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Abstract. We present a generalized formulation of Poisson dynamics suitable
to describe the n-bodies interactions. Examples are given of physical systems
endowed with such a general structure.

1. Introduction

The Nambu dynamics is an example of n-Poisson structure which is a special n-

Lie algebra. The latter was introduced for the fist time by Filippov [4] in 1985

who gave first examples, developed first structural concepts, like simplicity, in

this context and classified n-Lie algebras of dimensions n + 1 which is parallel to

the Bianchi classification of three-dimensional Lie algebras.

Filippov defines an n-Lie algebra structure to be an n-ary multi-linear and anti-

symmetric operation

[v1, . . . , vn−1]

which satisfies the n-ary Jacobi identity:

[v1, . . . , vn−1, [u1, . . . , un]]

=
n∑

i=1

[u1, . . . , ui−1, [v1, . . . , vn−1, ui, ] , ui+1, . . . , un] . (1)

Such an operation, realized on the smooth function algebra of a manifold and

additionally assumed to be an n-derivation, is an n-Poisson structure.

This general concept, however, was not introduced by Filippov. A first proposal

goes back to Albeggiani [13] who introduced, in a different context, the Poisson
bracket of the n-th order by the formula

{H1, H2, . . . , Hn} =

ν∑
i=1

∂ (H1, H2, . . . , Hn)

∂ (x1i, x2i, . . . , xni)
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where H1, H2, . . . , Hn (the “Hamiltonians”) are functions of nν variables xji

(j = 1, 2, . . . , n; i = 1, 2, . . . , ν).

However, the above bracket does not satisfy generally Jacobi identity.

The case ν = 1 was considered much later (in 1994) by L. Takhtajan [10] in order

to formalize mathematically the n-ary generalization of Hamiltonian mechanics

proposed by Nambu [9] in 1973. The n-bracket operation considered by Nambu

was

{f1, . . . , fn} = det

∥∥∥∥ ∂fi

∂xj

∥∥∥∥ . (2)

But Nambu himself as well as his followers do not mention that n-bracket (2)

satisfies the n-Jacobi identity (1). On the other hand, Filippov reports (2) in his

paper among other examples of n-Lie algebras.

In what follows, n-Lie algebra structures on smooth function algebras of smooth

manifolds which are given by means of multi-differential operators will be called

local n-Lie algebras. A theorem by Kirillov shows that these multi-differential

operators are of first order.

A local n-Lie algebra structure on a manifold is said to be an n-Jacobi structure.

In the case when the structure multi-differential operator is a multi-derivation one

gets an n-Poisson structure. Thus, n-Poisson manifolds form a subclass of n-

Jacobi ones.

A full local description of n-Jacobi and, in particular, of n-Poisson manifolds

can be found in [8]. This is an n-ary analogue of the Darboux lemma. In what

concerns n-Poisson manifolds the same result was obtained by Alexeevsky and

Guha [1] (see also [5]).

An important consequence of the n-Darboux lemma is that the Cartesian product

of two n-Jacobi, or two n-Poisson manifolds does not produce manifold of the

same type if n > 2.

It is not our goal to fully describe the local structure of local n-Lie algebras, but

we will try to be systematic in what concerns the relevant basic formulae and

constructions. Moreover, possible applications to integrable systems and related

problems of dynamics will be illustrated on some examples of current interest.

More precisely, the content of the talk is as follows.

Section 2 is devoted to a short review of Hamiltonian, Symplectic and Poisson

dynamics as a natural introduction to Nambu dynamics. Section 3 is devoted

to general Jacobi-Poisson dynamics and their properties. There using concrete

examples some simple applications of n-ary structures to dynamics will be given.
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First, we use the hyper-integrable type dynamics to show how the constants of

motion can be put in relation with multi-Poisson structures. Second, alternative

Poisson realizations of a spinning particle dynamics Γ are given by using ternary

structures preserved by Γ.

2. Poisson Dynamics and Nambu Dynamics

Let us now consider a generic dynamics described by the equation

duh

dt
= Λhk(u)

∂H
∂uk

(3)

where Λhk(u) and H are given function of coordinates u.

