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Abstract. We use the mathematical structure of group algebras and H+-algebras

for describing certain problems concerning the quantum dynamics of systems of an-

gular momenta, including also the spin systems. The underlying groups are SU(2)
and its quotient SO(3, R). The proposed scheme is applied in two different contexts.

Firstly, the purely group-algebraic framework is applied to the system of angular

momenta of arbitrary origin, e.g., orbital and spin angular momenta of electrons and

nucleons, systems of quantized angular momenta of rotating extended objects like

molecules. Secondly, the other promising area of applications is Schrödinger quan-

tum mechanics of rigid body with its often rather unexpected and very interesting

features. Even within this Schrödinger framework the algebras of operators related

to group algebras are a very useful tool. We investigate some problems of composed

systems and the quasiclassical limit obtained as the asymptotics of “large” quantum

numbers, i.e., “quickly oscillating” wave functions on groups. They are related in

an interesting way to geometry of the coadjoint orbits of SU(2).

1. Introduction

Many physical systems have geometric background based on some groups or their

byproducts like homogeneous spaces, Lie algebras and co-algebras, co-adjoint or-

bits, etc. Those group structures are relevant both for classical and quantum the-

ories. They are basic tools for fundamental theoretical studies. They provide us

also with the very effective tool for practical calculations. According to some

views [16], such a purely group-theoretical background is characteristic for almost

all physical models, or at least for realistic and viable ones. Let us mention a

funny fact known to everybody from the process of learning or teaching quantum

mechanics. After the primary struggle with elementary introduction to quantum

theory, first of all to atomic and molecular physics, students are often convinced

that the properties of quantum angular momentum, e.g., its composition rules, so
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important in atomic spectroscopy and nuclear phenomena, are some mysterious

and obscure dynamical laws. And only later on, they are very surprised that there

is nothing but group theory there, namely, the theory of unitary irreducible repre-

sentations of the three-dimensional rotation group SO(3,R) or its covering group

SU(2) [14, 25, 27]. And the really dynamical model assumptions are placed else-

where. Below we concentrate on certain quantum and quasiclassical problems

based on some group-theoretic apriori, first of all on the theory of quantum angular

momenta and their systems, including systems of spins. There were various views

and various answers to the question: “What is quantum mechanics?” What is to

be used as its proper and most adequate mathematical language? Hilbert space,

rigged Hilbert space, operator algebra, wave mechanics, matrix mechanics, quan-

tum logics, orthomodular lattices, etc. [2, 9, 16]? We suppose there is no answer

to this question, in any case, there is none as yet. Below we follow some working

hypothesis, idea by Schroeck [16] that every really fundamental and viable model

in quantum, but also in classical, mechanics is always based on some apriori cho-

sen group and its representations, cf. also [3–6, 17–21, 23, 25, 26]. In flat-space

theories, i.e., ones without gravitation, they are Euclidean, pseudo-Euclidean and

affine groups (and other Lie groups, e.g., in gauge theories). When working in a

manifold, i.e., when gravitation is taken into account, everything is based on the

infinite-dimensional group of all diffeomorphisms. Incidentally, this group is also

fundamental in certain geometric models of nonlinear quantum mechanics [22]. In

our treatment the main mathematical tool is the theory of group algebras. And we

follow the idea of Tulczyjew [24] and Weyl [25] about group algebra as the inter-

esting, in a sense aprioric, model of quantum mechanics. We begin with a short

review of necessary mathematical preliminaries and prerequisites. This review is

less than being far from completeness and it cannot be anything more here. It is

just quoted to remind some elementary concepts and to fix notations. More details

and systematic exposition can be found in [1, 8, 10–12].

2. H
+ - algebras

Let us begin with the concept of H+-algebra as introduced by Ambrose [1]. This

is a special case of the Banach algebra with involution, but not necessarily with

the identity. Let us mention, incidentally, that any Banach algebra B without the

identity may be reinterpreted as a maximal ideal in the unital Banach algebraB×C

with the product rule

(x, λ) (y, μ) := (xy + λy + μx, λμ)
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and the norm

‖ (x, λ) ‖ := ‖x‖B + |λ|.

Then the element (0, 1) becomes the identity and x �→ (x, 0) is just the mentioned

injection of B into B × R, its image (B, 0) being a maximal ideal. Let us remind

that the involution, denoted by x �→ x+, is assumed to satisfy

x++ = x, (λx+ μy)+ = λx+ + μy+, (xy)+ = y+x+.

The bar-symbol above denotes the complex conjugation. We avoid to use the star-

symbol for it, because this would badly interfere with stars used in our paper in the

different context.

Often, but not necessarily, one assumes also

‖xx+‖ = ‖x‖2.

The algebra of bounded operators in a Hilbert space, with the usual definition of

the operator norm and with the Hermitian conjugation as an involution, is a typical

and very important example.

An H+-algebra is a consistent hybrid of two structures: a Banach algebra with

involution and a Hilbert space. The underlying linear space will be denoted by B

and the scalar product of elements x, y ∈ B will be denoted by (x, y) and it is

assumed to obey the usual Hilbert space axioms. Let us remind what is meant by

the compatibility of those structures.

• The Banach and Hilbert norms are identical

‖x‖2 = (x, x) .

• The involution, referred to as Hermitian conjugation, is compatible with the

Hermitian conjugation of linear operators acting in B. This means that for

any w ∈ B the Hermitian conjugation of the left regular translation Lw :
B → B is identical with the left regular translation Lw+ : B → B by the

involution of w, (Lw)+ = Lw+ , i.e.,

(wx, y) =
(
x,w+y

)
(1)

for any x, y ∈ B.

• The involution is a norm-preserving operation, i.e.,

‖x+‖ = ‖x‖

for any x ∈ B

x �= 0 ⇒ x+x �= 0.
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All these axioms imply in particular that the involution is an antiunitary operator

(
x+, y+

)
= (y, x) = (x, y).

Therefore, it is an isometry of B as a metric space

d
(
x+, y+

)
= ‖y+ − x+‖ = ‖y − x‖ = d (x, y) .

Of course, being antilinear, the involution cannot be unitary. Another important

consequence is that the analogue of (1) holds also for the right translations Rw

(xw, y) =
(
x, yw+

)
(2)

for any x, y ∈ B.

It is just (1) and (2) that enable one to use the same symbol for the involution in B

and Hermitian conjugation in L(B), the algebra of linear operators on B. There is

no danger of confusion.

One deals very often with some special situations, when the Hilbert structure of a

Banach algebra with involution is a byproduct of something more elementary, i.e.,

a linear functional T : B → C such that

T (xy) = T (yx), T
(
x+

)
= T (x), x �= 0 ⇒ T

(
x+x

)
> 0.

The scalar product is then defined as

(x, y) = T
(
x+y

)
. (3)

The most elementary example, which at the same time provides some, so-to-speak,

comparison pattern for all more general situations, is the associative algebra L(H)
of all linear operators acting on a finite-dimensional unitary space H . Scalar

product of vectors ϕ,ψ ∈ H will be denoted by 〈ϕ|ψ〉 while the involution in

B = L(H) is defined by the usual formula

〈xϕ|ψ〉 = 〈ϕ|x+ψ〉

for the Hermitian conjugation. Then T is just the trace operation, T (x) = Tr x,

and the scalar product (3) is given by the standard formula

(x, y) = Tr
(
x+y

)
. (4)

Let ei be some basic elements of H and ei be the corresponding dual elements of

the conjugate space H∗, thus

〈ei, ej〉 = ei (ej) = δi
j
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where the symbol 〈f, u〉, used as a popular abbreviation for f(u), denotes the

evaluation of the linear function f ∈ H∗ on the vector u ∈ H . The Gramm matrix

assigned to the basis (. . . , ei, . . .) has elements

Γij = 〈ei|ej〉

then for any vectors u = uiei, v = vjej we have

〈u|v〉 = Γ(u, v) = Γiju
ivj .

