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GEOMETRY OF THE SHILOV BOUNDARY OF A BOUNDED
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Abstract. In the first part, the theory of bounded symmetric domains is presented

along two main approaches: as special cases of Riemannian symmetric spaces of

the noncompact type on one hand, as unit balls in positive Hermitian Jordan triple

systems on the other hand. In the second part, an invariant for triples in the Shilov

boundary of such a domain is constructed. It generalizes an invariant constructed

by E. Cartan for the unit sphere in C
2 and also the triple Maslov index on the

Lagrangian manifold.
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1. Introduction

The present paper is an outgrowth of the cycle of conferences delivred by the au-

thor at the Tenth International Conference on Geometry, Integrability and Quan-

tization, held in Varna in June 2008. The first part (sections 2-5) is a survey of

the theory of bounded symmetric domains. Since their introduction by E. Car-

tan, bounded symmetric domains have been intensively studied. There are two

main trends to present them. The usual approach first studies Hermitian symmet-
ric spaces as special cases of Riemannian symmetric spaces, namely those which

admit a compatible complex structure. For the noncompact type, the theory cul-

minates with the Harish Chandra embedding theorem, which realizes the space

as a bounded symmetric domain in P+, where P+ is the holomorphic tangent

space at some (any) point of the space. The bounded domain thus obtained in P+

is circled and can be characterized by a norm condition (see Theorem 11) .

The second approach starts with a bounded circled symmetric domain D in some

complex vector space V and shows that the Lie algebra of vector fields generated

by the group of holomorphic diffeomorphisms ofD has a very specific realization,

which induces on V a rich algebraic structure (positive Hermitian Jordan triple
system, PHJTS for short). Conversely, for each positive Hermitian Jordan triple

system V, it is possible to develop a spectral theory for the elements of V and

in particular to define a certain complex Banach norm on V called the spectral
norm. The unit ball for the spectral norm can be shown to be a bounded symmetric

domain. The Bergman metric (which exists for any bounded domain) realizes the

bounded symmetric domain as a Hermitian symmetric space of the noncompact

type. This approach shows a one to one correspondance between PHJTS and

bounded symmetric domains, which in a sense, shows that the concept of PHJTS
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is exactly fitted for the study of bounded symmetric domains.

The characterization of the Shilov boundary of a bounded symmetric domain

is specially nice in the approach through PHJTS, as the elements of the Shilov

boundary can be characterized by an algebraic property (they are the maximal
tripotents).

There is an important difference inside bounded symmetric domains: some of

them are said to be of tube-type, the others being not of tube-type. The Cayley
transform (a generalization of the classical Cayley transform mapping the open

unit disc in C into the upper half-plane Imz > 0) transforms a domain of tube

type in a Siegel domains of type I, which is a generalized half-space over a convex

cone, whereas a non tube type domain is transformed into a Siegel domain of type

II. Tube-type domains correspond to a special class of PHJTS, namely those which

are obtained from a Euclidean Jordan algebra by the process of Hermitification
(a variant of the complexification). The interplay between the two notions (tube

type vs non-tube type, PHJTS vs Euclidean Jordan algebra) is an important tool

in studying fine properties of bounded symmetric domains.

The second part (sections 6-8) is a presentation of some of the results obtained

during the last years by the author, partially in collaboration with B. Ørsted, K-H.

Neeb and K. Koufany (see 4–11). The main theme is to diffeomorphisms group

G of a bounded symmetric domain D on triplets in the Shilov boundary S of D.

An invariant is constructed for this action. This invariant coincides with known

invariants in specific cases. The classical triple Maslov index, a Z-valued invariant

(for the symplectic group) on triples of Lagrangians is the most famous. For tube

type domains, this triple invariant is the main ingredient in the classification of

orbits of G into S × S × S.

To help the reader, an example (the unit ball in the space of complex rectangular

matrices) is followed through the paper (see Sections 2.5, 3.4 and 4.6), and most

of the concepts that are introduced in a general setting are explicitely determined

for this example. Somme other examples appear occasionally.

The paper contains no proof (except for a few proofs that are sketched) but I tried

to give appropriate references. In preparing these notes, I used three main sources:

the classical treatise by S. Helgason [17] and specially chapter VIII, the book by

Satake [30] which combines the classical approach and the use of Jordan triple

system, and the notes by O. Loos [25], where Jordan triple systems are the main

tool for studying bounded symmetric domains. The books [17] and [30] contain

many references to the literature on the subject.



28 Jean-Louis Clerc

2. Hermitian Symmetric Spaces

2.1. Riemannian Symmetric Spaces

The basic reference for this section is Helgason’s book [17]. For a different point

of view, see [24].

Definition 1. A connected Riemannian manifold (M, g) is a Riemannian sym-

metric space if, for each point m ∈ M , there exists an involutive isometry sm of
(M, g) such that m is an isolated fixed point of sm.

The differential Dsm(m) of sm at m is an involution of the tangent space TmM ,

and, because m is an isolated fixed point, 1 can not be an eigenvalue of Dsm(m).
Hence Dsm(m) = −id TmM , so that sm has to coincide with the geodesic sym-

metry around m (a priori only locally defined, and not necessarily locally isomet-

ric). If there is an isometry sm satisfying the requirements of the definition, then

it is unique and called the geodesic symmetry centered at m.

For a general Riemannian manifold M , the group Is(M) of isometries of (M, g)
with the compact-open topology has a unique compatible structure of Lie group

(Myers-Steenrod theorem, see [28]). When M is a Riemannian symmetric space,

composition of symmetries centered at various points of M produces enough

isometries of M to prove that the group Is(M) is transitive on M . A refine-

ment says that the same statement is true for the neutral component of Is(M). We

will denote by G the neutral component of Is(M).

Fix an origin o in M . Let K be the isotropy subgroup of o in G. Then K is a

closed compact subgroup of G, and M is isomorphic to the quotient space G/K.

Let g = Lie (G) be the Lie algebra of G, and k the Lie algebra of K viewed as a

Lie subalgebra of g. The tangent space ToM of M at o can be identified with g/k.

The map

θ : G −→ G, g �−→ so ◦ g ◦ so

is an involutive automorphism of G. Let Gθ = {g ∈ G ; θ(g) = g} be the fixed

points set of θ. Then Gθ is a compact subgroup of G, and

(Gθ)0 ⊂ K ⊂ Gθ.

The differential of θ at the identity is an involutive automorphism of the Lie alge-

bra g, still denoted by θ. There is a corresponding decomposition

g = k⊕ p
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where

k = {X ∈ g ; θX = X}, p = {X ∈ g ; θX = −X}.

Moreover,

[k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k.

The projection from g to p along k yields an isomorphism of g/k with p, and hence

a natural identification ToM � p. Moreover, the map

K −→ Hom(ToM), k �−→ Dk(o)

defines an action of K on ToM , whereas K acts on p by the adjoint action. The

isomorphism ToM � p is equivariant with respect to these actions of K.

The vector space p is naturally equipped with a Lie triple product (LTS) defined

by

[X, Y, Z] = [[X, Y ], Z]. (1)

Proposition 2. The Lie triple product on p satisfies the following identities

[X, Y, Z] = −[Y, X, Z]

[X, Y, Z] + [Y, Z, X] + [Z, X, Y ] = 0

[U, V [X, Y, Z]] = [[U, V, X], Y, Z] + [X, [U, V, Y ], Z] + [X, Y, [U, V, Z]]

for all X, Y, Z, U, V in p.

This Lie triple product has a nice geometric interpretation, namely

Ro(X, Y )Z = −[[X, Y ], Z] = −[X, Y, Z] (2)

where Ro is the curvature tensor of M at o (see [17] p. 215).

The Ricci curvature (also called the Ricci form) is the symmetric bilinear form on

ToM given by

ro(X, Y ) = −Tr(Z �−→ Ro(X, Z)Y ). (3)

Proposition 3. The Ricci curvature at o is invariant under the action of K on
ToM and satisfies, for all X, Y in p

ro(X, Y ) = −
1

2
B(X, Y ) (4)

where B(X, Y ) = Trg(adXadY ) is the Killing form of the Lie algebra g .
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See [30], p. 75 for a proof.

A Riemannian symmetric space M � G/K is said to be of Euclidean type if

[p, p] = 0. The space M is said to be irreducible if it is not Euclidean and the

representation of K on the tangent space ToM � p is irreducible (admits no

K-invariant subspace except {0} and p).

If M is irreducible, then there exists a unique (up to a positive real number) K-

invariant inner product on p, and hence the Ricci form ro has to be proportional

to it.

Definition 4. An irreducible Riemannian symmetric space is said to be

• of the compact type – if ro is positive definite

• of the noncompact type – if ro is negative definite.

The definition does not depend of the choice of the origin, as the group G is

transitive on M .

Any simply connected Riemannian symmetric space M is a product of a Euclid-

ean space and of irreducible symmetric spaces (see [17], Chapter V, Proposition

4.2 and Chapter VIII, Proposition 5.5). If all factors are of the compact (respec-

tively noncompact) type, then M is said to be of the compact (respectively non-

compact) type.

If M is of compact type, then G is a compact semisimple Lie group. If M is of

the noncompact type, then G is a semisimple Lie group (with no compact factors)

and θ is a Cartan involution of G (see [17], Chapter V).

For a Riemannian symmetric space of the noncompact type, the infinitesimal data

characterize the space. More precisely, given a semisimple Lie algebra g with no

compact factors, let G be any connected Lie group with Lie algebra Lie (G) = g

and assume that G has a finite center (there always exists such a group). Let θ be a

Cartan involution of g (notice that two Cartan involutions of g are conjugate under

the adjoint action of G). Let g = k⊕p be the corresponding Cartan decomposition

of g. The Killing form B of g is negative definite on k and positive definite on p.

