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Abstract. The multi-component nonlinear Schrödinger equations related to

C.I � Sp(2p)/U(p) and D.III � SO(2p)/U(p)-type symmetric spaces with

non-vanishing boundary conditions are solvable by the inverse scattering method

(ISM). We focus our attention on the single threshold case. We formulate the spec-

tral properties of the Lax operator L, which is the generalized Zakharov-Shabat op-

erator. Next we construct the corresponding fundamental analytic solutions (FAS)

and adapt the Wronskian relations for the constant boundary conditions. They al-

low one to analyze the mapping from the class of allowed potentials M to each

of the minimal sets of scattering data Ti, i = 1, 2. The ISM for the Lax oper-

ator L is interpreted as a nonlinear analog of the Fourier-transform method. As

appropriate generalizations of the usual exponential functions we use the so-called

‘squared solutions’, which are constructed in terms of the FAS χ±(x, λ) of L and

the Cartan-Weyl basis of the Lie algebra, relevant to the symmetric space. We de-

rive the completeness relation for the “squared solution” which turns out to provide

the map from M to each Ti, i = 1, 2. Such decompositions allow one to derive all

fundamental properties of the multi-component nonlinear Schrödinger equations.
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1. Introduction

The integrability of the scalar nonlinear Schrödinger equation (NLS) with vanish-

ing boundary conditions (v.b.c.)

iqt + qxx + 2|q(x, t)|2q(x, t) = 0 (1)

was discovered by Zakharov and Shabat in their pioneer work [29]. Soon after

[30] Zakharov and Shabat proved the integrability and the physical importance of

the NLS with constant boundary conditions (c.b.c.)

iqt + 2qxx − 2(|q(x, t)|2 − ρ2)q(x, t) = 0, lim
x→±∞

q(x, t) = q± (2)

where the asymptotic values q± satisfy |q±|2 = ρ2. Notice the sign difference in

the cubic nonlinearity as well as the additional term with the chemical potential ρ.

Both versions of NLS equation served as models on which generalizations were

made. The simplest non-trivial multi-component generalization of NLS is the

vector NLS known as the Manakov model [22]

i�q t + q̄ xx + 2(�q †�q (x, t))�q (x, t) = 0 (3)

where �q (x, t) is an n-component complex-valued vector vanishing fast enough

for x → ±∞. The c.b.c. version of vector NLS

i�q t + �q xx −
(
2(�q †�q (x, t)) − ρ2

)
�q (x, t) + (�q †

±�q (x, t))�q ± = 0 (4)

where limx→±∞ �q (x, t) = �q ± and �q − = U0�q + where U0 is a constant unitary

matrix also finds applications. Here ρ2 = �q †
±�q ±.

Equations (1) and (3) are particular cases of matrix NLS which is obtained from

the system

iqt + qxx + 2qrq(x, t) = 0

−irt + rxx + 2rqr(x, t) = 0
(5)

after imposing an appropriate involution (reduction) compatible with the evolution

of (5). Here q and rT can be rectangular n × p matrix-valued functions of x and

t. One such involution is

r = B−q† B−1
+ , B+ = diag (ε+

1 , ..., ε+p ), B− = diag (ε−1 , ..., ε−n ) (6)
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where (ε±j )2 = 1, and the corresponding MNLS acquires the form

iqt + qxx + 2qB−q† B−1
+ q = 0. (7)

For n = m = 1 and r = q∗ the system goes into the scalar NLS (1). For

m = 1 and n > 1 and with appropriate choice of involution (6) the system is

transformed into the Manakov model (3). All these versions are solvable with the

ISM. The ISM is applicable to nonlinear evolution equations (NLEE) if they can

be represented as compatibility condition of two linear problems [1, 3, 16, 25, 28]

[L(λ), M(λ)] = 0 (8)

which holds identically with respect to the spectral parameter λ.

The two linear operators L(λ) and M(λ) in the Zakharov-Shabat system (Z-Sh)

for the MNLS on symmetric spaces associated with the simple Lie algebra g � Cr

and g � Dr with v.b.c. are

Lψ =

(
i

∂

∂x
+ Q(x, t) − λJ

)
ψ(x, t, λ) = 0 (9)

Mψ =

(
i
∂

∂t
+ V2(x, t) + λV1(x, t) − 2λ2J

)
ψ(x, t, λ)

(10)
= ψ(x, t, λ)C(λ)

Q(x, t) =

(
0 q(x, t)

r(x, t) 0

)
, J =

(
11 0
0 −11

)
(11)

where C(λ) is for now an arbitrary matrix-valued function which may depend

only on λ and will be fixed up below. The potential Q(x, t) and J are 2r × 2r
matrices with compatible block structure. Here

V1(x, t) = 2Q(x, t), V2(x, t) = [ad−1
J Q,Q ] + 2iad−1

J Qx(x, t) (12)

and ad−1
J is the inverse of the adjoint action ad J with respect to the element J,

ad JY = [J, Y ].

An effective tool to obtain new versions of multi-component nonlinear Schrödinger

equations (MNLS) is the reduction group introduced by Mikhailov [23]. It allows

one to impose algebraic constraints on the potential Q(x, t) which are automati-

cally compatible with the evolution. For example, the involution (6), which leads

to MNLS with v.b.c. (7) is known as Z2-reduction and can be written as [13]

BU †(x, t, λ∗)B−1 = U(x, t, λ) (13)
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where B is an automorphism of g matrix such that B2 = 11, [J, B] = 0, and

U(x, t, λ) = Q(x, t) − λJ. (14)

Below we analyze the MNLS

iqt + qxx − 2qq† q + qμ + μ q = 0 (15)

with constant boundary conditions (c.b.c.) at x → ±∞
lim

x→±∞
q(x, t) = q± , μ = q+q†

+ = q−q†
− , μ = q†

+q+ = q†
−q− (16)

where q(x, t) in general can be a rectangular n × p matrix-valued function if we

consider the symmetric spaces of class A.III [15]. Below we concentrate on the

MNLS (15) related to the C.I and D.III-type symmetric spaces and therefore

q(x, t) will be a square r × r matrix-valued function.

Its Lax pair is obtained from (9)–(12) by replacing V2(x, t) with

V2(x, t) = [ad−1
J Q,Q] + 2iad−1

J Qx(x, t) − [ad−1
J Q±, Q±]. (17)

Here we have also imposed the additional condition Q2
+ = Q2

−. It ensures that

the two asymptotic Lax operators L± = i∂x + Q± − λJ have the same spectrum.

It also ensures that the potential V2(x, t) in the second operator M(λ) vanish for

x → ±∞. As a result the solutions of the MNLS equation (15) q(x, t) do not

undergo strong oscillations with respect to time, see [11, 15].