Warning: There are some subtle problems concerning the complex conjugation

of vectors or, more generally, tensors. The point is that there is no well-defined

complex conjugation as an operation acting within an abstract linear space over

C. There is a well-defined concept of the complex space V complex-conjugated

to V . Then the bar-operation acts from V to V , not from V to V . Such problem

does not appear in C
n or more generally when some distinguished basis is fixed.

The corresponding detailed description would take too much space and introduce

superfluous discussion, for details cf. [22]. Hence, any time when in this article

we write the complex conjugation symbol over vectors or tensors, we mean the

complex conjugation of their components as numbers.

The inverse matrix element will be denoted by Γij

ΓikΓkj = δi
j .

The scalar product of linear functions f = fie
i, g = gje

j ∈ H∗ is given by

〈f, g〉 = Γijfigj .

Apparently, this expression is correctly defined, i.e., independent on the choice of

basis in H . Usually one prefers the choice of orthonormal bases, when

Γij = 〈ei|ej〉 = Γ (ei, ej) = δij , Γij = δij .

Any basis (. . . , ei, . . .) in a linear space H gives rise to the corresponding adapted

basis
(
. . . , ej

i, . . .
)

in L(H), where

ej
i := ej ⊗ ei, i.e., ej

iek = δi
kej .

Therefore, the matrix elements of ej
i with respect to the basis (. . . , ei, . . .) are

given by (
ej

i
)a

b = δi
bδ

a
j .

It is easy to see that

ej
ier

s = δi
rej

s, Tr ej
i = δj

i. (5)
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Introducing the modified basic elements

eji := Γikej
k = ej

kΓki

we have

eikelj = Γkleij (6)

Tr (eij) = Γji = Γij (7)

e+ij = eji (8)

ei
j+ = ΓiaΓ

bjeb
a = Γ

jb
eb

aΓai (9)

where the contravariant upper-case Γ is reciprocal to the covariant lower-case one,

ΓacΓcb = δa
b, ΓacΓ

cb = δa
b.

It is clear that also the following holds

Γ
ac

Γcb = δa
b, Γac Γ

cb
= δa

b.

The basic scalar products of operators have the following form

(
ei

j , ea
b
)

= ΓiaΓ
bj = ΓiaΓ

jb
(10)

(eij , eab) = ΓiaΓbj = ΓiaΓjb. (11)

These are “orthogonality” relations for the operators ea
b, eab.

Some of the above formulas become remarkably simpler, if the basis (. . . , ei, . . .)
is orthonormal

Γij = δij , Γij = δij .

However, it is sometimes convenient to separate the “metrical” concepts from the

weaker “affine” ones as far as possible.

It is instructive and convenient for the analysis of quantum problems to mention

and make use of the Dirac notation inH , B = L(H). The basic vectors ei are then

denoted by |i〉 and the basic operators eij are then given by

eij = |i〉〈j|.

Certainly, the above notation is adapted just to the situation when we choose the

basis (. . . , ei, . . .) to be orthonormal. Perhaps the notation

Pij := |i〉〈j|
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is then more adequate than eij . The diagonal elements

Pi := Pii = |i〉〈i|

are then orthogonal projections onto C-one-dimensional subspaces with bases ei =
|i〉 and ∑

i

|i〉〈i| = Id H .

For a general basis we have the following completeness relation
∑

a,b

Γabeab =
∑

a,b

ΓabPab = Id H

or using the “summation convention”

Γabeab = Γ
ba
eab = Id H .

The corresponding non-metrical, “affine” completeness relation is given by
∑

a

eaa = eaa = Id H .

Let us notice that the operators ei
i (the underlining of indices means that no sum-

mation convention is used here!) are idempotents, cf. equation (5). When the basis

(. . . , ei, . . .) is not orthonormal, they are not Hermitian, however, they are such if

the basis is orthonormal, Γij = δij , see equation (9). Unlike this, the “diagonal”

elements eii (no summation convention!) are always Hermitian and in the case of

orthonormal basis in H they are also idempotents, cf. equations (6) and (8), so we

have then that

e+ii = eii, eiieii = eii

(no summation convention!). So in this case we obtain the orthonormal decompo-

sition of the identity operator

Id H =
∑

a

eaa = eaa

(the summation convention meant on the extreme right-hand side).

It is easy to see that for any fixed j, the linear span of elements eij , i.e., equivalently,

the linear span of elements ei
j = eikΓ

jk, forms a minimal left ideal L(H)eij =
L(H)ei

j in L(H), so L(H) is a direct sum of n = dimH such ideals. One can

easily show that such left ideals are generated by the operators ej
j , or equivalently,

by ejj (no summation convention!). Let us denote those left ideals by

Mj = L(H)ejj = L(H)ej
j .
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Let us stress that: Mj is the set of linear combinations of the form αiei
j = βieij ,

where α, β are arbitrary.

Similarly, we have the minimal right ideals

jM := ejjL(H) = ej
jL(H).

They are obtained as the sets of linear combinations of the form αiej
i = βieji,

where α, β are again arbitrary.

As mentioned, L(H) splits into the direct sum of ideals Mj or jM

L(H) = M1 ⊕ · · · ⊕Mn = 1M ⊕ · · · ⊕ nM.

This is the orthogonal splitting in the sense of (4), i.e., Mi is orthogonal to Mj if

i �= j, and the same is true for iM , jM .

Any finite-dimensional H+-algebra B is an H+-subalgebra of the above L(H)
with the induced structures. It may be uniquely decomposed into the direct sum of

minimal two-sided ideals M(α), α = 1, . . . , k, every one of them being isomor-

phic to some L(V ) with the structure of H+-algebra as described above. There-

fore, dimM(α) = n2
α and

k∑

α=1

n2
α = dimB.

Every M(α) is generated by some Hermitian idempotent e(α)

M(α) = Be(α)B

and the following holds

e(α)e(β) = 0 if α �= β, (e(α), e(β)) = 0 if α �= β

e(α)e(α) = e(α), e(α)+ = e(α).

The minimal two-sided ideals M(α), M(β) are orthogonal when α �= β.

In L(H) there are only two ideals M(α), the improper ones, namely, L(H) itself

and {0}. And, evidently, in L(H) the corresponding Hermitian idempotent is just

the identity element

e = Id H = eaa = Γabeab.

In a general finite-dimensionalH+-algebraB, we have that the minimal two-sided

ideals M(α), being isomorphic with L (nα,C) � C
n2

α , are direct sums of n(α)
left minimal ideals M(α)j , each one of dimension n(α). Of course, they are also

representable as direct sums of n(α) right minimal ideals jM(α), every of dimen-

sion n(α). The label j runs the range of naturals from 1 to n(α). And, on analogy
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to L(H), we choose some special bases e(α)i
j , e(α)ij in B, where, for a fixed

α, i, j run over the natural range from 1 to n(α) (to avoid the crowd of symbols

we simply write i, j instead of i(α), j(α) as we in principle should have done).