The involution θ can be lifted to an involutive automorphism of G, still denoted

by θ. Then K = Gθ is a connected compact Lie subgroup of G. Let M =
G/K, and set o = eK. The tangent space at o is naturally isomorphic to p and

B|p×p is a K-invariant inner product on p. Hence M can be equipped with a

structure of Riemannian manifold, on which G acts by isometries. The space M
is a Riemannian symmetric space of the noncompact type. Up to isomorphism,

M does not depend on the choice of G, but only on g (see [17], Chapter VI).
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2.2. Hermitian Symmetric Spaces

The main reference for this section is [17], Chapter VIII). Other relevant sources

are [30], [20], Section VII.9 and [14], Sections 1-4 .

Definition 5. A (connected) complex manifold M with a Hermitian metric h is
said to be a Hermitian symmetric space if, for each point m in M there exists an
involutive holomorphic isometry sm of M such that m is an isolated fixed point
of sm.

Hermitian symmetric spaces are special cases of Riemannian symmetric spaces

(the corresponding Riemannian metric being g = Reh), but we demand that the

symmetries be holomorphic. As a consequence, one can show that the group G
(the neutral component of the group of Is(M, g)) acts by holomorphic transfor-

mations on M . Notice that G is a real Lie group (and not a complex Lie group).

Using same notation as in previous sections, the tangent space ToM (which is

naturally isomorphic to p) admits a complex structure, i.e., there exists a (R-linear)

operator J = Jo on p which satisfies J2 = −Id .

Lemma 6. The complex structure operator J satisfies

J([T, X]) = [T, JX]

B(JX, JY ) = B(X, Y )

for all X, Y in p and T in k.

The first property corresponds to the fact that the action of K on ToM is by

complex linear transforms. The second property is a consequence of the fact that

J is an isometry of the tangent space for the Riemannian metric g.

Lemma 7. Assume that g is semisimple. Then there exists a unique element H in
the center of k such that J = adpH .

Sketch of the proof. The endomorphism D of g which is 0 on k and coincides

with J on p is easily seen to be a derivation of g (use Lemma 6). If g is semi-

simple, then any derivation is inner, hence D = adH for some element H in g.

Decomposing H along g = k⊕ p shows that H has to be in the center of k.

The fact that k has a non trivial center essentially characterizes the Hermitian

symmetric spaces among the Riemannian symmetric spaces. In the noncompact

type case, a precise statement is the following.
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Proposition 8. Let g be a simple Lie algebra of the noncompact type, with Cartan
decomposition g = k ⊕ p. The associated Riemannian symmetric space M =
G/K admits a structure of Hermitian symmetric space if and only if the center of
k is non trivial. If true, there exists a unique (up to±1) element H in the center of
k such that adH induces a complex structure operator on p, and the corresponding
symmetric space M � G/K is, in a natural way a Hermitian symmetric space of
the noncompact type.

2.3. The Harish Chandra Embedding

Proposition 8 gives an abstract description of the Hermitian symmetric space as-

sociated to a simple algebra of the noncompact type. A more explicit realization

is obtained through the Harish Chandra embedding.

Let g be a semi-simple Lie algebra of the noncompact type, with Cartan decom-

position g = k ⊕ p w.r.t. some Cartan involution θ, and assume that there ex-

ists an element H in the center of k such that the restriction of adH to p is a

complex structure operator J . Let G be the complexification of g and denote by

X �−→ X the conjugation of G with respect to the real form g. For Z in G, let

ReZ = 1
2(Z + Z). Extend θ to G in a C-linear way, and observe that X �→ θX

is a Cartan involution of G. Let G = K⊕P be the complexification of the Cartan

decomposition. Extend in a C-linear way the action of J to P. Then P splits as

P = P+ ⊕P−, where P± = {X ∈ P ; JX = ±iX}. One can think of P+ as

the holomorphic tangent space of M = G/K at the origin o = eK.

Lemma 9. The space P+ (respectively P−) is an Abelian Lie subalgebra of G.

Moreover [K, P±] ⊂ P± .

Let G be a complex Lie group with Lie algebra Lie (G) = G, and define K

(respectively P+, P−) to be the analytic subgroup of G with Lie algebra K (re-

spectively P+, P−). Let G (respectively K) be the real analytic subgroup of G

with Lie algebra g (respectively k).

Proposition 10. i) The exponential map exp : P± −→ P± is an isomor-
phism of complex Abelian Lie groups.

ii) K normalizes P−, K ∩ P− = {e} and the semidirect product Q− = KP−

is a parabolic subgroup of G.

iii) P+ ∩Q− = {e}, and the map

P+ ×Q− −→ G, (p+, q) �−→ p+q
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is an injective regular map onto an open subset of G.

iv) G ⊂ P+Q− and G ∩Q− = K.

Let g be in G. Then, as a consequence of Proposition 10, g can be written in a

unique way as g = exp Ψ(g) q−, with q− in Q− and Ψ(g) in P+. Moreover, for

any k in K, Ψ(gk) = Ψ(g), and hence Ψ induces a map ζ : G/K −→ P+.

Define a norm on G by

‖X‖ = (−B(X, θX))1/2, X ∈ G

and the corresponding operator norm

‖adX‖ = sup{‖adX(Y )‖ ; Y ∈ G, ‖Y ‖ ≤ 1} .

Theorem 11. (Harish Chandra embedding) The map ζ : G/K −→ P+ is a
biholomorphic diffeomorphism of G/K onto the domain D, where

D = {Z ∈ P+ ; ‖ad(ReZ)‖ < 1} .

For a proof, see [17], Chapter VIII and [30], Section II.4.

2.4. Jordan Triple System

The rôle of Jordan algebra and Jordan triple system in the theory of Hermitian

symmetric spaces is originally due to M. Koecher (see [21]). The notes by O.

Loos [25] offer a systematic presentation of the material to be discussed. See

also [30] and [14].

Let M � G/K be a Hermitian symmetric space of the noncompact type. Then,

considering M has a Riemannian symmetric space, p � ToM is equipped with

its natural structure of Lie triple system, which coincides (up to a sign) with the

curvature tensor at o (see (2)). The behaviour of the curvature tensor under the

action of the complex structure J is rather intricate. It leads to the following

definition.

For X, Y, Z in p, let

{X, Y, Z} =
1

2

(
[[X, Y ], Z] + J [[X, JY ], Z]

)
(5)
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Theorem 12. The triple product defined by (5) satisfies the following identities

JT1) J{X, Y, Z} = {JX, Y, Z} = −{X, JY, Z} = {X, Y, JZ}

JT2) {X, Y, Z} = {Z, Y, X}

JT3)
{U, V, {X, Y, Z}} = {{U, V, X}, Y, Z}−{X, {V, U, Y }, Z}+{X, Y, {U, V, Z}}

for all X, Y, Z, U, V in p.

Moreover it satisfies

[[X, Y ], Z] = {X, Y, Z} − {Y, X, Z} (6)

A complex vector space V with a triple product {X, Y, Z} which is C-linear in X
and Z, conjugate linear in Y , and satisfies JT2) and JT3) is called a Jordan triple
system (JTS).

Let V be a Jordan triple system. For X and Y in V let L(X, Y ) the the C-linear

operator on V defined by

L(X, Y )Z = {X, Y, Z}

and consider the sesquilinear form

τ(X, Y ) = TrL(X, Y ) (7)

If the form τ is nondegenerate, then τ is Hermitian (i.e., τ(X, Y ) = τ(Y, X) for

X, Y in V). Moreover

L(X, Y )∗ = L(Y, X) (8)

for X, Y in V, where A∗ stands for the adjoint of the operator A w.r.t. τ . The

triple system is said to be a positive Hermitian Jordan triple system (PHJTS) if

the form τ defined by (7) is positive definite.

Theorem 13. Let M � G/K be a Hermitian symmetric space of the noncompact
type. Then (p, J) (considered as a complex vector space) with its Jordan triple
product defined by (5) is a PHJTS.
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2.5. An Example: the Hermitian Symmetric Space of Type Ip,q

Among the bounded symmetric domains, there the so-called classical ones as

opposed to the exceptional ones. The classical ones are studied systematically

in [29]. See also [18], and the Appendix of [30]. We present here (to be continued

in Sections 3.4 and 4.6) the classical domain of type Ip,q, i.e., the unit ball in the

space of p× q matrices with complex entries.

Let E be a complex vector space of dimension n, and let p, q two integers, p, q ≥ 1
with p + q = n. Let G(q, E) be the Grassmannian of all q-dimensional vector

subspaces of E. It is in a natural way a complex manifold.

Two vector subspaces W of dimension q and W′ of dimension p are said to be

transverse if W ∩W′ = {0}. This relation will be denoted by W�W′. Choose

such a transverse pair (W0, W
′
0) so that E = W′

0 ⊕W0. Let

OW
′

0
:= {W ∈ G(q, E) ; W�W′

0} .

This is an open subset of G(q, E). Let L be in Hom(W0, W
′
0), an define its graph

WL as

WL = {ξ + Lξ ; ξ ∈ W0} .

Clearly, WL is a subspace of E of dimension q, and WL is transverse to W′
0, hence

belongs to OW
′

0
. The map

Hom(W0, W
′
0) � L �−→ WL ∈ OW

′

0

is a chart onto OW
′

0
. The operator L = 0 corresponds to the “origin” W0 in OW

′

0
.

The group GL(E) � GL(n, C) operates transitively on G(q, E) by (g, W) �→
g(W). Of course, this is really an action of the projective group G = PGL(E) �
GL(n, C)/C∗.