The evolution of a generic functions f , defined on the phase space Φ, will be given

by

df

dt
=

∂f

∂uh

duh

dt
=

∂f

∂uh
Λhk ∂H

∂uk
= (∇f, Λ∇H).

In order to have a Jacobi-Poisson theorem for this type of dynamics, we must

require:

• skew-symmetry

(∇f,Λ∇g) = −(∇g, Λ∇g)

• Jacobi identity

(∇(∇f, Λ∇g), Λ∇h)+(∇(∇g, Λ∇h), Λ∇f)+(∇(∇h, Λ∇f), Λ∇g) = 0.

In this case the bracket (∇f, Λ∇g) will be called the Poisson bracket of f and g

and will be denoted with {f, g}Λ, or simply, if no ambiguity arises, with {f, g}. In

terms of the matrix Λ, the previous requirements are expressed by the following:

• skew-symmetry: Λ = −ΛT

• Jacobi identity: Λij ∂Λhk

∂uj
+ Λhj ∂Λki

∂uj
+ Λkj ∂Λih

∂uj
= 0.

We shall call Hamiltonian a dynamical system with n degrees of freedom, and

then with a 2n dimensional phase space, if it is described by the equation

df

dt
= {f,H}Λ
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where the bracket satisfies the properties

{f, g}Λ = −{g, f}Λ

{{f, g}Λ , h}Λ + {{g, h}Λ , f}Λ + {{h, f}Λ , g}Λ = 0

{f, c}Λ = 0, for all c ∈ R

{f, gh}Λ = {f, g}Λh + g{f, h}Λ

and, moreover

detΛ �= 0.

Because of the above condition, coordinates exist (Darboux theorem) such that

Λ =

(
0 −I
I 0

)
(4)

where 0 and I denote the n × n nul and identity matrices.

In this case one speaks of symplectic dynamics, since the symplectic structure

ω = Λ−1

is invariant under the flow of canonical vector field Xf defined by

Xfg ≡ {f, g} , for all g ∈ F (M)

and, in particular under the Hamiltonian flow generated by the Hamiltonian vector

field

XH =
∂H
∂uk

Λkh ∂

∂uh
·

2.1. Poisson Dynamics

Let us finally observe that in the previous definition no role is played by the even

dimensionality of the phase space. Thus, it is natural to define more general dy-

namics according to the following definition.

A dynamics, described by the equations

df

dt
= {f,H}P

with the bracket satisfying the properties

{f, g}P = −{g, f}P

{{f, g}P , h}
P

+ {{g, h}P , f}
P

+ {{h, f}P , g}
P

= 0

{f, gh}P = {f, g}P h + g{f, h}P

{f, c}P = 0, for all c ∈ R
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is called a Poisson dynamics.

Of course, a Hamiltonian dynamics is a symplectic dynamics and then also a

Poisson dynamics.

We notice that

• properties expressed by first two relations, namely

{f, g} = −{g, f} (5)

{{f, g} , h} + {{g, h} , f} + {{h, f} , g} = 0 (6)

endow the set F of differentiable functions defined on Φ with a Lie algebra

structure.

• properties expressed by last two relations, namely

{f, gh} = {f, g}h + g{f, h} (7)

{f, c} = 0, for all c ∈ R (8)

gives to the bracket a natural compatibility with the usual associative prod-

uct of functions.

Since it can be written in the following equivalent alternative forms:

X{f,g}h = [Xf , Xg]h (9)

Xf{g, h} = {Xfg, h} + {g, Xfh} (10)

the Jacobi identity is equivalent to the following alternative statements suggested

by (9) and (10) respectively:

• The map

f �→ Xf = {f, ·}
{f, g} �→ X{f,g}

is a Lie algebra morphism

(F , { · , ·}) �→ (XF , [· , · ])
between (F , { · , ·}) and the set of Hamiltonian vector fields XF endowed

with the Lie Bracket given by the commutator [· , · ].
• The operator Xf = {f, ·} is a derivation of the Poisson bracket.
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We observe that properties expressed by equations (5), (6) and (8) are purely al-

gebraic in nature, so that the following abstract algebraic formulation can be in-

troduced.