Those bases are assumed to have, for a fixed α, the properties analogous to that

described in equations (5)–(11). More precisely, it is so when B is not an abstract

H+-algebra but some H+-subalgebra of L(H). Otherwise some comments would

be necessary concerning the coefficients Γ(α)ij . In any case, to avoid discussion,

one can put them to be the Kronecker symbols.

Nevertheless, in a general H+-algebra there are situations when (10), (11) are

modified, e.g., that for any α there exists its own Γ(α). For instance, analytically

the coefficients Γ(α)rs are there proportional to δrs with coefficients depending

on α. This is not the case in (6), (7). One can show (cf. [1]) that in general the

canonical ε-basis may be chosen in such a way that

ε(α)ikε(α)jl = δkjε(α)il

(ε(α)ik, ε(α)jl) = 0 unless i = j and k = l

(ε(α)ik, ε(α)ik) = (ε(α)11, ε(α)11)

ε(α)+ij = ε(α)ji

ε(α) =
∑

i

ε(α)ii.

The diagonal elements ε(α)ii are irreducible Hermitian idempotents (any of them

is not a sum of two idempotents), and their sum equals the idempotent ε(α) gener-

ating the two-sided ideal M(α). For different α, β the corresponding ε-elements

are mutually orthogonal and annihilate each other under multiplication

(ε(α)ij , ε(β)rs) = 0 if α �= β

ε(α)ikε(β)rs = 0 if α �= β

(ε(α), ε(α)) = (ε(α)11, ε(α)11) dimM(α).

Unlike the minimal two-sided ideals M(α), the left and right ideals M(α)i and

iM(α) are not unique.

Similarly, the basic elements e(α)i
j or e(α)ij are not unique. However, their

“index-traces”

e(α) = e(α)i
i = Γ(α)ije(α)ij (12)

are unique and just coincide, as denoted, with the generating idempotents e(α).
The “diagonal” idempotents e(α)i

i or e(α)ii (no summation convention!) are not

unique, however, the “trace” (12) is so, and their sum is just the identity element
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of B ∑

α

e(α) = e.

The idempotent e(α) is referred to as the induced unit of M(α).

3. Infinite-dimensional Situation

Those roughly referred examples provide some “reference frame” for understand-

ing the general theory. Nevertheless, the general case, when the infinite dimension

of B is admitted, is much more complicated, and many finite-dimensional analo-

gies are misleading. Many importantH+-algebras are non-unital. Instead of direct

sums, some direct integrals of Hilbert spaces must be used. In the infinite dimen-

sion many structures taken from finite-dimensional operator algebras diffuse, one

must oscillate between various subsets like those of trace-class operator, Hilbert-

Schmidt operators, etc.

The simplest infinite-dimensional situations are group algebras on locally com-

pact topological groups. In particular, group algebras on compact subgroups are

relatively similar to the finite-dimensional case, e.g., all minimal ideals are finite-

dimensional.

Let G be a locally compact topological group. Although we are interested mainly

in finite-dimensional Lie groups, nevertheless, there is a hierarchy of structures

based on more general ideas and only later on, on the level of applications, assum-

ing more and more specialized concepts. Let μl, μr denote respectively the left-

and right-invariant Haar measures on G. They are unique up to constant normal-

ization factors, but in general they do not coincide. Nevertheless, the right-shifted

left-invariant measure is still left-invariant, i.e., roughly speaking

dμl(gh) = Δ(h)dμl(g)

where Δ(h) is a positive factor, and iterating those right transforms one can easily

show that

Δ(hk) = Δ(h)Δ(k) = Δ(kh).

So, Δ is a homomorphism of G into R
+ as a multiplicative group and μl, μr may

be different only when G does possess a nontrivial homomorphism into R
+. If

they are identical, we say that G is unimodular. Compact and Abelian Lie groups,

and so their direct and semidirect products, are unimodular. IfG is unimodular, the

measure elements dμl(g) = dμr(g) are denoted simply by dg. If G is unimodular,

then not only

μ(Ah) = μ(hA) = μ(A)
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but also μ
(
A−1

)
= μ(A) for any measurable subset A ⊂ G. From now on it will

be always assumed that G is unimodular, so we write symbolically

d(gh) = d(hg), d
(
g−1

)
= dg.

In the space L1(G) of integrable functions one defines the convolution operation

(A ∗B) (g) =

∫
A(h)B

(
h−1g

)
dh =

∫
A
(
gk−1

)
B(k)dk. (13)

It is defined on the total L1(G)×L1(G) and produces from elements of L1(G) the

elements of L1(G), so L1(G) is an algebra under the convolution,

L1(G) ∗ L1(G) ⊂ L1(G).

We see that the convolution ∗ turns L1(G) into L1(G), so that the axioms of asso-

ciative Banach C∗-algebra hold in L1(G), e.g.

||f ∗ g|| ≤ ||f || ||g||

where the L1(G)-norm is meant, and the involution is defined as

(
f+

)
(x) = f (x−1). (14)

The linear functional Tr is defined as the value at the group identity

Tr(f) := f(1) (15)

and the scalar product of functions on G is defined as

(ϕ,ψ) = Tr
(
ϕ+ ∗ ψ

)
=

∫
ϕ(x)ψ(x)dx.

It is positive, i.e.,

Tr
(
ϕ+ϕ

)
=

∫
ϕ(x)ϕ(x)dx > 0 if 0 �= ϕ ∈ L2(G).

These expressions lead us to the space L2(G) and algebraic structures there. All

these structures fit together so as to result in the structure ofH+-algebra in L2(G).
Such structures in L1(G), L2(G) are referred to as group algebras. Everything is

particularly simple when G is a discrete group. Then we have that

〈ϕ,ψ〉 =
∑

x∈G

ϕ(x)ψ(x).
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If G is compact, then we usually normalize the measure such that

μ(G) = 1.

In particular, if it is a finite, N -element group, we put
∫
f(x)dx =

1

N

∑

x∈G

f(x).

However, this normalization is not always used and not always is convenient.

If G is compact, then L2(G) splits uniquely into the direct sum of minimal two-

sided ideals M(α), where α runs over some discrete set of labels Ω

L2(G) = ⊕
α∈Ω

M(α).

These ideals are mutually orthogonal

M(α) ⊥M(β) if α �= β, (F,G) = 0 if F ∈M(α), G ∈M(β)

and then

M(α) ∗M(β) = {0} if α �= β, F ∗G = 0 if F ∈M(α), G ∈M(β).

They are generated by Hermitian idempotents ε(α), therefore

M(α) = ε(α) ∗ L2(G) = L2(G) ∗ ε(α)

and the following holds

(ε(α), ε(β)) = 0 if α �= β, ε(α) ∗ ε(β) = δαβε(β)n2(β)

(no summation convention in the last expression!).

The convolution with ε(α) acts as the orthogonal projection of L2(G) onto M(α).
In particular, it is a generated unit of M(α)

ε(α) ∗ F = F ∗ ε(α) = F

for any F ∈ M(α). If G is a finite group with N elements, then L1(G) = L2(G)
is a unital algebra under convolution. Its identity ε is proportional to the “delta”

function

Id (g) = Nδ(g), δ(x) := δxe = 1 if x = e, δ(x) = 0 if x �= e

where e ∈ G denotes the group identity. The δ-type convolution identity does exist

for any discrete group. It is just δ itself for finite groups.
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Apparently, δ is identical with the sum of idempotents ε(α)

δ =
∑

α∈Ω

ε(α). (16)

If G is a continuous group, this expression is a divergent series and there is no

identity in group algebra. It does exist in any (in general, non-minimal) two-sided

ideal obtained from (16) when the summation is extended over a finite subset of

Ω. The procedure of the formally introduced identity in a one-dimensionally ex-

tended group algebra would be rather artificial, nevertheless. If G is a Lie group,

it is much more natural to introduce the “identity” represented by the Dirac-delta

distribution. The more so, some derivatives of “delta” distribution represent some

very important physical quantities.