Let h be a Hermitian form on E of signature (p, q), and let

M = Mp,q := {W ∈ G(q, E) ; h|W � 0} .

Let W be in M . Then the restriction of h to W⊥ is positive-definite and W⊥ is a

canonical transverse space to W. It allows to identify the tangent space of M at

W with Hom(W, W⊥).

Let G = PU(E, h) be the (projective) group of (pseudo-)isometries w.r.t h. If g
is in G, and W is in M , then g(W) is still in M , so that this defines an action of

G on M . By Witt’s theorem, this action is transitive.

Let W be in M and g in U(E, h). Then g maps W to g(W), and at the same time,

g(W⊥) = (g(W))⊥, as g preserves h.
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On M there is a natural structure of Hermitian manifold. The tangent space at a

point W has been identified with Hom(W, W⊥). If T : W → W⊥, define T ∗ to

be the unique complex linear operator from W⊥ into W such that, for all ξ ∈ W

and η ∈ W⊥.

h(Tξ, η) = h(ξ, T ∗η) .

Then for T, S in Hom(W, W⊥) set hW(S, T ) = TrST ∗. This is a positive def-

inite Hermitian form on the tangent space at W, and hW depends smoothly on

W, thus turning M into a Hermitian manifold. Moreover, the stabilizer of W in

U(E, h) is U(W, h|W) × U(W⊥, h|W⊥), and hW is easily seen to be invariant by

this stabilizer. Thus the metric defined by hW is invariant by G.

Fix a point W0 in M . Then E = W0 ⊕W⊥
0 , and let σ0 = σW0

be the symmetry

with respect to this decomposition, defined by σ0(ξ + η) = ξ − η for ξ ∈ W0

and η ∈ W⊥
0 . This symmetry belongs to U(E, h) and hence operates on M . Let

W in M be a fixed point of σ0. Thus W is stable by σ0, hence decomposes as

W = W ∩ W0 ⊕ W ∩ W⊥
0 . As the restriction of h to W has to be negative

definite, this forces W = W0. Thus σ0 acts on M by an involutive holomorphic

transformation, preserving the Hermitian metric and having W0 as isolated (even

unique) fixed point. This shows that M is a Hermitian symmetric space.

The Lie algebra of PU(E, h) is the same as the Lie algebra of SU(E, h) as both

groups are locally isomorphic, and it is given by

g = su(E, h) = {X ∈ End(E) ; h(Xξ, η)+h(ξ, Xη) = 0, ξ, η ∈ E, TrX = 0} .

Choose a basis (e1, . . . , ep, ep+1, . . . , en), of E such that h(ei, ei) = 1 for 1 ≤
i ≤ p, h(ei, ei) = −1 for p + 1 ≤ i ≤ n and h(ei, ej) = 0 for 1 ≤ i �= j ≤ n, so

that the form h is represented by the matrix

Ip,q =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
−1

. . .

−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

The Lie algebra g of G is then given by

g = su(p, q) =
{

X =

(
A Y
Y ∗ D

)
; A∗ = −A, D∗ = −D, Tr(A+D) = 0

}
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The Lie algebra k of K � P(U(q)×U(p)) is

k = s(u(p)×u(q)) =
{

X =

(
A 0
0 D

)
, A = −A∗, D∗ = −D, TrA+TrD = 0

}

whereas p is given by

p =
{

X =

(
0 Y

Y ∗ 0

)
; Y ∈ Mat(p× q, C)

}

which allows to identify p with Mat(p× q, C).

The element H which is in the center of k such that adpH is the complex structure

operator on p is

H =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q
p+q i

. . .
q

p+q i

− p
p+q i

. . .

− p
p+q i

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The Lie triple system on p is given by

[X, Y, Z] = [[X, Y ], Z] = XY ∗Z − Y X∗Z − ZX∗Y + ZY ∗X

for X, Y, Z p× q matrices.

The complexified Lie algebra G of g can be realized as sl(n, C), the Lie algebra

of n× n matrices with trace 0. Then

K =
{( A 0

0 B

)
; TrA + TrB = 0

}
, P =

{( 0 Y
Z 0

)}

and

P+ =
{( 0 Y

0 0

)}
.

The corresponding Jordan triple product is given by

{X, Y, Z} = XY ∗Z + ZY ∗X .
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3. Bounded Symmetric Domains

3.1. Bergman Metric

The reference for this section is [17], Chapter VIII.

Let D be a domain (i.e., a open connected subset) in some complex finite-dimen-

sional vector space E. Choose a Lebesgue measure dλ on E.

Definition 14. Let

H(D) = {f : D −→ C ; f holomorphic,

∫

D

|f(z)|2dλ(z) <∞}

The Bergman space H(D) is the Hilbert space equiped with the norm ‖f‖ =
(
∫

D

|f(z)|2dλ(z))1/2, as it is a closed subspace of L2(D). Let w be in D. Then

the linear functional

H(D) � f �−→ f(w)

is continuous (the proof uses the Cauchy formula and Schwarz inequality). Hence

there exists Kw inH(D) such that

f(w) =

∫

D

f(z)Kw(z)dλ(z) =

∫

D

f(z)k(z, w)dλ(z) (9)

where k(z, w) = Kw(z) is called the Bergman kernel of the domain D.

Proposition 15. The Bergman kernel satisfies the following properties:

i) k(z, w) is holomorphic in z and conjugate holomorphic in w.

ii) k(z, w) = k(w, z)

iii) for any biholomorphic diffeomorphism Φ of D

k(z, w) = jΦ(z)k(Φ(z), Φ(w))jΦ(w) (10)

where jΦ(z) is the Jacobian of Φ at z.

Assume thatD is a bounded domain. ThenH(D) is not equal to {0}, as it contains

the restrictions to D of all holomorphic polynomials on E. As a consequence, for
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any z in D, k(z, z) > 0, and the Bergman kernel can be used to construct a

Hermitian metric on D given by

hz(ξ, η) = ∂ξ∂η log k(u, w)u=z,w=z (11)

called the Bergman metric. The Bergman metric is invariant under any holomor-

phic diffeomorphism of D (a consequence of (10)).

Remark. Suppose D is a homogeneous domain, i.e., its group of biholomorphic

diffeomorphisms G is transitive on D. Fix an origin o in D. Then, by (10),

k(z, z) = k(o, o)|jg(z)|−2, where g is any element of G such that z = g(o). Now

k(z, w), being holomorphic in z and conjugate holomorphic in w is determined by

its restriction to the diagonal. In practice, this gives, for a homogeneous bounded

domain, a way of computing explicitely the Bergman kernel (up to a positive

constant) and the corresponding Bergman metric.

3.2. Bounded Symmetric Domains

In this section we mainly follow [25], Section 2.

Definition 16. A bounded domain D is said to be symmetric (D is also called
a Cartan domain) if, for every z in D, there exists an involutive biholomorphic
diffeomorphism sz such that z is an isolated fixed point of sz .

The use of Bergman metric of D implies that D is a Hermitian symmetric space

of the noncompact type. Let G be the neutral component of the group of holomor-

phic diffeomorphisms of D, and let K be the stabilizer in G of some fixed origin

o inD. Then G is a semisimple Lie group, K is a maximal compact subgroup and

D is isomorphic to G/K.

A domain D is said to be circled if 0 belongs to D and D is stable by the maps

rθ : z �−→ eiθz, for θ ∈ R/2πZ.

Theorem 17. A bounded symmetric domain is holomorphically equivalent to a
bounded symmetric and circled domain.

See [33] for a proof (the result is valid even in infinite dimension).

LetD be a bounded circled symmetric domain. Choose 0 as origin inD. Then the

stabilizer K of 0 in G acts by (restrictions to D of) linear transformations. The

Hermitian form h0 on T0D � E given by the Bergman metric at 0 is invariant
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under K, so that K can be viewed as a closed subgroup of the unitary group

U(E, h0). The symmetry s0 is given by

s0 : z �→ −z = eiπz

and belongs to K, as D is circled. The map θ : g �−→ s0 ◦ g ◦ s0 is a Cartan

involution of G, with K as fixed points.

Let g = k⊕ p be the Cartan decomposition of the Lie algebra g of G with respect

to θ.

A holomorphic vector field on D can be regarded as a holomorphic map ξX :
D −→ E. In this setting, the bracket of two holomorphic vector fields ξ and η is

the holomorphic vector field [ξ, η] defined by

[ξ, η](z) = Dη(z)ξ(z)−Dξ(z)η(z). (12)

Any X in g induces a holomorphic vector field in D denoted by ξX . The map

X �−→ ξX(0) yields a real isomorphism of p with E, which is K-equivariant.

For X and Y in g, one has the relation

ξ[X,Y ] = −[ξX , ξY ]. (13)

For u in E, abusing notation, denote by ξu the unique holomorphic vector field

induced by an element of p such that ξu(0) = u.

Proposition 18. Let v be in E. Then, for any z in D

ξv(z) = v −Q(z)v (14)

where Q(z) is a conjugate linear map of E, and z �→ Q(z) is a homogeneous
quadratic map of degree two.

For u, v in E, set

Q(u, v) = Q(u + v)−Q(u)−Q(v) (15)

(polarized symmetric form of Q, except for a factor two), and for x, y, z in E

{x, y, z} = Q(x, z)y (16)

Theorem 19. The formula (16) defines on E a structure of positive Hermitian
Jordan triple system (PHJTS) which coincides with the structure on p defined
by (5).
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3.3. The Spectral Norm on E

The main reference for this section is [25], Section 3 and 5. Let E be a PHJTS.