Lax operators of the form (9) can be associated with each of the symmetric spaces

listed below (for the definition see [18] and the Appendix). They are defined

by specifying the simple Lie algebra g, having typical representation in 2r × 2r
matrices and the Cartan subalgebra element J

• C.I: g � Cr � sp(2r), J = H�a, where the vector �a in the root space E
r

dual to J is given by �a =
∑r

k=1 ek

• D.III : g � Dr � so(2r), J = H�a, where the vector �a in the root space

E
r dual to J is given by �a =

∑r
k=1 ek.

Here the orthonormal vectors ek span the root space E
r of both types of algebras.

The element J belongs to the Cartan subalgebra h and is dual to �a. Using J we

can split the set of positive roots into two two subsets �+ = �+
0 ∪ �+

1 . These

sets, for the algebras that we are working with, are composed of the following

roots

�+
0 ≡ {ei − ej}, �+

1 ≡ { 2ei, ei + ej}, 1 ≤ i < j ≤ r (18)
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for g � sp(2r) and

�+
0 ≡ {ei − ej}, �+

1 ≡ {ei + ej}, 1 ≤ i < j ≤ r (19)

for g � so(2r).

The root vectors of the algebra are denoted by Eα where α is the corresponding

root. We will need also the projector PJ = ad−1
J ad J onto the co-adjoint orbit OJ

of the element J . Here the inverse of the adjoint action is ad −1
J Y = 1

2JY . The

generic element of X ∈ OJ is the one that satisfies the relation X = PJ X . Ob-

viously the potential of the Z-Sh system Q(x, t) and its variation δQ(x, t) belong

to OJ .

This paper extends the results of [11, 12, 15] and [4]. In Section 2 we analyze

the spectral properties of the generalized Z-Sh operator with c.b.c. We start with

the single threshold case for which Q2
+ = Q2

− = ρ211. First we construct the

fundamental analytic solutions (FAS) and formulate the corresponding Riemann-

Hilbert problem (RHP) on a Riemannian surface. We also derive the time evolu-

tion of the scattering matrix. Next we briefly analyze the construction of singular

solutions for the RHP and then propose an explicit formula for the kernel of the

resolvent R±(x, y, λ) of L in terms of the FAS. Then we apply the contour in-

tegration method and derive the spectral decomposition for L. In Section 3 we

derive the Wronskian relations which are the basic tool for analyzing the mapping

F : M → Ti. We also introduce minimal sets of scattering data Ti, i = 1, 2.

In Section 4 we derive the completeness relation for the “squared solutions” of

the Lax operator generalizing the results of [20, 21]. Thus we prove that the ISM

is equivalent to a generalized Fourier transform also for the Lax operators with

c.b.c. Thus we have shown that the nonlinear evolution of equation (15) trans-

forms into linear one in terms of the scattering data of L. In the last Section 5

we briefly consider the generic multi-threshold case when Q2
+ = Q2

− have 2r
different eigenvalues ±ρ2

j and draw some conclusions.

2. Spectral Properties of the Lax Operator L. The Single Threshold
Case

The spectrum of the asymptotic operators L± is purely continuous and is de-

termined by the eigenvalues of Q± which generically may be arbitrary complex

numbers. However, here we consider only the case when L becomes self-adjoint.

As a result its potential Q(x, t) acquires the form

Q(x, t) = −Q†(x, t), Q(x, t) =

(
0 q(x, t)

−q†(x, t) 0

)
. (20)
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For simplicity reasons we will consider only the case when all of the eigenvalues

of the asymptotic matrices Q± are real and equal

ρ1 = ρ2 = · · · = ρr = ρ > 0 (21)

where ρ is real parameter. It determines the threshold, or equivalently, the chem-

ical potential of the MNLS. As a result we have the following condition on the

eigenvalues of the asymptotic matrices [15] q±q†
±(x, t) = ρ211 and the corre-

spondence with the isotropic problem is obvious: μ = μ = ρ211.

The requirement that the potentials of the Z-Sh system belong to g can be formu-

lated as a reduction condition [7, 23]

S−1
0 UT (x, t, λ)S0 = −U(x, t, λ),

S−1
0 V T (x, t, λ)S0 = −V (x, t, λ), S−1

0 JS0 = −J
(22)

which has trivial action on λ. The matrix S0 is the one which realizes the definition

of the algebras Cr � sp(2r) or Dr � so(2r) in the typical representation [7,18] .

In what follows we will define the Lie algebra g by

g ≡ {X ; X + S−1
0 XtS0 = 0

}
(23)

where

S0 =
r∑

s=1

(−1)s+1(Ess − E ss)

for g � sp(2r) and

S0 =
r∑

s=1

(−1)s+1(Ess + E ss)

for g � so(2r). Here s = 2r − s + 1 and Eks are 2r × 2r matrices, defined by

(Eks)ij = δkiδsj . Note that S2
0 = ε011, where ε0 = −1 for sp(2r) and ε0 = 1 for

so(2r).

The reduction (22) imposes restrictions only on the coefficients of Q(x, t) such

that for Cr � sp(2r) we can put

Q(x, t) =
∑
i<j

(
qijEei+ej

− q∗j iE−ei−ej

)
+

r∑
i=1

(qiE2ei
− q∗i E−2ei

) (24)

while in the Dr � so(2r)-case we have

Q(x, t) =
∑
i<j

(
qijEei+ej

− q∗j iE−ei−ej

)
(25)
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where the ∗ means a complex conjugation. The definitions of the root vectors Eα

can be found in the Appendix. In the typical representations of Cr and Dr these

choices for Q(x, t) have always the block structure shown in (20). For example,

in the case of g � sp(4) the block q is parametrized by three functions

q(x, t) =

(
q12

√
2q1√

2q2 −q12

)
. (26)

The corresponding sets of MNLS for these choices of Q(x, t) and v.b.c. were

first derived in [7]. For c.b.c. with r = −q† MNLS take the form (15) with the

additional linear in q terms ensuring regular behavior of the solutions for t →
±∞.

Let us outline the construction of the FAS. In the particular case that we are con-

sidering - the isotropic problem - the Jost solutions are defined as fundamental

solutions with fixed asymptotic for x → ±∞

lim
x→∞

ψ(x, λ)eiμ(λ)Jx = ψ0(λ), lim
x→−∞

φ(x, λ)eiμ(λ)Jx = φ0(λ) (27)

where 2r× 2r matrices ψ0(λ) and φ0(λ) take value in the corresponding group G

and diagonalize the potential of the Lax operator L

(Q+ − λJ)ψ0(λ) = −ψ0(λ)μ(λ)J

(Q− − λJ)φ0(λ) = −φ0(λ)μ(λ)J
(28)

where μ(λ) =
√

λ2 − m2. They have the block structure

ψ0(λ) =

(
A S1 B

B S1 A

)
, φ0(λ) = V0

(
A S1 B

B S1 A

)
. (29)

The r × r matrices A, B and S1 are given by

A =

√
λ + μ(λ)

2μ(λ)
, B =

√
λ − μ(λ)

2μ(λ)
, S1 =

r∑
s=1

e s ,r−s+1 (30)

where ep q are r × r matrices such that (ep q)ij = δip δjq and the phase factor V0

is 2r × 2r diagonal and unitary matrix of the form V0 = exp(iϕ0J).