Let us stress that the minimal two-sided Hermitian idempotents ε(α) span the cen-

tre of group algebra. More precisely, they form a complete system in the subspace

of convolution-central functions. All such central functions are constant on the

classes of conjugate elements, i.e., on the orbits of inner automorphisms of G. If

we admit the unit element of group algebra as represented by the Dirac delta dis-

tribution, then formally this δ is given by the series (16). As a function series it is

divergent, however the limit does exist in the distribution sense. And, as a func-

tional on the appropriate function space, δ assigns to any function F : G → C its

value at the unit element e of G

〈δ, f〉 = f(e).

It is shown that the set of minimal two-sided ideals is identical with the set Ω
of unitary irreducible representations of G, pairwise non-equivalent ones. More

precisely, Ω is the set of equivalence classes of unitary irreducible representations.

Due to the compactness of G, all those representations are finite dimensional. Let

D(α) : G→ U(n(α)) ⊂ GL(n(α),C)

denote the α-th unitary irreducible representation, more precisely, some represen-

tant of the corresponding class. Clearly, n(α) is the dimension of the correspond-

ing representation space C
n(α). All these representation spaces are assumed to be

unitary in the sense of the standard scalar products

〈u, v〉 =

n(α)∑

a=1

uava = δabu
avb.

The minimal two-sided ideals M(α) are spanned by the matrix elements of the

representations α, D(α)ij . Moreover, one can show that after appropriate normal-

ization the functions D(α)ij form the canonical basis, more precisely, the canon-

ical complete system of the H+-algebra L2(G). This follows from the following
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properties of matrix elements, well-known from the representation theory

D(α)ij ∗D(α)kl =
1

n(α)
δjkD(α)il (17)

D(α)ij ∗D(β)rs = 0 if β �= α (18)

(D(α)ij , D(α)kl) =
1

n(α)
δikδjl (19)

(D(α)ij , D(β)rs) = 0 if β �= α. (20)

These equations are valid when the Haar measure on G is normed to unity

μ(G) =

∫

G

dμ = 1.

If other normalization is fixed, then on the right-hand sides of (17)–(20) the volume

of G, μ(G), appears as a factor.

Let χ(α) and ε(α) denote the character of D(α) and the corresponding trace of

ε(α) = n(α)D(α) respectively

χ(α) =
∑

i

D(α)ii, ε(α) =
∑

i

ε(α)ii = n(α)χ(α).

Then

χ(α) ∗ χ(α) =
1

n(α)
χ(α), χ(α) ∗ χ(β) = 0 if α �= β

(χ(α), χ(α)) = 1, (χ(α), χ(β)) = 0 if α �= β

and similarly

ε(α) ∗ ε(α) = ε(α), ε(α) ∗ ε(β) = 0 if α �= β (21)

(ε(α), ε(α)) = n2(α), (ε(α), ε(β)) = 0 if α �= β. (22)

The above properties tell us that the canonical basis is given by functions

ε(α)ij = n(α)D(α)ij . (23)

They really satisfy all above-quoted structural properties of canonical bases inH+-

algebras

ε(α)ij ∗ ε(α)kl = δjkε(α)il (24)

ε(α)ij ∗ ε(β)rs = 0 if β �= α (25)

(ε(α)ij , ε(α)kl) = δikδjln(α) (26)

(ε(α)ij , ε(β)rs) = 0 if β �= α (27)

ε(α)ij
+ = ε(α)ji (28)

Tr ε(α)ij = δij . (29)
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Let us stress that the above symbols “+” and “Tr” are used in the sense of equations

(14) and (15) and do not concern directly the operations performed on indices i, j.

However, they concern them indirectly. Namely, every function F ∈ L2(G) may

be expanded as a function series with respect to the above complete system

F =
∑

α∈Ω, n,m=1,...,n(α)

F (α)nmε(α)nm. (30)

Let us describe relationships in equations (24)–(29) in terms of the coefficients

used here. For binary operations we analogously expand the other function

G =
∑

α∈Ω, n,m=1,...,n(α)

G(α)nmε(α)nm. (31)

It follows from the above rules (24)–(29) that the convolution of F , G is repre-

sented by the system of matrices

(F (α)G(α))nm =
∑

k

F (α)nkG(α)km

i.e.,

F ∗G =
∑

α∈Ω, n,m=1,...,n(α)

(F (α)G(α))nmε(α)nm. (32)

Similarly, the Hermitian conjugate and the Tr-functional are represented by the

usual matrix Hermitian conjugation and trace

F+ =
∑

α∈Ω, n,m=1,...,n(α)

(F (α)+)nmε(α)nm

Tr F =
∑

α∈Ω

Tr F (α)

and in particular, for the scalar product we have that

(F,G) =
∑

α∈Ω

Tr
(
F (α)+G(α)

)
n(α). (33)

This is just the explanation of apparently strange definitions of those operations.

4. Algebraic Formulation of Quantum Mechanics

In a sense, the group algebra over G may be considered as an arena for some

type of the algebraic, operator-type formulation of quantum mechanics [24]. We
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are given the associative convolution product and all necessary equipment of H+-

algebra. So, we have everything that is necessary for the algebraic formulation of

quantum mechanics. Physical quantities are +-self-adjoint elements of the group

algebra, A+ = A. Density operators are self-adjoint elements, ρ = ρ+, satisfying

in addition the normalization condition

Tr ρ = 1 (34)

and the positive-definiteness condition
(
ρ,A+ ∗A

)
> 0

for any element A of the group algebra. Pure states are described by Hermitian

idempotents. Thus, in addition to the above conditions the following must hold

ρρ = ρ, ρ+ = ρ.

Expectation value of the physical quantity A = A+ on the state ρ is given by

〈A〉ρ = Tr (Aρ) =
(
A+, ρ

)
= (A, ρ).

If ρ0 is some pure state, then the probability that the measurement performed on

the general state ρ will detect the state ρ0 is given by

Tr (ρρ0) = (ρ, ρ0) .

Statistical interpretation may be also assigned to the non-normalized states ρ, i.e.,

those which do not fulfill (34). Then one can speak only about relative probabili-

ties. However, there are yet no wave functions and no superposition principle. It is

a good thing to have also some space of wave functions. The most natural candi-

dates are L2-spaces on the groupG and its homogeneous spaces. Before going any

further in this direction one should quote some comments concerning invariance

problems.

Everything above was based on the convolution product (13). It is evidently asso-

ciative

(F ∗G) ∗H = F ∗ (G ∗H).