Definition 20. A real subspace W of E is said to be flat if

{W, W, W} ⊂W (17)

for any x, y ∈W, {x, y, z} = {y, x, z} . (18)

Let W be a flat subspace of E. For x, y in W , denote by L̃(x, y) the restriction to

W of L(x, y). For x, y, u arbitrary elements of E, rewrite JT3) as

[L(x, y), L(u, u)] = L({x, y, u}, u)− L(u, {y, x, u}) .

Now, if x, y, u are in W , then, by (17) and (18), L̃({x, y, u}, u) = L̃(u, {x, y, u}) =
L̃(u, {y, x, u}), so that L̃(x, y) commutes to L̃(u, u), and hence, by polarization,

to L̃(u, v) for arbitrary u and v in W .

The restriction to W of the real part of the Hermitian form τ is a real inner product

on W , and as a consequence of (8), L̃(x, y)t = L̃(y, x) = L̃(x, y).

Hence the family {L̃(x, y), x, y ∈ W} is a family of mutually commuting sym-

metric operators on W , so that there is a simultaneous diagonalization of the fam-

ily. This result allows a spectral analysis in E.

An element c of E is said to be a tripotent if it satisfies

{c, c, c} = 2c . (19)

Two tripotents c and d are said to be orthogonal if L(c, d) = 0. If this is the case,

then c + d is a tripotent.

Let c be a tripotent. One can show that L(c, c) (which is selfadjoint) admits eigen-

values in the set {2, 1, 0}. There is a corresponding decomposition of E, called

the Peirce decomposition with respect to c

E = E2(c)⊕ E1(c)⊕ E0(c) (20)

where Ej(c) = {x ∈ E ; L(c, c)x = jx}, for j = 0, 1, 2.

Proposition 21. Let c be a tripotent in E. Then the Peirce decomposition (20) has
the following properties:

{Ei(c), Ej(c), Ek(c)} ⊂ Ei−j+k(c)

{E2(c), E0(c), E} = 0, {E0(c), E2(c), E} = 0

where i, j, k belong to {0, 1, 2} and with the convention that El(c) = {0} if l does
not belong to {0, 1, 2}.
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Theorem 22. Let c1, c2, . . . , cs be a family of mutually orthogonal nonzero tripo-
tents. Then

W = Rc1 ⊕ Rc2 ⊕ · · · ⊕ Rcs (21)

is a flat subspace of E. Conversely, let W be a flat subspace of W . Then there
exists a family (c1, c2, . . . , cs) of mutually orthogonal tripotents such that (21)

yields. Moreover, the family is unique, up to order and signs.

If x is any element of E, its odd powers are defined by the induction formula

x(2p+1) = {x, x(2p−1), x} . (22)

The real vector space R[x] generated by the odd powers of x is a flat subspace.

The previous result implies the following spectral theorem.

Theorem 23. Let x be an element of E. Then there exists a unique family of
mutually orthogonal tripotents c1, c2, . . . , cs, and such positive real numbers 0 <
λ1 < λ2 < · · · < λs that

x = λ1c1 + λ2c2 + · · ·+ λscs . (23)

The λj’s are called the spectral values of x. The spectral norm is, by definition

the largest eigenvalue of x and is denoted by |x|. It can be shown that x �−→ |x|
is actually a (complex Banach) norm on E.

Theorem 24. Let D be a bounded circled domain in some complex vector space
E. Let {., ., .} be the induced structure of PHJTS on E, and let | . | be the corre-
sponding spectral norm. Then

D = {x ∈ E ; |x| < 1} . (24)

Conversely, let E be a PHJTS. The open unit ball for the spectral norm is a
bounded symmetric domain.

3.4. An Example (Continued from Section 2.5)

We continue to use notation introduced in Section 2.5 for the Hermitian symmetric

space Mp,q. Recall that we chose an orthogonal decomposition E = W0
⊥ ⊕W0,

with h|W0
⊥ � 0 and h|W0

� 0. The restriction of h to W0
⊥ yields an inner

product on W0
⊥, and similarly for the restriction of (−h) to W0. We denote
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the corresponding Hilbert norm on both of them by ‖ . ‖, and we also define the

corresponding operator norm on Hom(W0, W0
⊥) by

‖Z‖ = sup{‖Zξ‖ ; ξ ∈ W0, ‖ξ‖ ≤ 1} .

Let W be in M , so that h|W � 0. Then W ∩ W0
⊥ = {0}, and W belongs to

O
W0

⊥ . Hence there is a map Z : W0 → W0
⊥ such that

W = WZ := {ξ + Zξ ; ξ ∈ W0} .

Conversely, let Z be in Hom(W0, W0
⊥) and let WZ be its graph. Then the con-

dition h|WZ
� 0 reads

h(Zξ, Zξ) < −h(ξ, ξ), for any ξ �= 0 ∈ W0

which is equivalent to the condition ‖Z‖ < 1.

Denote byDp,q the unit ball in Hom(W0, W0
⊥) � Mat(p×q, C) for the operator

norm. We just proved the following result, which describes the Harish Chandra

embedding for the Hermitian symmetric space Mp,q.

Proposition 25. The map Z �−→ WZ is a 1-1 correspondance between Dp,q

and Mp,q.

Next we want to make explicit the action of G = PU(p, q) on Dp,q. Let g be in

U(p, q). Its block matrix expression with respect to the decomposition of E as

E = W0
⊥ ⊕W0 is of the form

g =

(
a b
c d

)
,

⎧
⎨

⎩

a∗a− c∗c = 1p

b∗a− d∗c = 0
b∗b− d∗d = −1q.

Let Z be in Hom(W0, W0
⊥). Then for any ξ in W0

g

(
Zξ
ξ

)
=

(
(aZ + b)ξ
(cZ + d)ξ

)
.

If ‖Z‖ < 1, then cZ + d is invertible, and letting η = (cZ + d)ξ, we obtain that

g(WZ) = Wg(Z) where

g(Z) = (aZ + b)(cZ + d)−1 . (25)

Now let Y be in p � Hom(W0, W0
⊥). Then, for t in R close to 0

exp tY =

(
1p tY
tY ∗ 1q

)
+ O(t2)
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and hence

exp(tY )(Z) = (Z + tY )(tY ∗Z + 1q)
−1 + 0(t2) = Z + t(Y − ZY ∗Z) + O(t2)

so that the holomorphic vector field induced by Y is given by

ξY (Z) = Y − ZY ∗Z .

Hence the Jordan triple product on V = Hom(W0, W0
⊥) reads

Q(Z)Y = ZY ∗Z, {X, Y, Z} = XY ∗Z + ZY ∗X.

Tripotents for this Jordan triple system are obtained as follows. Let F′ ⊂ W0
⊥

and F ⊂ W0 be two subspaces of the same dimension, say s with 0 ≤ s ≤ r =
inf(p, q). Denote by F⊥ (respectively F′⊥) the orthogonal of F (respectively F′)

in W0 (respectively W0
⊥). Let c : F −→ F′ be an isometry. Associate to c the

map C : W0 −→ W0
⊥ as the following composed map

C : W0
p
−→ F

c
−→ F′ i

−→ W0
⊥

where p is the orthogonal projection on F and i is the canonical injection in W0
⊥.

Then C is a tripotent, and any tripotent is obtained in this manner. Observe that

F = (kerC)⊥ and F′ = imC.

The Peirce decomposition V = V2(C)⊕V1(C)⊕V0(C) w.r.t. C is described in

terms of block matrices w.r.t. the orthogonal decompositions W = F ⊕ F⊥ and

W0
⊥ = F′ ⊕ F′⊥ by the following symbolic scheme

F F⊥

F′

F′⊥

(
V2(C) V1(C)
V1(C) V0(C)

)

.

Two tripotents C1, C2 associated to the subspaces (F1, F
′
1) and (F2, F

′
2) respec-

tively are orthogonal if and only if F1 ⊥ F2 and F′
1 ⊥ F′

2.

Let X be any element in Hom(W0, W0
⊥). Let F = (kerX)⊥ and F′ = imX . On

F, consider the Hermitian form defined by

qX(ξ, ξ′) = h(Xξ, Xξ′)

which is a positive definite form on F, and can be compared to the positive definite

form −h|F. Hence there exists an orthonormal basis (ξ1, ξ2, . . . , ξs) of F such

that the matrix of the form qX in this basis is diagonal with positive entries (say)

λ2
1, λ

2
2, . . . , λ

2
s , where we assume that 0 < λ1 ≤ λ2 ≤ · · · ≤ λs. For 1 ≤
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j ≤ s, let ηj =
Xξj

λj
. Then η1, η2, . . . , ηs is an orthonormal basis of F′. For

1 ≤ j ≤ s, let Cj be the tripotent (of rank one) associated to the isometry cj :
Cξj → Cηj which maps ξj to ηj . Then the Cj are orthogonal tripotents, and

X =
∑s

j=1 λjCj . This is essentially the spectral decomposition of X in the

sense of Theorem 23. The λj’s are usually called the singular spectral values of

X . The largest eigenvalue λmax is given

λ2
max = sup{qX(ξ, ξ) ; ξ ∈ F, ‖ξ‖ ≤ 1}

= sup{‖Xξ‖2 ; ξ ∈ W0, ‖ξ‖ ≤ 1} = ‖X‖2op

so that the spectral norm on the PHJTS Hom(W0, W0
⊥) coincides with the oper-

ator norm.

The Bergman kernel of the domain D is given by

k(Z, W ) = cp,qdet(1p − ZW ∗)−n .

with cp,q a positive real number (see [18]).

4. The Shilov Boundary of a Bounded Symmetric Domain

The presentation of this section follows [25], Section 6.