Given the potential Q(x) one can obtain the Jost solutions uniquely. The Jost so-

lutions in turn determine uniquely the scattering matrix T (λ) and its inverse T̂ (λ).
Q(x) contains at most |�1

+| independent complex-valued functions of x. Thus it

is natural to expect that at most |�+
1 | of the coefficients of T (λ) for λ ∈ Rm,
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instead of (2r)2, will be independent. Here |�+
1 | is the number of roots in �+

1 ,

i.e. |�+
1 | = r(r + 1)/2 for Cr and |�+

1 | = r(r − 1)/2 for Dr. The continuous

spectrum Rm = (−∞,−m) ∪ (m,∞) is determined by the condition |λ| ≥ m.

The two Jost solutions are fundamental solutions and must be linearly dependent.

This means that there exists a matrix T (t, λ), called scattering matrix, which con-

nects them and has an appropriate block structure.

T (t, λ) = ψ−1(x, t, λ)φ(x, t, λ). (31)

2.1. The t-dependence of the Scattering Data

A direct consequence of the Lax representation is the evolution law for the scat-

tering matrix. Indeed, let us consider the regularized M -operator (i.e. M defined

by equation (10) but with V2 given by equation (17)) acting on the Jost solution

φ(x, t, λ). First we will define the function C(λ) by requesting that the asymp-

totic of φ(x, t, λ) for x → −∞ (see equation (27) holds true for any t. Taking

in it the x → −∞ limit and taking into account that limx→±∞ V2(x, t) = 0 (see

equation (17)) we get:

2λ(Q− − λJ)φ0(λ)eiμ(λ)Jx = φ0(λ)eiμ(λ)JxC(λ) (32)

which combined with equation (28) means that

C(λ) = −2λμ(λ)J. (33)

Taking the limit to x → ∞ we obtain

iψ0(λ)eiμ(λ)Jx dT

dt
+ 2λ(Q+ − λJ)ψ0(λ)eiμ(λ)JxT (t, λ)

= ψ0(λ)eiμ(λ)JxT (t, λ)C(λ) (34)

i.e. the t-dependence of the scattering matrix is given by

i
dT

dt
− 2λμ(λ)[J, T (t, λ)] = 0. (35)

Thus we find that the MNLS with c.b.c. in the case of single threshold has the

same dispersion law f(λ) = 2λμ(λ) as the scalar NLS with c.b.c., see [25].

We can use for the scattering matrix the same block-matrix structure as in v.b.c.

case [15]

φ(x, λ) = ψ(x, λ)T (λ),

T (λ) =

(
a+(λ) −b−(λ)
b+(λ) a−(λ)

)
, T̂ (λ) =

(
c−(λ) d−(λ)
−d+(λ) c+(λ)

)
.

(36)
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The block matrices of the inverse matrix are defined as follows

c−(λ) = â +(λ)(11 + ρ−ρ+)−1 = (11 + τ+τ−)−1â +(λ)

d−(λ) = â +(λ)ρ−(λ) (11 + ρ+ρ−)−1 = (11 + τ+τ−)−1τ+(λ)â−(λ)

c+(λ) = â−(λ)(11 + ρ+ρ−)−1 = (11 + τ+τ−)−1â−(λ)

d+(λ) = â−(λ)ρ+(λ) (11 + ρ−ρ+)−1 = (11 + τ−τ+)−1τ−(λ)â +(λ)

(37)

where

ρ±(λ) = b±(λ)â±(λ) = ĉ±(λ)d±(λ)

τ±(λ) = â±(λ)b∓(λ) = d∓(λ)ĉ±(λ)
(38)

are the multi-component generalizations of the reflection ρ±, τ± coefficients for

the scalar case, see [27, 29, 30].

From equation (35) there follows that the diagonal blocks of T (t, λ) and its inverse

are time independent

i
da±

dt
= 0, i

dc±

dt
= 0. (39)

In other words these blocks can be used as generating functionals of the conserva-

tion laws of the MNLS. The off-diagonal blocks of T (t, λ) and its inverse evolve

in time according to

i
db±

dt
∓ 2λμ(λ)b± = 0, i

dd±

dt
∓ 2λμ(λ)d± = 0. (40)

As a consequence for the reflection coefficients ρ± and τ± we get

i
dρ±

dt
∓ 2λμ(λ)ρ± = 0, i

dτ±

dt
± 2λμ(λ)τ± = 0. (41)

2.2. The FAS and the RHP

First we will write down the integral equations which are satisfied by the Jost

solutions. It will be more convenient to introduce

X+(x, λ) = ψ−1
0 ψ(x, λ)eiJ0(λ)x

X−(x, λ) = φ−1
0 φ(x, λ)eiJ0(λ)x

(42)

which satisfy limx→±∞ X±(x, λ) = 11. It is not difficult to show that they must

satisfy the following integral equations

X+(x, λ) = 11 + i

∫ x

∞

dy eiμ(λ)J(y−x)U+(x, λ)X+(y, λ)e−iμ(λ)J(y−x) (43)
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and

X−(x, λ) = 11 + i

∫ x

−∞

dy eiμ(λ)J(y−x)U−(x, λ)X−(y, λ)e−iμ(λ)J(y−x) (44)

where

U+(x, λ) = ψ−1
0 (λ)(Q(x) − Q+)ψ0(λ)

U−(x, λ) = φ−1
0 (λ)(Q(x) − Q−)φ0(λ).

(45)

Below we will use the following block structure for X±(x, λ), each block being

r × r matrix

|X±,1(x, λ)〉 =

(
X±,11

X±,21

)
, |X±,2(x, λ)〉 =

(
X±,12

X±,22

)
. (46)

Then from equation (43) we obtain the following integral equations for the func-

tions |X+,1(x, λ)〉 and |X+,2(x, λ)〉

|X+,1(x, λ)〉 =

(
11

0

)
+ i

∫ x

∞

dy

(
(U+(x, λ)X+(y, λ))11

e−2iμ(λ)(y−x)(U+(x, λ)X+(y, λ))21

)
(47)

|X+,2(x, λ)〉 =

(
0
11

)
+ i

∫ x

∞

dy

(
(e2iμ(λ)(y−x)U+(x, λ)X+(y, λ))12

(U+(x, λ)X+(y, λ))22

)
.

These are Volterra-type integral equations. It is well known that such equations

allow solutions if one can prove that the integral is convergent. For Im μ(λ) < 0
the convergence of the integral in equation (47) follows from the following facts:

i) Q(x) − Q+ tends to zero fast enough for x → ∞; ii) the exponential factor

exp(−2iμ(λ)(y−x)) decreases exponentially. Thus we have outlined the proof of

the fact that |X+,1(x, λ)〉 is an analytic function of λ for Im μ(λ) < 0. Similarly,

one can prove that |X+,2(x, λ)〉 is an analytic function of λ for Im μ(λ) > 0.