It is so for any L1(G)-functions on any locally compact topological group G. The

group structure of G brings about the question concerning the G-invariance of the

convolution, in any case the question concerning the sense of such invariance. On

the group manifold of G the group G itself acts through three natural transforma-

tion groups: left translations, right translations and inner automorphisms. These

actions are given respectively as follows

x �→ Lg(x) := gx, x �→ Rg(x) := xg

x �→ Ag(x) := gxg−1, Ag = Lg ◦Rg−1 = Rg−1 ◦ Lg.
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With this convention g �→ Lg, g �→ Ag, g �→ Rg are respectively two realizations

and one anti-realization of the group G

Lg1g2
= Lg1

◦ Lg2
, Ag1g2

= Ag1
◦Ag2

, Rg1g2
= Rg2

◦Rg1
. (35)

Substituting g−1 instead of g we replace realizations by anti-realizations and con-

versely.

The above operations induce the pointwise actions on functions on G, namely

L[g]f := f ◦ Lg−1 , R[g]f := f ◦Rg−1 (36)

A[g]f := f ◦Ag−1 , A[g] = L[g]R
[
g−1

]
= R

[
g−1

]
L[g]. (37)

Via replacement of g by g−1, we obtain in this way two linear representations and

one anti-representation of G in function spaces on G itself

L[g1g2] = L[g1]L[g2], A[g1g2] = A[g1]A[g2], R[g1g2] = R[g2]R[g1].

All these transformations preserve the spaces L1(G), L2(G). They preserve also

the scalar products and the corresponding statistical statements concerning mea-

surements. However, the left and right regular translations L[g], R[g] do not pre-

serve the convolution. Unlike this, internal automorphisms do preserve this alge-

braic structure. Indeed

L[g](F ∗G) = (L[g]F ) ∗G �= (L[g]F ) ∗ (L[g]G) (38)

R[g](F ∗G) = F ∗ (R[g]G) �= (R[g]F ) ∗ (R[g]G) (39)

A[g](F ∗G) = (A[g]F ) ∗ (A[g]G). (40)

Physically the associative product has to do with spectra, eigenvalues and eigen-

states. This is just that part of physical statements for which the left and right

regular translations in G are not physical automorphisms in the H+-algebraic

formulation of quantum mechanics. Concerning the connection with spectra and

eigenproblems: in an algebraic formulation, including the H+-algebraic one, the

number λ does belong to the spectrum of the function F if the convolution inverse

of (F − λδ) does not exist, i.e., if there is no function H satisfying

H ∗ (F − λδ) = δ.

This is easily expressible in terms of the expansion (30), namely, λ ∈ Sp F if and

only if there exists α ∈ Ω such that

det
(
F (α) − λIdn(α)

)
= 0.
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All this is equivalent to the statement that there exists such a “density matrix”

ρ ∈ L2(G) for which the following “eigenequation” holds

A ∗ ρ = λρ.

When A+ = A, this is equivalent to the right-hand-side “eigenequation”

ρ ∗A = λρ.

These physically interpretable statements are based on the associative convolution

product, therefore, the left and right regular translations, which do not preserve

it, are not physical symmetries of the quantum-mechanical formulation based on

the group algebra of G. Some light is shed on such problems when convolutions

are interpreted as linear shells of regular translations. And at the same time some

natural link is established then with the concepts of wave functions, superpositions,

etc.

Let us follow one of finite-dimensional patterns outlined above. Namely, we be-

gin with the linear space H of wave functions on G, in principle the Hilbert space

L2 (G, dg), although in practical problems the Hilbert space language is often too

narrow, e.g., one must admit distributions or non-normalizable wave functions (in

the non-compact case). The following sets are relevant for quantum theory: the

Banach algebra B(H) of bounded linear operators on H and H+-algebraic struc-

tures in appropriate subspaces of B(H). Of course, in practical problems some

non-bounded operators, elements of L(H) are admissible and, when properly and

carefully treated, just desirable. The point is that some very important physical

quantities, e.g., momenta, angular momenta and so on, are represented by differ-

ential operators, of course, non-bounded ones.

However, let us begin with bounded operators describing G-symmetries, namely,

described by equations (36) and (37)

L[g], R[g], A[g] = L[g]R
[
g−1

]
= R

[
g−1

]
L[g].

These operators are unitary in L2 (G, dg) and, being unitary, they are bounded.

The linear shell of the family of operators {L[g] ; g ∈ G} is just the group algebra

of G. Namely, if we take two functions F,H ∈ L1(G) and the corresponding

linear operators

L{F} =

∫
F (g)L[g]dg, L{H} =

∫
H(g)L[g]dg (41)

then it may be easily shown that

L{H}L{F} = L{H ∗ F}. (42)
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Of course, (41) is a rather symbolic way of writing, i.e., this formula is meant in

the following sense

L{F}f =

∫
F (g)L[g]fdg = F ∗ f. (43)

Therefore, all operations performed on operators of the type L{F} are represented

by the corresponding, described above, operations on functions F as elements of

the Lie algebra over G. Let us stress that the operators of the form (41) are very

special, albeit important elements of L(H). Let us formally substitute for F in

(41) the “delta distribution” δh concentrated at h ∈ G, i.e., symbolically

δh(g) = δ
(
gh−1

)
= δ

(
hg−1

)
.

Then

L{δh} = L[h], δh ∗ f = L[h]f

i.e., the formal convolution with δh is the h-translation of f . In particular, δe = δ

is the convolution identity. Something similar may be done with the right transla-

tions. One obtains then another family of linear operators acting on wave functions.

Namely, let us take again the linear shell of right regular translations, in particular

the operators

R{F} =

∫
F (g)R[g]dg, R{H} =

∫
H(g)R[g]dg (44)

give, with the definition analogues to (43),

R{F}f = f ∗ F.

And again after simple calculations we obtain the following superposition rule

R{F}R{H} = R{H ∗ F}. (45)

Unlike the representation rule (42), this is anti-representation of the convolution

group algebra on G into the algebra of all operators acting on “wave functions” on

B, in particular, on L1(G), L2(G). To obtain the representation property also for

the R-objects, one should define them in the “transposed” way

RT {F} :=

∫
F T (g)R[g]dg =

∫
F
(
g−1

)
R[g]dg

=

∫
F (g)R

[
g−1

]
dg

F T (g) := F
(
g−1

)
.
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Then

RT {F}RT {H} = RT {F ∗H}.

The transformation rules (38), (39) and the representation rules (42), (45) tell us

that the convolution is not invariant under regular translations, i.e., convolution of

translates differs from the translate of convolution. Nevertheless, this is a very

peculiar non-invariance and something is invariant, in a sense. Namely, the left-

translated convolution is identical with the convolution in which the left factor

is left-translated and the right one is kept unchanged. And conversely, the right-

translated convolution is the convolution in which the right factor is right-translated

(but only this one).

Concerning translational non-invariance of the convolution, let us notice that F ∗H
may be symbolically expressed with the use of the Dirac distribution

(F ∗H) (g) =

∫
δ
(
x−1gy−1

)
F (x)H(y)dxdy

(46)

=

∫
δ
(
yg−1x

)
F (x)H(y)dxdy.

Let us write down a binary multilinear operation on functions on G in the integral

form, maybe symbolic one

(F ⊥ H) (g) =

∫
K(g;x, y)F (x)H(y)dxdy.