Let M be a Poisson manifold and F the ring of functions defined on it. This

means that on M a bracket {·, ·} is defined such that:

1. it yields the structure of a Lie algebra on F , i.e.,

{f, g} = −{g, f}
{f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0

2. it has a natural compatibility with the usual associative product of functions,

which is

{h, c} = 0, for all c ∈ R

{h, fg} = {h, f}g + f{h, g}.

Therefore, we can define an abstract Poisson algebra as an associative commuta-

tive algebra endowed with a Lie bracket satisfying (5), (6)) and (8).

It is natural to generalize the notion of a Poisson manifold by relaxing condition

(2) and requiring only that {f, g} be just a local type operation

support {f, g} ⊆ (support f) ∩ (support g).

The bracket {f, g} is then called a Jacobi bracket and the corresponding manifold

a Jacobi manifold.

2.2. Nambu Dynamics

The possibility of further generalizations of Poisson dynamics rely on the possi-

bility to generalize the Poisson bracket.

Let us consider a dynamical system described by the equations

df

dt
= {f,H1,H2}

where the ternary bracket in the right hand side is supposed to be skew-symmetric.

This dynamics will be called a ternary Poisson dynamics if the ternary bracket

allows for a Poisson theorem on first integrals. In such a case the ternary bracket



Nambu Dynamics, n-Lie Algebras and Integrability 83

will be called ternary Poisson bracket. We are thus looking for a property of the

ternary bracket such that

{fh, H1, H2} = 0, h = 1, 2, 3 ⇒ {{f1, f2, f3} , H1, H2} = 0. (11)

For this purpose it is useful to recall the form of Jacobi identity, for binary bracket,

given in equation (10)

Xf{g, h} = {Xf g, h} + {g, Xf h }.
This form can be immediately generalized to skew-symmetric brackets with an

arbitrary number of entries.

Indeed, given the ternary bracket {f, g, h}, we require that the operator (vector

field) Xfg, defined by

Xfgh := {f, g, h}
is a derivation of the bracket, that is

Xfg {h1, h2, h3}={Xfgh1, h2, h3}+{h1, Xfgh2, h3}+{h1, h2, Xfgh3}. (12)

The above formula can be explicitly written as follows:

{f, g, {h1, h2, h3}} = {{f, g, h1} , h2, h3} + {h1, {f, g, h2} , h3}
+ {h1, h2, {f, g, h3}}

which should be difficult to invent without a deep understanding of the signifi-

cance of the usual Jacobi identity.

An interesting example given by Nambu is the following:

d�r

dt
= ∇H ∧∇G

or
dx

dt
=

∂(H, G)

∂(y, z)
,

dy

dt
=

∂(H, G)

∂(z, x)
,

dz

dt
=

∂(H, G)

∂(x, y)
·

Since

Div �X = ∇ · (∇H ∧∇G) = 0

we obtain from
d

dt

∫
V

ρ dμ =

∫
V

(
dρ

dt
+ ρ Div �X

)
that

V =

∫
V

dμ = const.
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A specific particular case is given by the Euler rotator for which

H = L2 =
1

2

(
L2

x + L2
y + L2

z

)
, G = H =

1

2

(
L2

x

I2
x

+
L2

y

I2
y

+
L2

z

I2
z

)
.

It is not difficult to prove that equation (11) is equivalent to equation (12). We

will not go on further on this subject. Much more details can be found in [8]

and references therein, where examples of n-ary Poisson dynamics are explicitly

given and the following important property, here reported just for the case n = 3,

is proven:

If {f, g, h} is ternary Poisson bracket, the binary bracket {f, g}h = {f, g, h},
obtained by fixing one of the functions, is a binary Jacobi-Poisson bracket. Fur-
thermore, a linear combination of two of them c1{f, g}h1

+ c2{f, g}h2
is again a

binary Jacobi-Poisson bracket.

3. n-Jacobi-Poisson Dynamics

An n-ary Jacobi-Poisson dynamics is a dynamics for which the evolution of any

observable is described by the differential equation

df

dt
= {f, H1, H2, . . . , Hn−1}

where the bracket {·, · · · , ·} satisfies the properties:

{f, g, h} = −{f, h, g} = −{g, f, h}

{f1, . . . , fn−1, {g1, . . . , gn}} =
n∑

i=1

{g1, . . . , gi−1, {f1, . . . , fn−1, gi, },

gi+1, . . . , gn}
{f1, . . . , fn−1, h1h2} = {f1, . . . , fn−1, h1}h2 + h1{f1, . . . , fn−1, h2}

{f1, . . . , fn−1, c} = 0, for all c ∈ R.