The same ideas can be applied also to the integral equations for X−(x, λ).

From the above arguments it is also obvious that the analyticity properties hold

true on one of the sheets of the two-sheeted Riemannian surface S

S = S1 ∪ S2

associated with the square root μ(λ). The relevant cut is

Cρ ≡ [−∞ ≤ Reλ ≤ −ρ] ∪ [ρ ≤ Reλ ≤ ∞]. (48)

Each sheet of this surface is determined by the sign of μ(λ), i.e.,

S1 : Im μ(λ) > 0, S2 : Im μ(λ) < 0. (49)
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From equations (29)–(30) it follows that ψ0(λ) and φ0(λ) are also analytic on

both sheets Sj having singularities only on the end-points of the cuts.

As a consequence we can formulate the analyticity properties of the Jost solutions

as follows

ψ(x, λ) = (|ψ−(x, λ)〉, |ψ+(x, λ)〉), φ(x, λ) = (|φ+(x, λ)〉, |φ−(x, λ)〉) (50)

where |ψ±〉 and |ψ±〉 denote a r × 2r matrix composed of the corresponding r
columns of the Jost solutions. The superscript + (respectively −) means analytic-

ity on the first sheet S1 (respectively on the second sheet S2). We will use similar

representations for their inverse

ψ̂(x, λ) =

(
〈ψ̂+(x, λ)|
〈ψ̂−(x, λ)|

)
, φ̂(x, λ) =

(
〈φ̂−(x, λ)|
〈φ̂+(x, λ)|

)
(51)

where again the superscripts + and − refer to the analyticity properties.

Next, we can construct FAS on each of the sheets by simply combining the blocks

of the Jost solutions with the same analyticity properties

χ+(x, λ) ≡ (|φ+〉, |ψ+〉) (x, λ), χ−(x, λ) ≡ (|ψ−〉, |φ−〉) (x, λ). (52)

They are related to the Jost solutions by upper- (respectively lower-) block-triangular

functions S± and T± (see [10] for similar decompositions in the v.b.c. case)

χ±(x, λ) = ψ(x, λ)T∓ = φ(x, λ)S± (53)

where

S+ =

(
11 d−

0 c+

)
, T− =

(
a+ 0
b+ 11

)
S− =

(
c− 0
−d+ 11

)
, T+ =

(
11 −b−

0 a−

)
.

(54)

These triangular factors are directly related to the generalized Gauss decomposi-

tions of the T (λ). Indeed they satisfy

T (λ) = T−(λ)Ŝ
+
(λ) = T+(λ)Ŝ

−
(λ). (55)

Here and after the hat means taking the inverse matrix.

The proper generalized Gauss decompositions involve block-triangular factors

that have unit elements on the diagonal. Simple rearrangements do the job as
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follows

S+ = S±D±
1 , S+

J =

(
11 τ+

0 11

)
, S−

J =

(
11 0

−τ− 11

)
T+ = T±D±

2 , T+
J =

(
11 −ρ−

0 11

)
, T−

J =

(
11 0
ρ+ 11

)
.

(56)

The block-diagonal matrices D+
j (respectively D−

j ), j = 1, 2, are given by

D+
1 =

(
11 0
0 c+

)
, D+

2 =

(
a+ 0
0 11

)
D−

1 =

(
c− 0
0 11

)
, D−

2 =

(
11 0
0 a−

)
.

(57)

Therefore the proper generalized Gauss decomposition takes the form

T (λ) = T−
J D+

J Ŝ+
J = T+

J D−
J Ŝ−

J (58)

where

D+
J = D+

1 D+
2 =

(
a+ 0
0 c+

)
, D−

J = D−
1 D−

2 =

(
c− 0
0 a−

)
. (59)

Using the properties of the symmetric spaces and the Cartan-Weyl basis one can

write down the triangular factors also as

S±
J (λ) = exp

⎛⎝±
∑

α∈Δ+

1

τ±
α (λ)E±α

⎞⎠ = 11 +
∑

α∈Δ+

1

τ±
α (λ)E±α

T∓
J (λ) = exp

⎛⎝±
∑

α∈Δ+

1

ρ±α (λ)E±α

⎞⎠ = 11 +
∑

α∈Δ+

1

ρ±α (λ)E±α.

(60)

Now we redefine the FAS χ±(x, λ) from equation (53) by

χ±(x, λ) = φ(x, λ)S±
J = ψ(x, λ)T∓

J D±
J (λ). (61)

After this redefinition χ±(x, λ) take values in the corresponding Lie group.

We also introduce the FAS ξ±(x, λ) of the related linear problem

i
dξ±

dx
+ (Q(x) − λJ)ξ±(x, λ) + ξ±(x, λ)μ(λ)J = 0 (62)
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which are expressed in terms of the Jost solutions by

ξ±(x, λ) = φ(x, λ)S±
J (λ)eiμ(λ)Jx = ψ(x, λ)T∓

J (λ)D±
J (λ)eiμ(λ)Jx (63)

for λ ∈ R. These FAS satisfy the following RHP

ξ+(x, λ) = ξ−(x, λ)G(x, λ), G(x, λ) = e−iμ(λ)JxŜ−S+(λ)eiμ(λ)Jx (64)

on the Riemannian surface S. Of course reducing the ISP for the Lax operator L
to an RHP allows one to apply the dressing Zakharov-Shabat method. Of course,

in order to render the problem uniquely solvable we need to specify also the nor-

malization condition for ξ±(x, λ) which takes the form

lim
λ→∞, λ∈R1

ξ+(x, λ) = 11. (65)

The possibility to reduce the inverse scattering problem to an RHP allows one

to apply the dressing Zakharov-Shabat method [31, 32] for evaluating the soliton

solutions, for A.III-type symmetric spaces see [15].

We will say that ξ±(x, λ) are regular solutions of the RHP (64) if ξ+(x, λ) has no

singularities for any λ ∈ R+ and ξ−(x, λ) has no singularities for any λ ∈ R−.

The character of these singularities in terms of λ may be rather involved. The

problem simplifies if we introduce the uniformizing variable z on the surface R

z =
λ +

√
λ2 − ρ2

2ρ
,

1

z
=

λ −
√

λ2 − ρ2

2ρ
· (66)

The change of variables from λ to z is a conformal transformation which maps

the sheets R1 and R1 into z ∈ C+ and z ∈ C−. The advantage of this change of

variables is that it becomes easier to treat the singularities of ξ±(x, λ). A more

thorough analysis of the structure of the zeroes of a± and c± shows that, like in the

scalar NLS case [25], the FAS ξ±(x, λ) as functions of z allow pole singularities

in z. In what follows we assume that these poles are simple, which means that

ξ±(x, z) =
ξ±k (x)

z − z±k
+ ξ̇±k (x) + O(z − z±k ), k = 1, . . . , N (67)

in the neighborhood of z±k . The RHP (64) and the normalization condition (65)

can be reformulated on the complex z-plane as follows

ξ+(x, z) = ξ−(x, z)G(x, z), lim
z→∞

ξ±(x, z) = 11

G(x, z) = e−i(z−z−1)ρJxŜ−S+(λ)ei(z−z−1)ρJx.
(68)
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2.3. Constructing Singular Solutions of the RHP

The singularities of the FAS are directly related to the discrete eigenvalues of L.