4.1. The Shilov Boundary of a Bounded Domain

Let D be a bounded domain in some complex finite-dimensional vector space V.

Let f be a function defined and holomorphic in a neighbourhood of D. Then the

classical maximum principle asserts that supz∈D |f(z)| is reached on the bound-

ary ∂D of D. It is a typical phenomenon of the theory of holomorphic functions

in several complex variables that this result may not be optimal. A closed subset

F of ∂D is said to satisfy the maximum principle for holomorphic functions if,

for any function f defined and holomorphic in a neighbourhood of D

sup
z∈D

|f(z)| = sup
z∈F

|f(z)|

in other words if the maximum of |f | over D is reached in F . One can show that

there exists a (unique) smallest closed set which satisfies the maximum principle,

called the Shilov boundary of the bounded domain D.
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Example 1. Let D = {(z1, z2) ∈ C2 ; |z1| < 1, |z2| < 1} be the product of two

copies of the complex unit disc. Its topological boundary is

∂D = {(z1, z2) ∈ C2 ; |z1|, |z2| ≤ 1, |z1| = 1 or |z2| = 1}

whereas its Shilov boundary is

S = {(z1, z2) ∈ C2 ; |z1| = |z2| = 1}.

The last statement is obtained by appplying twice the maximum principle with

respect to each complex variable.

Example 2. Let D = Dp,q be the unit ball (for the standard operator norm) in

Mat(p × q, C), and assume p ≥ q. A matrix A is in the topological boundary of

D if and only if ‖A‖op = 1. Equivalently, A∗A has all its eigenvalues less than

or equal to 1, and 1 is an eigenvalue of A∗A. Now A is in the Shilov boundary

of D if and only if A∗A = id q (see Section 4.6 for a proof of this result). The

topological boundary and the Shilov boundary of D coincide if and only if q = 1,

i.e., if the domain D is the unit ball in Cp.

Next, we will characterize the Shilov boundary of the unit ball of a PHJTS.

4.2. More on Tripotents

Let V be a PHJTS, and letD be its unit ball for the spectral norm. More generally,

we use freely of the notation introduced in Sections 2 and 3. Recall that a tripotent

is an element c of V which satisfies {c, c, c} = 2c.

There is a partial order on tripotents: if c and d are two tripotents, then say that

c ≺ d if there exists a tripotent f �= 0 orthogonal to c and such that d = c + f . A

nonzero tripotent c is said to be primitive if it can not be written as a sum of two

nonzero orthogonal tripotents. In other words, a primitive tripotent is a minimal

element among the nonzero tripotents.

A Peirce frame is, by definition, a maximal set of mutually orthogonal primitive

tripotents.

Proposition 26. Let c be a tripotent of V. Then the following are equivalent:

i) c = c1 + c2 + · · ·+ cr, where (c1, c2, . . . , cr) is a Peirce frame.

ii) c is a maximal tripotent

iii) in the Peirce decomposition of V with respect to c, the factor V0(c) is equal
to {0} and hence V = V2(c)⊕ V1(c).
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In this context, the spectral theorem (cf Th. 23) can be written slightly differently.

Theorem 27. Let x be an element in V. Then there exists such a Peirce frame
(c1, c2, . . . , cr) and nonnegative real numbers 0 ≤ λ1 ≤ · · · ≤ λr that x =∑r

j=1 λjcj .

Let V1 and V2 be two PHJTS. Then the direct sum V = V1 ⊕ V2 has a natural

structure of PHJTS, simply by setting

{x1 + x2, y1 + y2, z1 + z2} = {x1, y1, z1}1 + {x2, y2, z2}2 .

The spectral norm on V is given

|(x1 + x2)| = sup(|x1|1, |x2|2)

A PHJTS V is said to be simple if it can not be written as a sum of two PHJTS.

The simplicity of V is equivalent to the fact that the unit ball D is irreducible as

Hermitian symmetric space.

Proposition 28. Let V be a PHJTS. Then

i) two Peirce frames are conjugate under K.

ii) two maximal tripotents are conjugate under K.

iii) Assume that V is a simple PHJTS. Then two minimal tripotents are conju-
gate under K.

From now on, we will assume, mostly for convenience, that V is a simple PHJTS,

although many statements are true generally or could be reformulated to be valid

in full generality.

The number of elements of a Peirce frame is the same for all frames, and is called

the rank of V, denoted by r. It is the rank of a maximal tripotent. It is also equal

to the rank of D as Hermitian symmetric space.

Let c be a tripotent. Then c can be written as a sum of primitive tripotents, and

the number of tripotents is the same for all expressions of c as a sum of primitive

tripotents, and is called the rank of the tripotent c.
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4.3. Geometry of the Convex Set D

Recall that the Bergman metric at the origin 0 yields a positive definite Hermitian

form h0 on V, for which we also use, for convenience, the notation 〈 . , . 〉 . The

associated Hilbert norm is denoted by ‖ . ‖, not to be confused with the spectral

norm | . |. It is invariant under the action of K. Two orthogonal tripotents are

orthogonal for this inner product, and two primitive idempotents have the same

Hilbert norm (here it is necessary to assume that V is simple).

Let c be a non zero tripotent. As |c| = 1, c is in the topological boundary of D.

The following proposition gives a rather precise description of the boundary of D
near c.

Proposition 29. Let c be a non-zero tripotent in V. Let

Hc = {x ∈ V, 〈x, c〉 = 〈c, c〉} , Hc = {x ∈ V, Re〈x, c〉 = 〈c, c〉} .

Then,
for all x ∈ D, |〈x, c〉| < 〈c, c〉 . (26)

D ∩Hc = D ∩Hc = c + (D ∩ V0(c)) . (27)

If c is a maximal tripotent, then

D ∩Hc = D ∩Hc = {c} . (28)

The convex set D can be further studied by looking at its faces.

Definition 30. Let C be a closed convex set in a real vector space E. A closed
convex set F is said to be a face of C if

c, d ∈ C, 0 < t < 1, tc + (1− t)d ∈ F =⇒ c, d ∈ F. (29)

For example, a singleton {x}, where x is in C, is a face if and only if x is an

extremal point of C. A face is said to be proper if it is neither equal to C nor to ∅.
A proper face is contained in the topological boundary of C.

The intersection of any family of faces is a face. Given a subset A in C, the face
generated by A is the smallest face containing A, namely the instersection of all

faces containing A.

Proposition 31. Let F be a proper face of D.

i) The real affine span 〈F 〉 of a proper face is automatically a complex affine
subspace of V.



Geometry of the Shilov Boundary of a Bounded Symmetric Domain 49

ii) There exists a unique non zero tripotent c, such that

F = F (c) := c + (D ∩ V0(c)) = 〈F 〉 ∩ D.

For c a non zero tripotent, the space V0(c) is a PHJTS (see Proposition 20), and

D∩V0(c) is its unit ball for the spectral norm. Hence the interior of the face F (c)
relative to 〈F 〉, which is equal to c + (D ∩ V0(c)), has a structure of bounded

symmetric domain on its own. Its rank, which is also the rank of the PHJTS

V0(c) is called the rank of the face F (c).

Recall that G is the neutral component of the group of holomorphic diffeomor-

phisms of D. Let g be in G. Then the action of g on D extends to some neigh-

bourhood of D (depending on g). Hence the action of the group G extends to

D.

Proposition 32. The group G acts on the set of faces of D, preserving the rank of
a face. The group G acts transitively on the set of faces of a given rank.

4.4. The Shilov Boundary of D

Denote by S be the Shilov boundary of D.

Theorem 33. Let x be in V. Then the following assertions are equivalent:

i) x belongs to S

ii) x is an extremal point of the convex set D

iii) x is maximal tripotent of the PHJTS V

iv) ‖x‖ = sup{‖z‖ ; z ∈ D} .

Sketch of the Proof of i)⇐⇒ iii). If z is in D, then by Theorem 27, there exists

a Peirce frame (c1, c2, . . . , cr) and 0 ≤ λ1 ≤ · · · ≤ λr < 1 such that z =∑r
j=1 λjcj . Let W be the complex vector space generated by the cj , 1 ≤ j ≤ r,

and let P be the polydisc in W defined by

P := {w =
r∑

j=1

wjcj ; wj ∈ C, |wj | < 1, 1 ≤ j ≤ r} = W ∩ D .

The Shilov boundary of the polydisk P (as a bounded domain in W) is the torus

T = {σ =
r∑

j=1

σjcj ; |σj | = 1, 1 ≤ j ≤ r}
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(cf Example 1 in Section 4.1). Observe that any element of T is a maximal tripo-

tent of V. Now, if f is a holomorphic function in a neighbourhood U of D, then

apply the maximum principle to the restriction of f to W ∩ U (which is a neig-

bourhood of P), to get

|f(z)| ≤ sup{|f(σ)|, σ ∈ T} ≤ sup{|f(σ)|, σ ∈ Σ}

where Σ is the set of all maximal tripotents of V. This shows that the maximum

principle holds for Σ, and hence S ⊂ Σ. Conversely, let c be a maximal tripotent.

Consider the holomorphic function fc defined by fc(z) = (2 − 〈z, c〉)−1. The

function ζ �→ (2− ζ)−1 is holomorphic in a neigbourhood of the closed unit disc

D in C and its modulus has a strict maximum in D at ζ = 1. Hence the modulus

of fc has a strict maximum on D at z = c (use (28)). Hence c must be in the

Shilov boundary of D, showing that Σ ⊂ S. �

As seen earlier, the action of G extends to D, and in particular G acts on S. The

action of G is transitive on S, and even the action of K is transitive, a consequence

of Proposition 28.