In other words the Hamiltonian vector field Xf1,f2,...,fn−1
, associated with the

n − 1 functions f1, f2, . . . , fn−1, via

Xf1,f2,...,fn−1
g = {f1, . . . , fn−1, g}

is a derivation both of the bracket and the product of functions.



Nambu Dynamics, n-Lie Algebras and Integrability 85

3.1. Hereditary Structure of the n-Lie Bracket

The Hamiltonian vector field Xf1,f2,...,fn−1
will also be called sometimes a Nambu

vector field or a Nambu dynamics.

Few physically relevant properties are:

• The flow of a Nambu dynamics preserves the Nambu bracket.

• Hamiltonian functions H1, H2, . . . , Hn−1 are first integrals and the Nambu

bracket of n first integrals is again a first integral (Jacobi-Poisson Theorem).

We find the important consequence that a dynamical vector field which is Nambu
for a k-ary bracket must posses at least k − 1 first integrals.

This observation and the hereditary structure of the n-Lie bracket

{f1, . . . , fn} n-Poisson

⇒ {f1, . . . , fn−1}|F = {f1, . . . , fn−1, F} (n − 1)-Poisson

{f1, . . . , fn} n-Poisson

⇒ {f1, . . . , fn−1}|F + {f1, . . . , fn−1}|G (n − 1)-Poisson

explain why completely integrable systems are likely to be found among Nambu

dynamics.

3.2. Hyperintegrable Dynamics

Occasionally, a dynamical vector field Γ admitting 2n−1 constants of the motion

on a 2n dimensional manifold M , is called hyper-integrable or degenerate.

In these cases

iΓΩ = df1 ∧ df2 ∧ · · · ∧ df2n−1

with f1, f2, . . . , f2n−1 first integrals for Γ.

Here it is possible to define a Nambu bracket by setting:

{h1, h2, . . . , h2n}|F Ω = F (f1, f2, . . . , f2n−1)dh1 ∧ dh2 ∧ · · · ∧ dh2n. (13)

In other words, denoting with LΓ the Lie derivative with respect to vector field

Γ, with f1, f2, . . . , f2n−1 first integrals for Γ and f2n ∈ C∞(M) is such that

Γ(f2n) = 1, then the 2n-Poisson bracket

{h1, h2, . . . , h2n} = det

∥∥∥∥∂hi

∂fj

∥∥∥∥ , i, j = 1, . . . , 2n (14)
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is preserved by Γ which becomes Hamiltonian with respect to (14) with the Hamil-

tonian function (f1, f2, . . . , f2n−1).

Of course the corresponding 2n-Poisson vector is

Λ =
∂

∂f1
∧ ∂

∂f2
∧ · · · ∧ ∂

∂f2n
·

More generally 2n-Poisson bracket

{h1, h2, . . . , h2n}|F = Fdet

∥∥∥∥∂hi

∂fj

∥∥∥∥ , i, j = 1, . . . , 2n

is preserved by Γ iff F is a first integral, i.e., F = F (f1, f2, . . . , f2n−1).

By changing F we find all possible 2n-ary bracket for the given vector field Γ.

3.3. Additional Examples

3.3.1. The Spinning Particle

Given a dynamics, i.e., a vector field Γ on a manifold M , it could be interesting

to realize it as a Hamiltonian field with respect to a Poisson structure [3]. Below

it will be shown how multi-Poisson structures can be used in this connection.

We shall ignore the spatial degrees of freedom of the particle and study only the

spin variables. Let us consider the spin variables S = (S1, S2, S3) as elements in

R3. The equations for these variables when the particle interacts with an external

magnetic field B = (B1, B2, B3) are given by

dSi

dt
= μεijkSjBk (15)

where μ denotes the magnetic moment.