Of course we have to remember that the Lax operator L is equivalent to a self-

adjoint eigenvalue problem. Therefore its eigenvalues on the complex λ-plane

must be real and lie in the lacuna, i.e., −ρ < λk < ρ. Going to the uniformizing

variable we find that λk is mapped on the unit circle of the complex z-plane

z+
k =

λk + i
√

ρ2 − λ2
k

2ρ
, z−k =

1

z+
k

=
λk − i

√
ρ2 − λ2

k

2ρ
(69)

so that z±k ∈ C±. Therefore it will be convenient to write down the anzats for the

dressing factor as rational function of z as follows

uk(x, z) = 11 + (ck(z) − 1)Pk + (c−1
k − 1)P̄k, ck(z) =

z − z+
k

z − z−k
(70)

where Pk is a projector onto the corresponding eigen-subspace of L and P̄k =
S0P

T
k S0. This last condition ensures that uk(x, z) is an element of the corre-

sponding Lie group. It remains to introduce the asymptotic expansion of FAS

over the negative powers of z

ξ±(x, z) = 11 +

∞∑
k=1

z−kξ±k (x) (71)

and to replace in equation (62) λ and μ(λ) by ρ(z + z−1) and ρ(z − z−1) respec-

tively. The corresponding equation

i
dξ±

dx
+ (Q(x) − (z + z−1)ρJ)ξ±(x, z) + ξ±(x, z)(z − z−1)ρJ = 0 (72)

allows one to relate the potential Q(x) with the first coefficient ξ±1 (x) in the ex-

pansion (71). Indeed, taking the limit z → ∞ in equation (72) we get

Q(x) = lim
z→∞

zρ
(
J − ξ±(x, z)Jξ̂±(x, z)

)
= [J, ξ±1 (x)]. (73)

Let us assume that we have solved the RHP (68) and know one of its regular

solutions ξ±0 (x, z). Then equation (73) allows us to evaluate the corresponding

regular potential Q0(x). Next we apply N times the dressing procedure by acting

with u1(x, z), . . . , uN (x, z), adding 2N discrete eigenvalues z±k to the spectrum
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of L. Then the resulting potential Q(x) will be related to the regular one Q0(x)
by

Q(x) = Q0(x) −
N∑

k=1

(z+
k − z−k )[J, Pk − P̄k)

= Q0(x) − i

ρ

N∑
k=1

√
ρ2 − λ2

k [J, Pk − P̄k].

(74)

These expressions allow us to evaluate the N -soliton solutions of the MNLS equa-

tion with c.b.c. The explicit construction of the projectors Pk(x) in terms of the

regular solutions χ±
0 (x, λ) will be presented elsewhere.

2.4. The Resolvent of the Lax Operator

The FAS can be used to construct the resolvent of the Lax operator, much in the

same way as it has been done for the v.b.c. case. Let us define the kernel of the

resolvent of L by

R±(x, y, λ) =
1

i
χ±(x, λ)Θ±(x − y)χ̂±(y, λ)

Θ+(x − y) =

(−11θ(y − x) 0
0 11θ(x − y)

)
Θ−(x − y) =

(
11θ(x − y) 0

0 −11θ(y − x)

)
, λ ∈ Cρ

(75)

where χ±(x, λ) are given by equation (61).

Theorem 1. Let Q(x) is a function such that limx→±∞(Q(x) − Q±) = 0 fast
enough. Let −ρ < λj < ρ be the simple zeroes of det a±(λ). Then

1. R±(x, y, λ) is an analytic function of λ for λ ∈ R1,2 having pole singular-
ities at λ±

j ∈ [−ρ, ρ]

2. R±(x, y, λ) is a kernel of a bounded integral operator for Im μ(λ) �= 0

3. R±(x, y, λ) is uniformly bounded function for λ ∈ R1,2 and provides a
kernel of an unbounded integral operator

4. R±(x, y, λ) satisfy the equation

L(λ)R±(x, y, λ) = 11δ(x − y). (76)
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Proof: Idea of the proof.

1. This is obvious from the fact that χ±(x, λ) are the FAS of L(λ).

2. Assume that Im μ(λ) > 0 and consider the asymptotic of R+(x, y, λ) for

x, y → ∞. From equations (27) and (63) we find that for x, y → −∞ the

(1,1)-block of ψ̂0R
+(x, y, λ)ψ0 behaves like

(ψ̂0(λ)R+(x, y, λ)ψ0(λ))11 � ie−iμ(λ)(x−y)θ(y − x) (77)

i.e., it decreases exponentially for all x → −∞ and arbitrary choice of

y. Similar analysis applies also for the other blocks of R+(x, y, λ). All

other possibilities are treated analogously. In doing this it is important that

χ+(x, λ) has triangular asymptotics for x → ±∞ and also of the correct

choice of Θ+(x − y) (75). To conclude the proof we also use the fact that

ψ̂0(λ) and ψ0(λ) are singular only at the end-points of the cut Cρ.

3. For λ ∈ Cρ the arguments of 2) can not be applied because the exponentials

in the right hand side of (77) Im λ = 0 only oscillate. Thus we conclude

that R±(x, y, λ) for λ ∈ Cρ is only a bounded function and thus the corre-

sponding operator R(λ) is an unbounded integral operator.

4. The proof of equation (76) follows from the fact that L(λ)χ+(x, λ) = 0
and

dΘ±(x − y)

dx
= ∓11δ(x − y). (78)

The theorem is proved. �

Using the kernel of the resolvent R±(x, y, λ) one can derive the spectral decom-

position of L.

To do this we apply the contour integration method to the integral

IR(x, y) =
1

2πi

∫
C

λdλ

μ(λ)
R+(x, y, λ) (79)

where the contour is shown on the figure below.

According to Cauchy theorem

IR(x, y) =
N∑

k=1

Res
λ=λk

λ

μ(λ)
R+(x, y, λ). (80)
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Figure 1. The contour along which we integrate lies completely on the first

sheet of the 2-sheeted spectral surface associated with the square root μ(λ) =√
λ2 − ρ2

We can also calculate IR by integrating along the contour. We split this integral

into two and first evaluate the integral along Cρ. Doing this we have to determine

the jump of R+(x, y, λ) along the cut

R+(x, y, λ, μ(λ)) − R+(x, y, λ,−μ(λ))

= R+(x, y, λ, μ(λ)) − R−(x, y, λ, μ(λ)) (81)

=
1

i

(
|φ+(x, λ)〉â+〈ψ̂+(y, λ) − |φ−(x, λ)〉â−〈ψ̂−(y, λ)

)
.