4.5. The Arithmetic Distance and the G-orbits in S × S

Let x, y be two points in S. Then consider the face F(x, y) generated by {x, y}.
The rank of F(x, y) is called the arithmetic distance and denoted by δ(x, y). By

Proposition 32, the arithmetic distance is preserved by the action of G.

For any k, 0 ≤ k ≤ r, let

Ok := {(x, y) ∈ S × S ; δ(x, y) = k} . (30)

Theorem 34. For any k, 0 ≤ k ≤ r, Ok is an orbit under G. Any orbit of G in
S × S equals Ok for some k. Moreover,

ΔS×S = O0 = O0 ⊂ O1 ⊂ · · · ⊂ Or = D . (31)

The orbitOr is an open dense subset of S ×S. There are useful characterizations

of pairs in Or.

Proposition 35. Let x, y ∈ S. The following propositions are equivalent

i) (x, y) belongs to Or.

ii) There is a geodesic ligne γ(t), t ∈ R in D such that

lim
t→−∞

γ(t) = x, lim
t→+∞

γ(t) = y .
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iii) The Bergman kernel k(z, w) defined onD×D can be extended by continuity
to (x, y).

A pair (x, y) in S × S is said to be tranverse (and we then write x�y) if any one

of these equivalent properties is satisfied.

4.6. Example (Continued from Sections 2.5 and 3.4)

We continue notation introduced earlier in the study of Mp,q (or Dp,q).

Assume p ≥ q. Notice that this is not really a restriction, as by duality, Dp,q �
Dq,p. But the description of the Shilov boundary is easier in this case. The rank

of Mp,q is then equal to q. Let s be an integer, such that 1 ≤ s ≤ q. By an

appropriate choice of basis of W0 and W0
⊥, a tripotent of rank s can be written

as

Cs =

⎛

⎜⎜⎜⎝

1
. . .

1
0

⎞

⎟⎟⎟⎠

with s times 1 on the main diagonal. The corresponding face is:

Fs =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
Z =

⎛

⎜⎜⎜⎝

1
. . .

1
ζ

⎞

⎟⎟⎟⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(32)

where there are s times 1 on the main diagonal and ζ is an arbitrary element in

Mat((p− s)× (q − s), C) with ‖ζ‖ ≤ 1.

From the determination of tripotents in Section 3.4, we know that a maximal

tripotent Z is obtained for s = q, which forces F = W0. Hence Z is an isometric

embedding from W0 into W0
⊥. This is equivalent to saying that Z∗Z = Iq.

Hence, the Shilov boundary S of the domain Dp,q is given by

S = Sp,q = {Z ∈ Mat(p× q, C) ; Z∗Z = Iq} . (33)

The space Sp,q is called the Stiefel manifold (it can also be considered as the

space of all q-frames in Cp). If p = q, Sp,p can be identified with the unitary

group U(p, C).

Let Z be in S, i.e., Z is an isometric embedding. Then its graph WZ is a totally
isotropic susbspace (i.e., h|WZ

= 0) of E. Since WZ has dimension q, it is a
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maximally totally isotropic subspace of E. Conversely, any maximally totally

isotropic subspace of E is of dimension q and can be realized has WZ for an

appropriate Z in S. So in the original realization of Mp,q, the Shilov boundary is

realized as the set of all maximally totally isotropic subspaces of E.

Proposition 36. The arithmetic distance on S is given by

δ(Z, Z ′) = rank(Z − Z ′) (34)

Proof: First consider the realization of S as the space of maximally totally isotropic

subspaces of E. There is an obvious invariant for the action of G on S×S, namely

the dimension of the intersection of the two spaces of the pair. Conversely, let W

and W′ be two maximally isotropic subspaces of E, and let dim(W ∩W′) = s,

with 0 ≤ s ≤ q. Then the signature of the restriction of h on W + W′ has to be

(q− s, q− s). Hence by Witt’s theorem, two such pairs (W1, W
′
1) and (W2, W

′
2)

are conjugate under U(E, h) if and only if dim(W1 ∩W′
1) = dim(W2 ∩W′

2).
This gives a description of the orbits of G in S × S (cf Theorem 34).

If W (resp W′) is realized as the graph of some isometric imbedding Z (respec-

tively Z ′), then dim(W ∩ W′) = dim ker(Z − Z ′). Hence this last quantity is

invariant under the action of G on S × S.

Now, consider the following pairs Z, Z ′ of tripotents (one pair in each orbit)

namely

Z =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
1

. . .

1
0 . . . . . . 0
...

...

0 . . . . . . 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Z ′ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
−1

. . .

−1
0 . . . . . . 0
...

...

0 . . . . . . 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where there are s times 1 (and hence (q − s) times −1) on the main diagonal of

Z ′. Then, the face generated by {Z, Z ′} is equal to Fs (see (32)), which is of rank

q−s. Hence the arithmetic distance δ(Z, Z ′) is equal to q−s = rank(Z−Z ′) =
q − dim ker(Z − Z ′). By the invariance of the latter quantity under the action of

G, we can conclude that the formula is true for all pairs (Z, Z ′). �
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Another expression for the arithmetic distance is δ(Z, Z ′) = rank(Iq − Z∗Z ′).
In fact, Z − Z ′ and Iq − Z∗Z ′ have the same kernel. To see it, first, by left

multiplication by Z∗

(Z − Z ′)ξ = 0 =⇒ (Iq − Z∗Z ′)ξ = 0

and hence, ker(Z − Z ′) ⊂ ker(Iq − Z∗Z ′). Conversely,

(Iq − Z∗Z ′)ξ = 0⇒ 〈(Iq − Z∗Z ′)ξ, ξ〉 = 0⇒ 〈Z ′ξ, Zξ〉 = 〈ξ, ξ〉 .

But ‖Zξ‖ = ‖Z ′ξ‖ = ‖ξ‖ and hence, by Cauchy-Schwartz inequality, Z ′ξ = Zξ.

Hence ker(Z − Z ′) ⊃ ker(Iq − Z∗Z ′).

5. Euclidean Jordan Algebras and Tube-type Domains

For the theory of Euclidean Jordan algebras, the reader is refered to [13]. A dif-

ferent point of view is presented in [32]. For the rest of this section, we follow

mainly [25], Sections 3 and 5.

5.1. Euclidean Jordan Algebra

Definition 37. A Euclidean Jordan algebra is a real Euclidean vector space (W, 〈., .〉)
with a bilinear product (x, y) �→ x.y and a unit element e such that

i) x.y = y.x (commutativity)

ii) x2.(x.y) = x.(x2.y) (weak associativity)

iii) e.x = x.e = x

iv) 〈x.y, z〉 = 〈x, y.z〉 (symmetry property)

for all x, y, z in W .

Example. Let W = Symm(r, R) be the space of r × r real symmetric matrices

and set

x.y =
1

2
(xy + yx), e = Id , 〈x, y〉 = Tr(xy) . (35)

Then W is a Euclidean Jordan algebra.

Let W be a Jordan Euclidean algebra. For x in W , let P (x) be the operator on W
defined by

P (x)y = 2x.(x.y)− x2.y . (36)
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The map P is called the quadratic representation of the Jordan algebra W . For

W = Symm(r, R), P (x)y = xyx.

An element x of W is said to be invertible if P (x) is an invertible operator. In-

vertible elements form a dense open subset of W . If x is an invertible element of

W , then define its inverse to be x−1 := P (x)−1x.

Let Q := {x ∈ W ; y ∈ W, x = y2} be the cone of squares in W , and let Ω be

the interior of Q. It coincides with the set of squares of invertible elements.

A cone C in a Euclidean vector space E is said to be proper if it does not contain

any (affine) line. The dual cone C� is defined by

C� := {x ∈ E ; y ∈ C, 〈x, y〉 ≥ 0} .

A cone C is said to be symmetric (or self dual) if its dual C � is equal to its closure

C. The automorphism group of the cone is the subgroup L = L(C) of GL(E)
defined by

L(C) := {g ∈ GL(E) ; g(C) = C}.

A cone C is said to be homogeneous if its group of automorphisms is transitive

on C.

Proposition 38. Let W be a Euclidean Jordan algebra. The cone Ω is convex,
proper, symmetric and homogeneous. It is called the symmetric cone of W . Con-
versely, any convex proper, symmetric and homogeneous cone in a Euclidean
space E can be realized as the symmetric cone Ω for some structure of Euclidean
Jordan algebra on W .

Example. For W = Symm(r, R), the symmetric cone Ω is the cone of positive
definite symmetric matrices. The automorphism group of the cone is isomor-

phic to GL(r, R)/ ± Id acting by (g, x) �−→ gxgt for g in GL(r, R) and x in

Symm(r, R).

Going back to the general case, an element c in a Euclidean algebra W is said to

be an idempotent if c2 = c. Two idempotents c and d are said to be orthogonal
if c.d = 0. Then c + d is an idempotent. A non zero idempotent is said to be

primitive if it cannot be written as a sum of two orthogonal nonzero idempotents.

Any idempotent can be written as a sum of mutually orthogonal primitive idem-

potents. A Jordan frame is a set (c1, c2, . . . , cr) of mutually orthogonal primitive

idempotents such that e = c1 + c2 + · · · + cr. Two Jordan frames are conjugate

under an automorphism of the Jordan algebra W . The number of elements in a

Jordan frame is called the rank of the Euclidean Jordan algebra W .
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Let x be an element in W . Then there exists a Jordan frame (c1, c2, . . . , cr) and

real numbers λ1 ≤ λ2 ≤ · · · ≤ λr such that x =
∑r

j=1 λjcj (spectral decompo-

sition of x). The λj’s are unique and called the spectral values of x.