This dynamics has two first integrals, namely, S
2 = S2

1 + S2
2 + S2

3 and S.B =
S1B1 + S2B2 + S3B3 and, in addition, is canonical for the ternary bracket asso-

ciated with the three-vector field

∂

∂S1
∧ ∂

∂S2
∧ ∂

∂S3
·

The most general ternary bracket preserved by dynamics (15), is associated with

the three-vector field

f
∂

∂S1
∧ ∂

∂S2
∧ ∂

∂S3
(16)
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where f is a first integral of it.

All Poisson structures obtained by fixing a function F = F (S2,S.B), are pre-

served by the dynamics and are mutually compatible. The corresponding Poisson

bracket is

{Sj , Sk}f
F = fεjkl

∂F

∂Sl

·

Now we show how the ternary Poisson structure (16) allows for the alternative

ordinary Poisson brackets described in [3]

Standard description
f =

1

2
, F = S2.

For this choice the algebra generated by the Poisson brackets on linear func-

tions is the su(2) Lie algebra. The Hamiltonian function for the dynamics

is the standard one H = −μS.B.

Non-standard description

Now we take

f =
1

2
, F = S2

1 + S2
2 +

1

2λ

[
cosh 2λ

sinhλ
S3 − 1

λ

]

with Hamiltonian H = −μλS3. Here for simplicity we have taken the

magnetic field along the third axis. The parameter λ is a deformation para-

meter and the standard description is recovered for λ �→ 0. The hereditary

Poisson brackets are:

{S2, S3}f
F = S1, {S1, S3}f

F = S2, {S1, S2}f
F =

1

2

sinh 2λ

sinh λ
S3.

These brackets are a classical realization of the quantum commutation rela-

tions for generators of the Uq(sl(2)) Hopf algebra.

We also notice that this Poisson Bracket is compatible with the previous one

as they are hereditary from the same ternary structure (16).

Another non-standard description

There is another choice for f and F which is known to correspond to the

classical limit of the Uq(sl(2)) Hopf algebra.

It is

f =
λ

4
S3, F = S2

1 + S2
2 + S2

3 + S−2
3 .
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It leads to the following brackets:

{S2, S3}f
F =

λ

2
S1S3, {S1, S3}f

F = λS2S3, {S1, S2}f
F =

λ

2
[S2

3 − S−2
3 ].

3.4. The n-Darboux Theorem

For the construction of Nambu descriptions for a given dynamical field it turns

out to be very useful the already cited result by Alekseevsky and Guha [1].

It provides, similarly to the role of Darboux theorem for the local normal form of

symplectic structures, a local normal form, namely:

For any Nambu n-bracket, with n ≥ 2, it is possible to find, in a neighborhood of

a point x where Λ(x) �= 0, a local coordinate system such that

Λ =
∂

∂x1
∧ · · · ∧ ∂

∂xn
· (17)

This result turns out to be very useful for the construction of Nambu descriptions

for a given dynamical field.

Further interesting results on n-Lie algebra structures and their applications can

be found in [2].

Conclusions

The main structure regarding n-Poisson structures has been there reported. It tells

that the structure n-vector of an n-Poisson structure is of rank n (decomposable) if

n > 2. This leads directly to the n-Darboux lemma: given an n-Poisson structure,

n > 2, on a manifold M there exists a local chart x1, . . . , xm, m = dimM ≥
n, on M such that the corresponding n-Poisson bracket is given by (2). Two

consequences of this result are worth mentioning. First, the n-bracket defined

naturally on the dual of an n-Lie algebra V is not generally an n-Poisson structure

if n > 2. This is in sharp contrast with usual (i.e., n = 2) Lie algebras. However,

it can be proven that it is still so for n-dimensional and (n+1)-dimensional n-Lie

algebras.

The n-Darboux lemma for general n-Jacobi manifolds with n > 2 is also reported.

The proof can be found in [8]. The key idea in doing that is to split a first order

multi-differential operator into two parts similarly to the canonical representation

of a scalar first order differential operator as the sum of a derivation and a function.
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The multi-generalization of the concept of local Lie algebra studied in this paper is

not, in fact, unique and there are other natural alternatives (see [6,7,12]). All these

generalizations are mutually interrelated and open very promising perspectives for

particle and field dynamics.
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