The integration along the infinite semi-arcs can be done explicitly using the as-

ymptotic of χ+(x, λ) for large λ. Note that the asymptotic is different for the

upper and lower complex half-planes

χ+(x, λ) = ψ0(λ)(11 + z−1ξ+
1 (x) + · · · )e−iμ(λ)Jx

→
λ→∞

e−iλJx(11 + O(λ−1)), for λ ∈ C+

→
λ→∞

eiλJx(iS + O(λ−1)), for λ ∈ C−

(82)

where

S =

(
0 S1

S1 0

)
. (83)



18 Vladimir S. Gerdjikov and Nikolay A. Kostov

As a result the integration over C±,∞ can be performed explicitly with the result

1

2πi

∫
C+,∞∪C−,∞

λdλ

μ(λ)
R+(x, y, λ) = δ(x − y)J. (84)

It remains to equate the two answers for the integral IR(x, y) in order to get the

spectral decomposition for L in the form

δ(x − y)J

= − 1

2π

∫
Cρ

λdλ

μ(λ)

(
|φ+(x, λ)〉â+〈ψ̂+(y, λ) − |φ−(x, λ)〉â−〈ψ̂−(y, λ)

)
+

N∑
k=1

Res
λ=λk

λ

μ(λ)
R+(x, y, λ). (85)

We recall that the r×2r blocks |φ±(x, λ)〉 and |ψ±(x, λ)〉 are defined by equation

(50) while the r×2r blocks 〈φ±(x, λ)| and 〈ψ±(x, λ)| are introduced in equation

(51).

In deriving equation (85) we have assumed in addition that R±(x, y, λ) has no

singularities at the end points of the spectrum.

3. Wronskian Relations

Let the class of allowed potentials M be a slice of OJ determined by additional

constraints: i) any generic element F (x) = PJF (x) of M is matrix-valued func-

tion such that limx→±∞(Q(x)−Q±) = 0 and ii) the phase factor V = exp(iϕ0J)
which connect the asymptotic values of the potential Q+ = V †Q−V and ϕ0 is an

integral of motion. The derivative of the potential Qx(x, t) belongs to the class of

allowed potentials. The variation of the potential δQ(x, t) is an allowed potential

provided it satisfies the second additional condition. The mapping F : M → L be-

tween the class of allowed potentials M and the scattering data L of L is analyzed

by means of Wronskian relations [5, 6]. These relations allow us to formulate the

main result of this work, i.e., that the ISM is a generalized Fourier transform in

the case of C.I and D.III-type symmetric spaces. They also serve to introduce the

skew-scalar product[[
A(x), B(x)

]]
=

1

2

∫
dx 〈A(x) , [ J , B(x) ] 〉 (86)
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which is non-degenerate for A(x), B(x) ∈ M and provides it with symplectic

structure. We start with the identity

〈χ̂ (Q(x, t) − λJ) χ(x, λ) , E±α 〉 |∞x=−∞

= −i

∫ ∞

−∞

dx

〈
i

2
[ J , J Qx] , PJ χE±α χ̂(x, λ)

〉
(87)

where χ(x, λ) can be any fundamental solution of L. For convenience we choose

them to be the FAS introduced above. The l.h.side of (87) can be calculated

explicitly by using the asymptotics of FAS for x → ±∞. It would be expressed

by the matrix elements of the scattering matrix T (λ), i.e., by the scattering data

of L as follows[[
PJ χ+(x, λ)Eα χ̂+, J Qx

]]
= −μ(λ)

〈
T̂
−
JT− , Eα

〉
= 2μ(λ)b+

α[[
PJ χ+(x, λ)E−α χ̂+, J Qx

]]
= μ(λ)

〈
Ŝ

+
JS+ , E−α

〉
= 2μ(λ)d−

−α[[
PJ χ−(x, λ)Eα χ̂−, J Qx

]]
= μ(λ)

〈
Ŝ
−
JS− , Eα

〉
= 2μ(λ)d+

α[[
PJ χ−(x, λ)E−α χ̂−, J Qx

]]
= −μ(λ)

〈
T̂

+
JT+ , E−α

〉
= 2μ(λ)b−

−α

(88)

where α ∈ �+
1 .

The second set of Wronskian relations which we consider relate the variation of

the potential δQ to the corresponding variations of the scattering data δρ and δτ .

For this purpose we use the identity

〈χ̂ δχ(x, λ), E±α〉 |∞x=−∞ =
i

2

∫ ∞

−∞

dx 〈[J, JδQ] , PJ χ(x, λ)E±αχ̂〉 . (89)

If we assume that the variation of the phase factor δ V vanishes we arrive at[[
PJ χ+(x, λ)Eα χ̂+, J δQ

]]
= −i

〈
T̂
−
δT− , Eα

〉
= i(δρ+a+)α[[

PJ χ+(x, λ)E−α χ̂+, J δQ
]]

= i
〈

Ŝ
+
δS+ , E−α

〉
= i(δτ+c+)−α[[

PJ χ−(x, λ)Eα χ̂−, J δQ
]]

= i
〈

Ŝ
−
δS− , Eα

〉
= i(δτ−c−)α[[

PJ χ−(x, λ)E−α χ̂−, J δQ
]]

= −i
〈

T̂
+
δT+ , E−α

〉
= i(δρ−a−)−α

(90)

where α ∈ �+
1 .

These relations are basic for the analysis of the related NLEE and their Hamil-

tonian structures. The above identities also allow us to introduce the proper gen-

eralizations of the usual Fourier exponential functions. Let us introduce the set of
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“squared solutions”

Φ±
α (x, λ) = PJ χ±(x, λ)E±αχ̂±(x, λ), for α ∈ Δ+

1

Ψ±
α (x, λ) = PJ χ±(x, λ)E∓αχ̂±(x, λ), for α ∈ Δ+

1

Θ±
α (x, λ) = PJ χ±(x, λ)E±αχ̂±(x, λ), for α ∈ Δ+

0

Ξ±
α (x, λ) = PJ χ±(x, λ)E∓αχ̂±(x, λ), for α ∈ Δ+

0

Υ±
k (x, λ) = PJ χ±(x, λ)Hkχ̂

±(x, λ), for k = 1, . . . , r.

(91)

These are the “squared solutions” of the Lax operator L connected with simple

Lie algebra g. They are constructed by means of FAS χ±(x, λ) and the Cartan-

Weyl basis of the algebra and are analytic functions of λ on the corresponding

sheets of the spectral surface. The equations that Φ±
α an Ψ±

α satisfy are a direct

consequence of the fact that FAS and their inverse satisfy the Z-Sh system system

i
d Φ±

α

dx
+
[
Q(x) − λJ, Φ±

α (x, λ)
]

= 0, i
dΨ±

α

dx
+
[
Q(x) − λJ, Ψ±

α (x, λ)
]

= 0.