This operation is invariant under right or left translations, i.e., respectively the

following holds

(F ⊥ H) (gh) =

∫
K(g;x, y)F (xh)H(yh)dxdy (47)

(F ⊥ H) (hg) =

∫
K(g;x, y)F (hx)H(hy)dxdy (48)

when

K(g;x, y) = Kr

(
gx−1, gy−1

)
, K(g;x, y) = Kl

(
x−1g, y−1g

)

respectively for (47) and (48). Certainly,

K(g;x, y) = δ
(
x−1gy−1

)

does not satisfy any of conditions (47), (48). Moreover, if G is non-Abelian, those

two conditions are rather incompatible.
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Let us consider also the total linear shell of translation operators. Let us take a

function F : G×G→ C and construct the operator

Tt{F} :=

∫
F (g1, g2)L[g1]R

[
g−1
2

]
dg1dg2. (49)

One can show that multiplication of such operators results in convolution of func-

tions on the direct product G×G

Tt{F}Tt{H} = Tt{F ∗H} (50)

where

(F ∗H) (g1, g2) =

∫
F (h1, h2)H

(
h1

−1g1, h2
−1g2

)
dh1dh2. (51)

One could also proceed like in (44), namely, define

T{F} =

∫
F (g1, g2)L[g1]R[g2]dg1dg2. (52)

Then the convolution in the second argument is “transposed”. By that we mean the

operation

f ∗t g := g ∗ f

thus,

T{F}T{H} = T{F
(
∗t
)
H} (53)

where

(
F
(
∗t
)
H
)
(g1, g2) =

∫
F (h1, h2)H

(
h−1

1 g1, g2h
−1
2

)
dh1dh2. (54)

Evidently, the difference between the expressions (52), (53), (54) and respectively

(49), (50), (51) is of a rather cosmetical nature.

Operators of the convolution form (49), (52) are very special linear operations act-

ing on the wave functions Ψ : G → C. They are “smeared out” in G, essentially

non-local, if F is a “usual”, “good” function. To obtain very important opera-

tors of geometrically distinguished physical quantities or unitary operators of left

and right regular translations one must use distributions. Let us mention, e.g., the

obvious, trivial examples

L[h] = L{δh}, R[h] = R{δh}, L[h]R[k] = F{δ(h,k)} (55)

where, let us repeat

δh(g) = δ
(
gh−1

)
, δh,k (g1, g2) = δ

(
g1h

−1, g2k
−1
)

= δh(g1)δk(g2). (56)
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A more detailed analysis, including the description of important physical quan-

tities, may be performed only when one deals with Lie groups and makes use of

their differential and analytical structure. Here we stress only the fact that when the

algebraic scheme of group algebras is used, then the regular translations fail to be

automorphisms of the theory. Physical automorphisms are given by the operators

A[g] = L[g]R
[
g−1

]
= R

[
g−1

]
L[g].

Therefore, the minimal two-sided ideals M(α) must be further decomposed into

direct sums of minimal subspaces invariant under inner automorphisms. This leads

to operator algebras invariant under unitary similarity transformations acting in the

space L2(G) of wave functions.

Let us stress that the Hilbert space operations in L2(G) as the space of wave func-

tions are compatible with the H+-algebra operations in the sense that

L{F}+ = L
{
F+

}
, R{F}+ = R

{
F+

}
, T{F}+ = T

{
F+

}

where the involutions on the right-hand sides of these equations are meant in the

sense of (14), i.e.,

F+(g) = F (g−1), F+ (g1, g2) = F
(
g−1
1 , g−1

2

)
.

In particular, the mentioned operators are Hermitian if and only if the correspond-

ing functions are involution-invariant.

Similarly, the operators of convolution are unitary

L {F}+ L {F} = Id L2(G)

R {F}+R {F} = Id L2(G)

T {H}+ T {H} = Id L2(G×G)

if and only if

F+ ∗ F = δG, H+ ∗H = δG×G.

Definitely, all translation operators in (36), (37), (55) and (56) are unitary inL2(G).
This follows from the invariance of the Haar measure. They preserve the scalar

product of wave functions onG, and automatically they preserve the scalar product

in the H+-algebra L2(G). It is interesting to stress again how they are represented

in the algebra L(L2(G)) of all operators in L2(G), and first of all, in the algebra of

bounded operators B(L2(G)). Of course, any invertible operator F in L2(G) acts

in L(L2(G)), B(L2(G)) through the similarity transformations

A→ FAF−1.
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This concerns in particular unitary operators, like regular translations. It is inter-

esting to see how they act in the linear shell of translations, i.e., in the algebras of

convolution-type operators. One can easily show that

L[g]L{F}L[g]−1 = L{A[g]F}

R[g]L{F}R[g]−1 = L{F}

L[g]R{F}L[g]−1 = R{F}

R[g]R{F}R[g]−1 = R{A[g−1]F}

or, better to express

R[g−1]R{F}R[g−1]−1 = R{A[g]F}.

Therefore,

L[g1]R[g2]T{F} (L[g1]R[g2])
−1 = T

{
F ◦

(
A[g1] ×A[g2

−1]
)}

or equivalently

L[g1]R[g2]Tt{F} (L[g1]R[g2])
−1 = Tt {F ◦ (A[g1] ×A[g2])} .

The Cartesian product of mappings A : X → U , B : Y → V , denoted by

A×B : X × Y → U × V , is meant in the usual sense, i.e.,

(A×B) (x, y) = (A(x), B(y)) .

The message of these formulas is that regular translations acting on wave functions

on G are represented in the group algebras over G or G × G by inner automor-

phisms. Because of this, classification of states and physical quantities in group

algebras overG andG×G is based on the analysis of minimal subspaces invariant

under inner automorphisms. One point must be stressed: the operators of the form

T{F} are not the most general operators acting in L2(G). The position opera-

tors, more precisely, the operators of pointwise multiplication of wave functions

by functions on G do not belong to this class. Nevertheless, if G is non-Abelian,

then some (not all!) position-like quantities are implicitly present in T{f}-type

operators.

The main peculiarity of convolution-type operators and their singular special cases

like the regular translations and automorphisms specified in (36), (37), (41), (44),

(49) and (51) is that they preserve separately all subspaces/ideals M(α).

It is not the case with the position-like operators because they mix various sub-

spaces (ideals) with each others. The points is interesting in itself, because it has to

do with the relationship between two algebraic structures in function spaces over
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G. One of them is just the structure of the associative algebra under convolution in

L1(G). It is non-commutative unless G is Abelian and has no literally meant unity

unless G is discrete. The other one is the structure of commutative associative

algebra under the pointwise multiplication of functions. Clearly, this is the unital

algebra with the unity given by the constant function taking the value 1 all over

G. In general there are some subtle points concerning the underlying sets of alge-

bras and their mutual relationships. The convolution algebra is defined in L1(G),
whereas the pointwise multiplicative algebra is defined in the set of all globally

defined functions on G. No comments are necessary, and the both underlying sets

coincide, only when G is finite.

The pointwise products of matrix elements of representations D(α), D(�) are ex-

panded with respect to the orthogonal systems of functions D(κ)kl according to

the rule

D(α)abD(�)rs =
∑

κ,k,l

(α�ar|κk) (α�bs|κl)D(κ)kl

where (α�ar|κk) and so on are Clebsch-Gordan coefficients for the group G

[14, 25, 27]. Summation over κ is extended over an appropriate range depend-

ing on (α, �), and for the fixed κ, the range of k, l is given by the set of naturals

1, . . . , n(κ). To be more precise, k, l run over some n(κ)-element set. In the

theory of angular momentum, when G = SU(2), it is convenient to use the con-

vention: κ = 2j + 1, where j runs over the set of non-negative integers and

half-integers, and k, l run over the range −j,−j + 1, ..., j − 1, j, jumping by one.