There exists a linear form tr (respectively a homogeneous polynomial det of de-

gree r) on V , called the trace (respectively determinant), such that trx (respec-

tively detx) is the sum (respectively the product) of its spectral values (counted

with multiplicity). An element x is invertible if and only if detx �= 0.

Example. Let W = Symm(r, R). Then an idempotent is an orthogonal projector.

It is minimal if it is of rank one. A Jordan frame is a complete family of mutually

orthogonal projectors of rank one (i.e., associated to an orthonormal basis of Rr).

Spectral values, trace and determinant coincide with the usual notions.

5.2. Hermitification of a Euclidean Jordan Algebra

Euclidean Jordan algebras are intimately connected with PHJTS. First, Euclidean

Jordan algebras provide examples of PHJTS through the process of Hermitifi-
cation. Let W be a Euclidean Jordan algebra. Let W be its complexification.

Extend the Jordan product to W in a C-linear way. On W, define the following

triple product

{x, y, z} = 2
(
x.(y.z) + z.(y.x)− y.(x.z)

)
. (37)

Proposition 39. The complex vector space W with the triple product define by
(37) is a PHJTS (called the Hermitification of W ).

An idempotent of W is a tripotent of W, a primitive idempotent of W is a primi-

tive tripotent in W, and a Jordan frame of W is a Peirce frame in W.

Proposition 40. Let c be a maximal tripotent in W. Then there exists a Jordan
frame (c1, c2, . . . , cr) of W and complex numbers (λ1, λ1, . . . , λr) of modulus 1
such that c =

∑r
j=1 λjcj .

Extend the quadratic representation P from W to W in a holomorphic way. Sim-

ilarly, extend the inversion (x �→ x−1) from W to W in a meromorphic way.

Proposition 41. An element z of W is a maximal tripotent if and only if z is
invertible and satisfies z−1 = z. The Shilov boundary S of the unit ball D in W is
given by

S = {z ∈ W ; z invertible , z−1 = z} .
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In particular, this gives equations for the Shilov boundary S of the unit ball D in

W. The Shilov boundary is a totally real submanifold of W and

dimR S = dimCD.

5.3. Euclidean Jordan Algebra Associated to a Tripotent

We have the following statement, which (loosely speaking) goes in the opposite

direction. Let V be a PHJTS.

Proposition 42. Let c be a tripotent in V, and let V = V2(c)⊕V1(c)⊕V0(c) be
the Peirce decomposition of V w.r.t. c. Then:

i) the map z �−→ z∗ := 1
2{c, z, c} is a conjugate linear involution of V2(c).

ii) its set of fixed points W (c) := {z ∈ V2(c) ; z∗ = z} is a Euclidean Jordan
algebra for the following data:

x.y =
1

2
{x, c, y}, unit c , 〈x, y〉 = Reτ(x, y) . (38)

This result (applied for a maximal tripotent) helps to describe the domain D and

its Shilov boundary S near a point c in S.

Proposition 43. Let c be a maximal tripotent in V. Let V = V2(c) ⊕ V1(c) be
the corresponding Peirce decomposition, and let W (c) be the corresponding real
form of V2(c), with its structure of Euclidean Jordan algebra. Let Ω(c) be the
symmetric cone of W (c). Then:

i) the (affine) tangent space TcS of S at c is equal to

TcS = c + iW (c)⊕ V1(c) (39)

ii) the following inclusion holds:

D ⊂
(
c− Ω(c) + iW (c)

)
⊕ V1(c) (40)

See [7] for a proof.
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5.4. Euclidean Jordan Algebras vs PHJTS

Let W be a Euclidean Jordan algebra, with unit element e, and let W be its Her-

mitification. Then L(e, e) = 2 Id and Q(e) is the conjugation of W with respect

to W . Hence e is a (maximal) tripotent, the Peirce decomposition with respect to

e is trivial (i.e., W2(e) = W), the fixed points set of Q(e) is W and the structure

of Euclidean Jordan algebra on W is the initial one.

These properties essentially characterize those PHJTS which can be obtained from

a Euclidean Jordan algebra by Hermitification.

Proposition 44. Let V be a PHJTS. LetD be its unit ball for the spectral norm of
V, and let S be its Shilov boundary. Then the following equivalent properties are
equivalent:

i) V is the Hermitification of some Euclidean Jordan algebra.

ii) If c is a maximal tripotent of V, then the corresponding Peirce decomposi-
tion is trivial, i.e., V = V2(c).

iii) S is a totally real submanifold of V

iv) dimR S = dimC V.

Example. The PHJTS V = Mat(p × q, C) is the Hermitification of a Euclidean

Jordan algebra if and only if p = q. If p = q, then V is the Hermitification of

the Euclidean Jordan algebra Herm(p, C), where the Jordan product is given by

x.y = 1
2(xy + yx).

5.5. The Cayley Transform

Main reference for this section is [25], Section 10. For a presentation of the Cayley

transform from the point of view of semisimple Lie groups, see the original paper

[34] or [30], Chapter 3.

Let us first give a complement to Proposition 42. We keep the notation from

previous sections.

Let c be a tripotent in V. For a be in V2(c), let Ra be the endomorphism of V1(c)
defined by

Ra(x) = {a, c, x} . (41)

Further, define Φ : V1(c)× V1(c) −→ V2(c) by

Φ(u, v) = {u, v, c} . (42)
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Proposition 45. Let c be a tripotent in a PHJTS V. Let R and Φ be defined by
(41) and respectively (42). Then:

i) for a, b in V2(c)

1

2
(Ra ◦Rb + Rb ◦Ra) = Ra.b, Re = Id

R∗
a = Ra∗

ii) for a is in Ω(c)
R∗

a = Ra and Ra � 0 .

iii) Φ is Hermitian and Ω(c)-positive definite in the sense that, for all u, v in
V1(c)

Φ(u, v) = Φ(v, u)∗

Φ(u, u) ∈ Ω(c) and Φ(u, u) = 0 if and only if u = 0 .

Recall the notion of Siegel domain of type I and of type II. First, suppose we are

given a Euclidean vector space E and a proper open convex cone Ω in E. Let

E = E + iE be the complexification of E. Define T = T (E, Ω) as

T = Ω + iE := {z = u + iv ∈ E ; u ∈ Ω, v ∈ E} .

In other terms, the set T is the tube over Ω, or the generalized right half-space in

E. In our context, it is called the Siegel domain of type I associated to (E, Ω).

For a Siegel domain of type II, the data are:

i) a Euclidean vector space E with a proper open convex symmetric cone Ω
in E

ii) a complex vector space F

iii) a Hermitian and Ω-positive definite map Φ : F× F −→ E, where, as usual

E is the complexification of E.

Define S = S(E, Ω, F, Φ)

S := {(u, w) ∈ E× F ; Re(u)− Φ(w, w) ∈ Ω} . (43)

Then S is called the Siegel domain of type II associated to (E, Ω, F, Φ).

Observe that a Siegel domain of type I is a degenerate case of a Siegel domain of

type II (take F = {0}).

We can now define the Cayley transform.
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Proposition 46. Let c be a maximal tripotent in V. Let V = V2(c)⊕V1(c) be the
Peirce decomposition w.r.t. c. For x an arbitrary element of V, let x = x2 + x1

be the corresponding decomposition of x.

i) Let x be in D. Then c − x2 is invertible in the complex Jordan algebra
V2(c).

ii) Set, for x in D

γc(x) = (e + x2)(e− x2)
−1 + R(e−x2)−1(x1) .

Then γc is a biholomorphic diffeomorphism of D onto the Siegel domain

S(W (c), Ω(c), V1(c), Φ).

When the PHJTS V is the Hermitification of a Euclidean Jordan algebra, then,

in our notation V1(e) = 0, and the image of D by the Cayley map is a Siegel

domain of type I. The bounded domains corresponding to the PHJTS obtained by

Hermitification of a Euclidean Jordan algebra (cf Proposition 44) are called tube
type domains.

6. The Triple Invariant

The general reference for this section is [11].

Finding invariants is a good tool to study orbits. In this section, we will construct

an invariant for the action of G on S × S × S. We first construct an invariant on

D ×D ×D, then “pass to the limit” to construct an invariant on S × S × S. The

invariant behaves quite differently wether D is of tube-type or not.

6.1. The Symplectic Area of a Geodesic Triangle

The Kaehler form on D is the real differential two-form ω defined on D by the

formula

ωz(ξ, η) = gz(ξ, Jzη) (44)

where ξ and η are in the tangent space at z. The definition as stated is valid on any

complex Hermitian manifold. The form ω is clearly G-invariant, and it is a closed
form (more generally, this is true for the Kaehler form associated to the Bergman

metric of any bounded domain).

Given two points z, w in D, there is a unique geodesic segment starting from z
and ending at w. This fact is true for any Riemannian symmetric space of the
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noncompact type. Given three points z1, z2, z3 in D, one can form the oriented
geodesic triangle T (z1, z2, z3), joining z1 to z2, then z2 to z3 and finally from

z3 to z1, each time by using the unique geodesic segment between two summits.

Choose a piece of smooth surface Σ in D such that its boundary is the triangle,

and orientate Σ such that its oriented boundary is T (z1, z2, z3). Then define the

symplectic area of T (z1, z2, z3) by the formula

A(z1, z2, z3) =

∫

Σ

ω . (45)

As the form ω is closed, this integral does not depend on the choice of Σ and

defines a real valued function on D ×D ×D.