The “squared solutions” serve as building blocks of the Green function [8–10]

G
±(x, y, λ) = G±

1 (x, y, λ)θ(y − x) − G±
2 (x, y, λ)θ(x − y) (92)

which allows one to derive their completeness relation. Here

G±
1 (x, y, λ) =

∑
α∈�+

1

Φ±
α (x, λ) ⊗ Ψ±

α (y, λ) (93)

G±
2 (x, y, λ) =

∑
α∈�+

1

Ψ±
α (x, λ) ⊗ Φ±

α (y, λ) +
∑

α∈�+

0
∪�+

1

Ξ±
α (x, λ) ⊗ Θ±

α (y, λ)

(94)

+

r∑
k=1

Υ±
k (x, λ) ⊗ Υ±

k (y, λ)

and θ(x) is the usual step function.

4. Generalized Fourier Transforms and Higher MNLS

The main result in this section is that the sets {Φ±
α } and {Ψ±

α } form complete sets

of functions in M. The idea of the proof is simple. Apply the contour integra-

tion method along a proper contour (see Fig.1) to a conveniently chosen Green

function (92). From the Cauchy theorem we have

1

2πi

∮
C

λdλ

μ(λ)
G

+(x, y, λ) =
N∑

k=1

Res
λ=λ±

k

λ

μ(λ)
G

+(x, y, λ). (95)



Multi-component Nonlinear Schrödinger Equation on Symmetric Spaces . . . 21

Integrating along the contours we treat separately the contribution from the infinite

semi-arcs and the ones from the continuous spectrum Rm = C1 ∪ C2 which is

composed of the cuts C1 = (−∞,−m) and C2 = (m,∞). Special care must be

taken for the end points λ = ±m of the spectrum. Assuming that the end points of

the spectrum give no contribution we obtain the following completeness relation

δ(x − y)ΠJ

=
1

π

∑
α∈�+

1

∫
Rm

λdλ

μ(λ)

{
Φ+

α (x, λ) ⊗ Ψ+
α (y, λ) − Φ−

α (x, λ) ⊗ Ψ−
α (y, λ)

}

− 2i
∑

α∈�+

1

N∑
k=1

(
d

dλ

λ

μ(λ)
Φ+

α;k(x) ⊗ Ψ+
α;k(y)

)
|λ=λk

.

(96)

Here ΠJ =
∑

α∈�+

1

[Eα⊗E−α−E−α⊗Eα]. The assumption that we have made

is that λ+
j are simple poles of the “squared solutions” Φ+

α and Ψ+
α .

Using the completeness relation one can expand any generic element of the phase

space M over each of the complete sets of “squared solutions” Ψ±
α and Φ±

α . This

relation is utilized with the help of the following the trick

−1

2
tr 1 {([J, F (x)] ⊗ 11)ΠJ} =

1

2
tr 2 {ΠJ(11 ⊗ [J, F (x)])} = F (x) (97)

where tr 1 (and tr 2) mean taking the trace of the elements in the first (or in the

second) position of the tensor product.

The completeness relation (96) allows to establish one-to-one correspondence be-

tween the elements of M, such as Qx and Qt, and its expansion coefficients. It

is also directly related to the spectral decompositions of the generating (recur-

sion) operators Λ±. These operators are the ones whose eigenfunctions are the

“squared solutions” [8]. For an alternative method of constructing recursion oper-

ators see [17]. There the derivation starts by introducing the splitting of the object

e±α = χ±(x, λ)E±αχ̂±(x, λ) into block diagonal and block off-diagonal parts

e±α (x, λ) = e d,±
α (x, λ) + Φ±

α (x, λ), e d,±
α (x, λ) = (11 − PJ) e±α (x, λ) (98)

and making use of the equation

i
d e±α
dx

+
[
Q(x) − λ J, e±α (x, λ)

]
= 0. (99)

The last equation splits into

i
d e d,±

α

dx
+
[
Q(x), Φ±

α (x, λ)
]

= 0 (100)
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and

i
dΦ±

α

dx
+
[
Q(x), e d,±

α (x, λ)
]

= λ
[
J, Φ±

α (x, λ)
]
. (101)

Further, equation (100) can be integrated formally which gives

e d,±
α (x, λ) = Cd,±

α; ε (λ) + i

∫ x

ε∞

dy
[
Q(y), Φ±

α (y, λ)
]

(102)

Cd,±
α; ε (λ) = lim

x→ε∞
e d,±
α (x, λ), ε = ±1. (103)

Next insert (102) into (101) and act on both sides by ad −1
J . This gives us

(Λ± − λ)Φ±
α (x, λ) = i

[
Cd,±

α; ε (λ), ad−1
J Q(x)

]
(104)

where the generating operators Λ± are given by

Λ±Ξ(x) = ad−1
J

{
i
dΞ

dx
+ i

[
Q(x) ,

∫ x

±∞

dy [Q(y) , Ξ(y)]

]}
. (105)

Thus Ψ±
α (respectively Φ±

α ) will be eigenfunctions of Λ+ (respectively Λ−) if and

only if Cd,±
α; ε (λ) = 0. Evaluating the limit of (103) for all α we find

(Λ+ − λ) Ψ±
α (x, λ) = 0,

(
Λ+ − λ±

j

)
Ψ±

α,j(x) = 0

(Λ− − λ)Φ±
α (x, λ) = 0,

(
Λ− − λ±

j

)
Φ±

α,j(x) = 0
(106)

where α ∈ �+
1 . This result can be generalized for arbitrary f(Λ±)

(f(Λ+) − f(λ)) Ψ±
α (x, λ) = 0,

(
f(Λ+) − f(λ±

j )
)

Ψ±
α;j(x) = 0

(f(Λ−) − f(λ)) Φ±
α (x, λ) = 0,

(
f(Λ−) − f(λ±

j )
)

Φ±
α,j(x) = 0.

(107)

The class of higher MNLS on symmetric spaces of C.I and D.III-type and with

c.b.c. can be put down in terms of the derivative of the potential Qt with respect

to the evolution parameter and the dispersion law −2μ(λ)f(λ) [10,25] as follows

iad−1
J

∂

∂t
Q + f(Λ)ad−1

J Qx = 0. (108)

Substituting the objects in this formula with their expansions over the “squared

solutions” we obtain equations for the evolution of the scattering data. The ex-

pansion coefficients of ad −1
J Qt and ad−1

J Qx on the continuous spectrum turn out
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to be exactly the minimal set of scattering data. The evolution for the reflection

and transition coefficients is provided by

i
dρ±

dt
∓ f(λ)μ(λ)ρ±(t, λ) = 0, i

dτ±

dt
± f(λ)μ(λ)τ±(t, λ) = 0 (109)

for λ ∈ Rm.

The observation that the scattering data evolves trivially is visible from the equa-

tion depicting the evolution of the scattering matrix T (λ). This equation is a result

of the compatibility condition (8) and the fact that the two Jost solutions ψ and

φ are solutions of the second operator of the Lax pair in the Z-Sh system (9).