The expression (23) implies that

ε(α)abε(�)rs =
∑

κ,k,l

n(α)n(�)

n(κ)
(α�ar|κk) (α�bs|κl) ε(κ)kl.

The coefficients at ε(κ)kl are structure constants of the commutative algebra of

pointwise multiplication with respect to the canonical basis/complete system. They

are bilinear in Clebsch-Gordon coefficients. The latter ones are meant in the usual

sense of the procedure

i) Take two irreducible representations of G, D(α), D(�) acting respectively

in C
n(α), C

n(�)

(D(α)(g)u(α))a =
∑

b

D(α)(g)abu(α)b

(D(α)(g)u(�))r =
∑

s

D(α)(g)rsu(�)s.



Quasiclassical and Quantum Systems of Angular Momentum. Part I. 85

ii) Take the tensor product of those representations

D(α) ⊗D(�) : G×G→ L(Cn(α) ⊗ C
n(�)) � L(Cn(α)n(�))

given by

[[D(α)(g1) ⊗D(�)(g2)] t(α, �)]ar =
∑

bs

D(α)(g1)abD(�)(g2)rst(α, �)bs.

This representation is irreducible, if, as assumed,D(α),D(�) are irreducible.

iii) Take the direct product of D(α), D(�), i.e., restrict D(α) ⊗D(�) to the di-

agonal {(g, g) ; g ∈ G} ⊂ G×G. One obtains some representation D(α)×
D(�) of G in C

n(α) ⊗ C
n(β) � C

n(α)n(β).

In general, this representation is reducible and equivalent to the direct sum

of some irreducible representations,

⊕
κ∈Ω(α,�)

D(κ)

the direct sum performed over some subset of labels, Ω(α, �) ⊂ Ω. Evi-

dently, this representation acts in the Cartesian product

×
κ∈Ω(α,�)

C
n(κ). (57)

Let U denote an equivalence isomorphism of C
n(α) ⊗ C

n(�) onto the repre-

sentation space (57). Then, by definition, the Clebsch-Gordon coefficients

are given by

U (u (α)a ⊗ v (�)r) =
∑

κ,k

(α�ar|κk)w (κ)k (58)

where u (α)a, v (�)r,w (κ)k denote basis vectors of the representation spaces

for D (α), D (�), D (κ). When the natural bases in C
n(α), C

n(�), C
n(κ) are

used, then u (α)a, v (�)r, w (κ)k may be reinterpreted as components of the

representation vectors u (α), v (�), w (κ). And then we simply write instead

of (58) the following formulas

u(α)av(�)r =
∑

κ,k

(α�ar|κk)w(κ)k.

These are just the implicit definitions of the Clebsch-Gordon coefficients.



86 J. Sławianowski, V. Kovalchuk, A. Martens, B. Gołubowska and E. Rożko

There are two special cases when all minimal ideals M(α) are finite-dimensional,

i.e., all irreducible unitary representations D(α) are finite-dimensional. These are

when the topological group G is compact or Abelian. Of course, those are non-

disjoint situations. In the Abelian case all M(α) are one-dimensional and one is

dealing with Pontryagin duality [13, 15]. The set Ω of irreducible unitary repre-

sentations has the natural structure of a locally compact Abelian group too, the

so-called character group, denoted traditionally by Ĝ. The group operation in Ĝ

is meant as the pointwise multiplication of functions on G. In other words, the

elements of Ĝ are continuous homomorphisms of G into the group

U(1) = {z ∈ C ; |z| = 1}

the multiplicative group of complex numbers of modulus one. If G is compact and

Abelian, then Ĝ is discrete, and the Peter-Weyl series expansion (30), (31) becomes

a generalized Fourier series. If G is non-compact, one obtains generalized Fourier

transforms and direct integrals of family of one-dimensional spaces.

According to the well-known Pontryagin theorem, the dual of Ĝ, e.g., the second

dual
̂̂
G of G, is canonically isomorphic with G itself [13, 15]. This resembles the

relationship between duals of finite-dimensional linear spaces, (V ∗)∗ � V .

The Fourier transform Ψ̂ : Ĝ→ C of Ψ : G→ C is defined as follows

Ψ̂(χ) =

∫
〈χ|g〉Ψ(g)dg =

∫
〈χ|g〉−1 Ψ(g)dg (59)

where dg again denotes the integration element of the Haar measure on G and

〈χ|g〉 is the evaluation of χ ∈ Ĝ on g ∈ G. Equivalently, in virtue of Poincare

duality, this is the evaluation of g ∈ G �
̂̂
G on χ ∈ Ĝ. The inverse formula of (59)

reads

Ψ(g) =

∫
〈χ|g〉 Ψ̂(χ)dχ (60)

where dχ denotes the element of Haar integration on Ĝ. The formulas (59), (60)

fix the synchronization between normalizations of measures dg, dχ. In principle,

these formulas are meant in the sense of L1-spaces over G, Ĝ, nevertheless, some

more or less symbolic expressions are also admitted for other functions, as short-

hands for longer systems of formulas. First of all, this concerns δ-distributions, just

like in general situation of locally compact G. Of course, the correct definition of

distributions and operations on them must be based on differential concepts, nev-

ertheless, the Dirac distribution itself (but not its derivatives) may be introduced in

principle on the basis of purely topological concepts, just like in the general case.

Let us notice that

Ψ(g) =

∫
dχ

∫
dhΨ(h)

〈
χ|hg−1

〉
.
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The order of integration here is essential! But, of course, one cannot resist the

temptation to change “illegally” this order and write symbolically

Ψ(g) =

∫
dh δ

(
hg−1

)
Ψ(h), δ(x) =

∫
dχ 〈χ|x〉 . (61)

If G is discrete, then Ĝ is compact (and conversely) and the second integral is well

defined, namely

δ(x) = δxe

{
1, if x = e

0, if x �= e

where e is the natural element (identity) ofG. Then the first integral is literally true

as a summation with the use of Kronecker delta. But when obeying some rules, we

may safely use the formulas (61) also in the general case, when they are formally

meaningless. So, we shall always write

δ(g) =

∫
〈χ|g〉 dχ = δ

(
g−1

)

δ(χ) =

∫
〈χ|g〉dg =

∫
〈χ|g〉dg = δ

(
χ−1

)

∫
δ(g)f(g)dg = f (e(G))

∫
δ(χ)k(χ)dχ = k

(
e(Ĝ)

)

and e(G), e(Ĝ) denote the units in G, Ĝ, respectively.

Convolution is defined by the usual formula (13), but the peculiarity of Abelian

groups G is that convolution is a commutative operation

F ∗G = G ∗ F.

Of course, Fourier transforms of convolution are pointwise products of Fourier

transforms, and conversely

(F ∗G)∧ = F̂ Ĝ.

This is the obvious special case of (32): F̂ (χ), Ĝ(χ) are 1 × 1 matrices F (α),
G(α).

It is clear that just like in the general case, δ-distribution is the convolution identity

F ∗ δ = δ ∗ F = F.

And now, we may be a bit more precise. Namely, let U ⊂ Ĝ be some compact

measurable subset of Ĝ, and let L {U} denote the linear subspace of functions
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(60) such that the Fourier transform Ψ̂ vanishes outside U and is L1-class. Take

the function δ{U} given by

δ{U}(g) :=

∫

U

〈χ|g〉dχ.

