α′p+

)
+ 2n2 cos

(
2(γ+γ̃)+

4ωnτ

α′p+

)]
(19)

−2(ω2
n−n2)

[
r4n sin

2
(
ω̃+
n + γ

)
+ r̃4n sin

2
(
ω̃−
n + γ̃

)]}
/{

2π(α′p+)2
[
r2n sin

2
(
ω̃+
n + γ

)
+ r̃2n sin

2
(
ω̃−
n + γ̃

)]2}
dτ∧dσ.
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In order to integrate this expression over M , we make the change of variables

x = sin
(
ω̃+
n + γ

)
, y = sin

(
ω̃−
n + γ̃

)
in terms of which the Euler form acquires the form

e(TM) =
{
(n2 − ω2

n)(r
4
nx

2 + r̃4ny
2)− n2r2n

[
y2 + 4xy

√
1− x2

√
1− y2

−x2(4y2 − 1)
]
+ ω2

nr̃
2
n

[
y2−4xy

√
1−x2

√
1−y2−x2(4y2−1)

]}
/{

π(α′p+)2
(
r2nx

2+r̃2ny
2
)2}

dx ∧ dy.

Using the residue theorem and integrating first with respect to x and then with

respect to y, we get ∫
1

−1

∫
1

−1

e(TM)dx dy =
(ω2

n − n2)

nωn

r̃n
rn

while in the inverse integration order the result is∫
1

−1

∫
1

−1

e(TM)dy dx =
(ω2

n − n2)

nωn

rn
r̃n

·

As we see, the outcome of the integral depends on the order of integration because

there are points in the domain of integration where the Euler form has singulari-

ties. Analyzing the region of integration and its boundary, we find that the right

Figure 1. Plot of the region of integration in (σ, τ) space. The dots corre-

spond to the singularities of Euler form (19) and the shadowed region is the

area not considered in the numerical integration.
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expression for the Euler invariant should be

ξTM =

∫
M

e(TM)dV =
1

2

(ω2
n − n2)

nωn

(
r̃n
rn

+
rn
r̃n

)
· (20)

As a confirmation that (20) is correct, we integrated (19) numerically over the

domain of integration for n = 1, excluding bands of width ε where the singularities

are located (Fig. 1). In Fig. 2, we plot ξTM as a function of r1 and r̃1 computed

by (a) using (20) and (b) the numerical method for ε = 0.01. We can see that the

behavior is very similar in these two plots except for a large additive constant. We

confirmed by exploration, that as ε → 0, the profiles of the two plots look more

alike while the additive constant becomes larger. From this, we conclude that (20)

is the right expression, once the divergence of the integral has been removed using

the appropriate singularity theorems.

Figure 2. Plot of the Euler characteristic ξTM (r, r̃) computed using a)

expression (20) and b) the numerical method described in the text (taking

ω1= 2, p+= 1 and α′= 1).

Now we are in a position to apply the Gauss-Bonnet theorem to (20) to obtain the

topological spectrum which is expressed as

r

r̃
+

r̃

r
=

2n
√
n2 + (μα′p+)2

(μα′p+)2
k . (21)

We see that for a given mass of the bosonic field, the ratio of the amplitudes r/r̃ is

not arbitrary but it must fulfill a discrete relation which depends on the integer k.

6. Physical Consequences and Discussion

The topological spectrum for the particular configuration under consideration for

the massive scalar field describes a discrete relationship between the parameters
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that determines the field. In this work we have only considered the particular case

when the frequencies ωn are the same for both fields XI=1,2, but it is not difficult to

see that these relationships depend in general on the number of modes considered

for the scalar field as is shown in [2]. Therefore, it is interesting to find out what

characteristics of the field result are affected by this discreteness. To this end, let

us compute the Hamiltonian of the system H =
∫ Hdσ =

∫
2πα′p+

0
(
∑

A ẊAΠA −
L)dσ. Choosing τ as the time parameter, from equation (10) we obtain

H = (1/4πα′)
8∑

I=1

(∂τX
I∂τX

I + ∂σX
I∂σX

I + μXIXI)

and thus, for the case of the particular configuration of the fields (18), we obtain

H =
ωn

α′p+
(r2n + r̃2n).

A comparison with the topological spectrum (21) yields

H = k
n[n2 + (μα′p+)2]

(μα′p+)2
rnr̃n ≡ kCnnrnr̃n

where Cnn is a constant. This result shows that the Hamiltonian describing the

free massive bosonic field has a discrete behavior proportional to k ∈ Z. Also,

we notice that it is proportional to the term rnr̃n involving the amplitudes. This

implies that the discrete behaviour of the Hamiltonian must be independent of the

choice of the fields that are taken. This is satisfied if this product is also a constant.

Surprisingly, we found that the right and left modes are not independent from each

other and this implication does not have an analogue in other formalisms. As was

mentioned above, this result is valid only when ωn is the same for both fields, for a

more general case we must refer to [2] where it is shown that the behaviour of the

Hamiltonian dictated by the topological spectrum is different.

Another important feature of this physical system in the context of topological

quantization is the fact that the Euler form has singularities inside the region of

integration and this is responsible for the fact that the Euler invariant does not

commute under the interchange of the integration variables. We can see now the

integrals ∫
( )dx ≡ Fx,

∫
( )dy ≡ Gy

as operators that obey the relation

FxGy −GyFx 	= 0.
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This is a peculiar feature, because Fx and Gy are functions of α and α̃ so, in a cer-

tain way, we obtain from the topological analysis of the system the non commuting

behavior that in standard quantum field theory is only given through the imposition

of this relation to the fields and its conjugate moment.
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