Acting with id/dt on T (λ) (31), we recover equation (35).

We end this Section by the principal series of local integrals of motion Ik which

is generated by:

ln det a±(λ) =
∞∑

k=1

λ−kIk. (110)

5. Discussions and Conclusions

Here we first briefly consider a more difficult problem: the spectral properties of

the Lax operator L with multiple thresholds. In order to deal with it we need to

evaluate the asymptotic behavior of the Jost solutions for x → ±∞. To this end

we need to calculate the eigenvalues and eigenvectors of Q± − λJ

(Q+ − λJ)ψ0(λ) = −ψ0(λ)J0(λ)

(Q− − λJ)φ0(λ) = −φ0(λ)J0(λ)
(111)

which have the form

ψ0(λ) = ϕ+
0 U0(λ), φ0(λ) = ϕ−

0 U0(λ), ϕ±
0 =

(
ϕ±

1
0

0 ϕ±
2

)
U0(λ) =

r∑
k=1

(
Ak(Ek,k + Ek̄,k̄) + Bk(Ek,k̄ + Ek̄,k)

)
(112)

Ak =

√
λ + jk

2jk
, Bk =

√
λ − jk

2jk
, k̄ = 2r + 1 − k

q±q†±ϕ±

1
= ϕ±

1
ρ2, q†±q±ϕ±

2
= ϕ±

2
ρ2

where ρ = diag (ρ1, . . . , ρr) is the set of threshold values. In what follows we

assume that they are ordered by ρ1 > ρ2 > · · · > ρr > 0. We shall see that these

eigenvalues determine the thresholds of continuous spectrum of L.
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The first difficulty in solving the problem is that the multiplicity of the continuous

spectrum varies, which reflects on the definition of the Jost solutions

ψ(x, λ) −→
x→∞

ψ0(λ)e−iJxP (λ), φ(x, λ) −→
x→−∞

φ0(λ)e−iJxP (λ)

μ(λ) =
r∑

k=1

μk(λ)Hk, P (λ) =
r∑

k=1

Pk(λ)(Ek,k + Ek̄,k̄)

μk(λ) =
√

λ2 − ρ2
k, Pk(λ) = θ(|Reλ| − ρk).

(113)

where k̄ = 2r + 1 − k.

We introduce X±(x, λ) = ψ−1
0 ψ(x, λ) exp(iJ0(λ)x) which satisfy the following

integral equations

X+(x, λ) = 11 + i

∫ x

∞

dy eiJ0(λ)(y−x)U+(x, λ)X+(y, λ)e−iJ0(λ)(y−x) (114)

X−(x, λ) = 11 + i

∫ x

−∞

dy eiJ0(λ)(y−x)U−(x, λ)X−(y, λ)e−iJ0(λ)(y−x) (115)

or in components

X+
kl(x, λ) = δkl + i

∫ x

∞

dy ei(μk(λ)−μk(λ))(y−x)
(
U+(x, λ)X+(y, λ)

)
kl

(116)

X−
kl(x, λ) = δkl + i

∫ x

=∞

dy ei(μk(λ)−μk(λ))(y−x)
(
U−(x, λ)X−(y, λ)

)
kl

. (117)

The second difficulty is that with each thresholds value ρk one relates a Rie-

mannian surface S(k), k = 1, . . . , r with two leafs defined by the sign of Im μk(λ),
thus we have a total of 2r leafs. Below we define R1 by

Im μ1(λ) > Im μ2(λ) > · · · > Im μr(λ) > 0 (118)

and R̄1 by

Im μ1(λ) < Im μ2(λ) < · · · < Im μr(λ) < 0. (119)

Now only the first column of ψ(x, λ) and the last column of φ(x, λ) (respectively

the last column of ψ(x, λ) and the first column of φ(x, λ)) have analyticity prop-

erties in λ on R1 (respectively on R̄1). Nevertheless using the methods proposed

in [24] we will be able to construct fundamental analytic solutions as follows

χ+(x, λ) = ψ(x, λ)T−D+(λ) = φ(x, λ)S+(λ)

χ−(x, λ) = ψ(x, λ)T+D−(λ) = φ(x, λ)S−(λ)
(120)
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and show that χ+(x, λ) (respectively χ−(x, λ)) is analytic1 in λ on the sheet

R1 (respectively R̄1). In (120) S+, T+ (respectively S−, T−) are the upper-

(respectively the lower-) triangular matrices, related to the scattering matrix T (λ)
by the Gauss factorization condition

T (λ) = T−D+(λ)S+(λ) = T+D−S+(λ). (121)

More detailed analysis, including the the proof of the above facts will be given

elsewhere.

The result of this work is that the interpretation of the ISM as a generalized Fourier

transformation holds true in the case of Lax operators with constant boundary

conditions on symmetric spaces connected with the Lie algebras Cr � sp(2r)
and Dr � so(2r). The completeness relation of the “squared solutions” of the

generalized Z-Sh system in the case when the Lax operator L becomes self-adjoint

is derived. The “squared solutions” turn out to be generalizations of the usual

Fourier exponential function and eigenfunctions of the recursion operators Λ±.

This result allows one to prove that the corresponding NLEE results in linear

evolution for the scattering data. The recursion operators [8,17] Λ± open the path

towards the construction of action-angle variables for the NLEE solvable with this

generalization of the Z-Sh system and from there the Hamiltonian formulation of

these equations and their hierarchies connected with Λ±. Similar constructions

can be developed also for systems with deep reductions, see [26].

The physical applications of the NLS equation both with vanishing and non-

vanishing boundary conditions is well known, the same holds true for the Man-

akov system as well as for the sp(4) MNLS with v.b.c., see [19]. It will be inter-

esting to find new physical applications also for the MNLS with c.b.c.
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Appendix

The above definition of g (23) satisfies the requirement that the Cartan subalgebra

h will be made up of diagonal matrices. The Cartan generators Hk, dual to ek, are

1More precisely, analytic functions in λ are not χ± and χ±, but χ± exp(iJx) and χ± exp(iJx)
respectively.
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given by

Hk = Ekk − Ek k (122)

The element J =
∑r

k=1 Hk, belongs to h and is dual to �a.

The root vectors in the typical representation are given by

Eei−ej
= Eij − (−1)i+jEj i, Eei+ej

= Ei j − ε0(−1)i+jEj i (123)

where 1 ≤ i < j ≤ r and ε0 = ±1. Since ε0 = 1 for g � so(2r) equation (123)

gives vanishing result for i = j which is compatible with the fact that 2ei are not

roots of so(2r); for g � sp(2r) ε0 = −1 and equation (123) by putting i = j
provides also an expression for E2ei

. However this expression is not normed with

respect to the Killing form 〈Eα, E−α〉 = 2 . The Weyl generators associated with

the root 2ei that we will use are given by [18]

E2ei
=

√
2Ei i. (124)
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