It is clear that δ{U} is a convolution identity of the subspace L{U}. And now take

an increasing sequence of subsets Vi ⊂ Ĝ such that

Vi ⊃ Vj for i > j
⋃

i

Vi = Ĝ.

It is clear that for any function F ⊂ L1(G) we have

lim
i→∞

δ {Vi} ∗ F = F (62)

although the limit of the sequence δ{Vi} does not exist in the usual sense of func-

tion sequences. However, it does exist in an appropriately defined functional sense.

So, by abuse of language, we simply write

δ = lim
i→∞

δ{Vi}, δ ∗ F = F

as a shorthand for the rigorous (62).

Calculating formally the convolution of χ1, χ2 ∈ Ĝ, we obtain

〈χ1 ∗ χ2|g〉 = δ
(
χ1χ2

−1
)
〈χ2|g〉 = δ

(
χ1χ2

−1
)
〈χ1|g〉

i.e., briefly

χ1 ∗ χ2 = δ
(
χ1χ2

−1
)
χ2 = δ

(
χ1χ2

−1
)
χ1. (63)

If G is compact, i.e., Ĝ is discrete, this is the usual condition for irreducible idem-

potents (21), (22). Similarity, we have the orthogonality/normalization condition

(χ1, χ2) = δ
(
χ1χ2

−1
)

=

{
1, if χ1 = χ2

0, if χ1 �= χ2.
(64)

If G is not compact, i.e., Ĝ is not discrete, then both normalization and idempo-

tence rules (63), (64) are meant symbolically, just like the corresponding rules for

Dirac distributions in R
n

δa ∗ δb = δ(a− b)δa = δ(a− b)δb (65)

(δa, δb) = δ(a− b). (66)



Quasiclassical and Quantum Systems of Angular Momentum. Part I. 89

Surely, δa(x) := δ (x− a). Incidentally, (65), (66) is just the special case of (63),

(64) when G = R
n and the addition of vectors is meant as a group operation.

The peculiarity of locally compact Abelian groups is that they offer some analogies

to geometry of the classical phase spaces and some natural generalization of the

Weyl-Wigner-Moyal formalism. Certain counterparts do exist also in non-Abelian

groups, especially compact ones. However, they are radically different from the

structures based on Abelian groups. And in the non-compact case the analogy

rather diffuses.

Finally, let us remind that just like in the classical Fourier analysis, the Pontryagin

Fourier transform is an isometry of L2(G) onto L2
(
Ĝ
)

∫
A(g)B(g)dg =

∫
Â(χ)B(χ)dχ

in particular, the Plancherel theorem holds
∫

|A(g)|2 dg =

∫ ∣∣∣Â(χ)
∣∣∣
2
dχ.

Compare with the formula (33) for compact topological groups and the correspond-

ing expression for the norm ‖F‖

‖F‖2 =
∑

α∈Ω

Tr
(
F (α)+ F (α)

)
n (α) .

5. Conclusions

Let us finish this part with some comments concerning physical interpretation.

It is impossible to answer definitely the question

What is the most fundamental mathematical structure
underlying quantum mechanics?

There are approaches based on quantum logics, the usual Hilbert space formula-

tions, operator algebras, etc. According to certain views [16], all non-artificial and

viable models, both in quantum and classical mechanics, assume some groups as

fundamental underlying structures. The framework of group algebra may appear

in two different, nevertheless, somehow interrelated, ways.

1. The first scheme is one in the spirit of algebraic approaches. Namely, when

some topological group G is assumed, one can simply state: “quantum me-

chanics based on G is the group algebra of G”. In any case it works on
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compact groups and locally compact Abelian ones. Group algebras are par-

ticular H+-algebras. The important operations of quantum mechanics are

based on structures intrinsically built into them. Hermitian elements repre-

sent physical quantities, Hermitian and positive ones are quantum states in

the sense of density operators, idempotent ones among them represent pure

states. This is common to allH+-algebras. The peculiarity of group algebras

is that besides the convolution operation there exist also another composition

rule, namely, the pointwise product of functions, associative one as well, and

commutative (convolution is non-commutative ifG is non-Abelian). The re-

lationship between them is given by the Clebsch-Gordan coefficients. This

structure is also physically interpretable, namely, it describes the proper-

ties of composed system, e.g., composition of angular momenta. Pointwise

multiplication of functions representing quantum states describes the direct

product of density operators of subsystems [24, 25].

However, one important structure of quantum mechanics is missing here,

namely, the superposition principle. The point is that wave functions do

not fit this framework directly. Nevertheless, in a sense they are implicitly

present. Namely, group algebra, as any associative algebra, acts on itself

through the left or right regular translations

x→ a ∗ x, x→ x ∗ a. (67)

To be more precise, it is so in any H+-algebra. In this way, the elements

of group algebra become operators. By convention, we can choose the left

regular translations. Group algebra becomes represented by algebra of lin-

ear operators. However, this representation is badly reducible. Namely, it

is not only so that any ideal, in particular, any minimal ideal M(α), is in-

variant under left (and right too) regular translations (67). But within any

minimal two-side ideal M(α) spanned by all ε(α)mn functions, separately

any minimal left ideal M(α, n) is also closed under all translations, and this

representation is irreducible. The minimal left ideal M(α, n) is spanned by

all functions ε(α)mn, where n is fixed. Symmetrically, any minimal right

ideal M(n, α), spanned by all functions ε(α)nm with a fixed n, is a repre-

sentation space of some irreducible representation of H+ algebra. Roughly

speaking, M(α, n), M(n, α) are respectively columns and rows of the ma-

trices [ε(α)ab]. And the elements of M(α, n) are “wave functions”, “state

vectors” of the “α-th type”. Subspaces

M(α, n1), M(α, n2), n1 �= n2
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are merely different representatives, just equivalent descriptions of physi-

cally the same situation. By convention we may simply fix n = 1. And then

the linear shell of all subspaces M(α, 1) is the space of “state vectors”.

2. Another scheme is one in which G is meant as the classical configuration

space (take, e.g., SO(3,R) or SU(2) as the configuration space of rigid

body). Then all functions onG are interpreted as wave functions, and ε(α)mk,

ε(α)ml for k �= l are different wave functions, different physical situa-

tions. One can easily construct Hamiltonians which predict “quantum tran-

sitions” between those subspaces. But also within such Schrödinger wave-

mechanical framework, group-algebraic structures are physically relevant.

Namely, the most important, geometrically distinguished operators are uni-

taries (36), (37) representing transformation groups motivated by G. They

describe some physically significant unitary representations of G. And then

the linear shells (41), (44), (49) and so on of these representations appear

in a natural way. Roughly speaking, those linear shells are physically in-

terpretable representations of the abstract group algebra over G. And they

in a sense “parametrize” the algebra of operators acting on wave functions.

If the function F in (41), (44), (49) is of the L1(G)- or L1 (G×G)-class,

then the resulting operators are bounded. But it is just certain unbounded

operators that are physically interesting. They describe important physical

quantities. We obtain them from the group-algebraic scheme, formally ad-

mitting in (41), (44), (49) distributions instead of functions F . In differential

theory, when G is a Lie group, some derivatives of Dirac delta are then used.

But even some important bounded operators, e.g., the identity operator and

G-translations, are expressed in terms of distributions, namely, Dirac deltas,

as formally included into group algebra. Differential concepts are not used

then.

Hence, physically relevant and operationally interpretable quantities are to

be sought first of all among elements of the group algebras (41), (44), (49),

formally extended by admitting distributions.
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