It turns out that this function can be explicitely computed. For convenience, we

slightly change the normalization of the metric. We will use the metric (propor-

tional to the Bergman metric) which has minimal sectional holomorphic curva-

ture equals to −1. It amounts to replace, in the defintion of the metric on D the

Bergman kernel kD by the kernel k(z, w) = kD(z, w)
2

p , where p is some integer

related to the roots structure of the symmetric space D (see [11] for details).

Theorem 47. Let z1, z2, z3 be three points in D. Then

A(z1, z2, z3) = −
(
arg k(z1, z2) + arg k(z2, z3) + arg k(z3, z1)

)
. (46)

Observe that D is simply connected, and for any z, w in D, k(z, w) �= 0 and

k(z, z) > 0, so that there is a unique continuous determination of the argument of

k(z, w) over D ×D which takes value 0 on the diagonal.

For (most of) the classical domains, the result is due to Domic and Toledo (see

[12]). The computation in the general framework is in [11].

For the unique disc in C, this formula is esssentially equivalent to the classical

Gauss formula for the area of a geodesic triangle in the unit disc (with the Poincaré

metric) A = π − (α + β + γ), where α, β, γ are the angles of the triangle.

Proposition 48. The symplectic area satisfies the following properties:

i) A
(
g(z1), g(z2), g(z3)

)
= A(z1, z2, z3), for all g in G.

ii) A(zτ(1), zτ(2), zτ(3)) = sign(τ)A(z1, z2, z3)

for τ any permutation of {1, 2, 3}.
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iii) (cocycle property)

A(z1, z2, z3) = A(z1, z2, z4) + A(z2, z3, z4) + A(z3, z1, z4) (47)

iv) (bounds for the area)

−rπ < A(z1, z2, z3) < rπ (48)

where z1, z2, z3, z4 are arbitrary points in D.

Property i) is a consequence of the fact that the defintion of the area uses notions

(geodesic triangle, Kaehler form) which are invariant under G, ii) reflects the fact

that permuting two summits of a triangle changes its orientation, and iii) is a direct

consequence of the fact that the Kaehler form is closed (it can also be seen on the

formula (46)). The proof of iv) is more subtle and uses the explicit expression

given by (46). The bounds are sharp.

6.2. The Limit Process

Having contructed this invariant function on D × D × D, one can “pass to the

limit” to construct an invariant on S×S×S. A triple (σ1, σ2, σ3) in S×S×S is

said to be mutually transverse if σi�σj for i �= j. For mutually transverse triples,

the approach to a point of the Shilov boundary is unrestricted.

Theorem 49. Let σ1, σ2, σ3 be mutually transverse points in S. Then the limit

ι(σ1, σ2, σ3) =
1

π
lim

zj→σj

A(z1, z2, z3) (49)

exists as zj in D tends to σj (j = 1, 2, 3).

The proof uses the explicit formula for the symplectic area (46), and the charac-

terization of transverse pairs given in Proposition 35.

For the singular case (at least one pair (σi, σj) with i �= j is not transverse), the

approach to the Shilov boundary has to be restricted.

Let c be any point in S. Then c is a maximal tripotent of V, and the Peirce

decomposition of V with respect to c reads V = V2(c) ⊕ V1(c). Let W (c) be

the real from of V2(c) with its structure of Euclidean Jordan algebra and let Ω(c)
be the symmetric cone of W (c) (cf Proposition 42) . Let γ : [0, 1] −→ V be a

smooth curve such that γ(0) = c and γ(t) ∈ D for 0 < t ≤ 1. By (43), the

tangent vector γ̇(0) to the curve at c satisfies

γ̇(0) ∈ −Ω(c) + iW (c)⊕ V1(c) .
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Definition 50. The curve γ is said to be Ω-radial at c if

γ̇(0) ∈ −Ω(c)⊕ V1(c) .

In other words, there is no restriction on the V1 component of the tangent vector

to the curve at c (it allows tangential approach to the Shilov boundary in these

directions), but there is a strong condition on its component in V2(c). For instance,

when D is the unit disc in C a Ω-radial curve γ at the point c = γ(0) has to be

radial in the usual sense (its derivative at c is perpendicular to the unit circle).

Proposition 51. Let c be in S and let γ be a Ω-radial curve at c. Let g be in G.
Then g ◦ γ is a Ω-radial curve at g(c).

We can now complete Theorem 49 to include non transverse triples.

Theorem 52. Let σ1, σ2, σ3 be in S. Then the limit

ι(σ1, σ2, σ3) =
1

π
lim

zj→σj

A(z1, z2, z3) (50)

exists as zj in D tends to σj along any Ω-radial curve at σj (j = 1, 2, 3). The
limit does not depend on the curves used to approach the points σj .

For the proof, see [6], [7].

The function ι will be called the triple invariant on S.

Proposition 53. The triple invariant ι : S × S × S → R has the following
properties:

i) ι
(
g(σ1), g(σ2), g(σ3)

)
= ι(σ1, σ2, σ3), for all g in G

ii) ι(στ(1), στ(2), στ(3)) = sign(τ)ι(σ1, σ2, σ3) for any permutation τ of {1, 2, 3}

iii) (cocycle property)

ι(σ1, σ2, σ3) = ι(σ1, σ2, σ4) + ι(σ2, σ3, σ4) + ι(σ3, σ1, σ4)

iv) −r ≤ ι(σ1, σ2, σ3) ≤ r, for all σ1, σ2, σ3, σ4 in S.

These results are immediate consequences of Proposition 48. The bounds in

iv) can be shown to be sharp. There is even a characterization of those triples

(σ1, σ2, σ3) in S × S × S for which |ι(σ1, σ2, σ3)| = r (see [11]) .
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6.3. Example: Elie Cartan’s Invariant

Consider the special case of the unit ball in C2:

D = {(x, y) ∈ C2 ; xx + yy < 1}.

On C3, consider the Hermitian form h given by

h
(
(z, x, y), (z′, x′, y′)

)
= zz′ − xx′ − yy′ .

The map (x, y) �−→ C(1, x, y) yields an isomorphism of D with the open set D̃
of the projective space P2(C) = (C3 \ {0})/C∗ defined by

D̃ := {[v] ∈ P2(C) ; h(v, v) > 0}

where we have set [v] = Cv for any v �= 0 in C2.

The Shilov boundary of D (which coincides with its topological boundary in this

case) is the unit sphere S in C2. The corresponding boundary of D̃ is the S̃ of

isotropic lines (for the form h) in C3 .

The group PU(h) � PU(1, 2) acts naturally on D̃ and on S̃. These actions can

be transferred to D and S respectively.

In 1932 Elie Cartan (cf. [3]) constructed an invariant for triples of distinct1 points

in S. First observe that if v and w are non proportional isotropic vectors in C3,

then h(v, w) �= 0, because otherwise the complex plane generated by v and

w would be totally isotropic, which is impossible. Now let v1, v2, v3 be three

isotropic vectors in C3 \{0}mutually non proportional, and consider the complex

number

J(v1, v2, v3) = h(v1, v2)h(v2, v3)h(v3, v1)

which is different from 0 by the previous observation. Now, if we change vj to

λjvj (j = 1, 2, 3), then J is multiplied by the factor |λ1|
2|λ2|

2|λ3|
2. Hence the ar-

gument of J depends only on the triple of complex isotropic lines ([v1], [v2], [v3]).
Moreover the principal determination of the argument belongs to [− π

2 , +π
2 ]. In

fact, two disctinct points of S are conjugate by an element of SU(1, 2) to (say) the

points (0,−1) and (0, 1) respectively. If (x, y) is a third point on S, then

J
(
(1,−1, 0), (1, 1, 0), (1, x, y)

)
= 2
(
|y|2 + (x− x)

)

proving the claim. Hence arg J gives a well defined invariant on triples of distinct

points in S, taking values in [−π
2 , +π

2 ]. Up to a factor 2
π , it coincides with the

triple invariant ι we have defined on S × S × S. For more properties of this

invariant, see [15]. For a generalization to the Stiefel manifold, see [4].

1Observe that two points on S are transverse in the sense of 4.5 if and only if they are distinct.



64 Jean-Louis Clerc

6.4. Example: the Triple Maslov Index

For a presentation of the classical triple Maslov index, see [23].

Another important example is the celebrated triple Maslov index on the Lagrangian

manifold. Let (E, ω) be a real symplectic vector space of dimension 2r. By defi-

nition a Lagrangian is a maximal totally isotropic subspace of E. The dimension

of a Lagrangian is necessarily r and a vector subspace L of dimension r is a La-

grangian if and only if the restriction of ω to L×L is identically 0. The symplectic

group G = Sp(2r, R) transforms a Lagrangian into another Lagrangian.

The set of all Lagrangians is easily seen to be a closed submanifold of the Grass-

mannian of r-dimensional spaces in E, which is called the Lagrangian manifold,

denoted by Λr. It turns out that it can be realized as the Shilov boundary of a

bounded symmetric domain.

Let W = Symm(r, R) be the Euclidean Jordan algebra of real r × r symmetric

matrices, with Jordan and scalar products

x.y =
1

2
(xy + yx), 〈x, y〉 = Trxy.

On its Hermitification W � Symm(r, C), the spectral norm coincides with the

usual operator norm on (symmetric) matrices. Hence the associated bounded sy-

metric domain is the unit ball D (called the Siegel disc), which can equivalently

be defined by

D := {z ∈ Symm(r, C) ; 1− zz∗ � 0} .

Let E be the complexification of E, and let σ be the conjugation of E with respect

to E. Extend ω as a C-bilinear symplectic form on E. Let h be the Hermitian

form on E× E defined by

h(ξ, ξ′) =
i

2
ω
(
ξ, σ(ξ′)

)
.

Let (ε1, . . . , εr, φ1, . . . , φr) be a symplectic basis, i.e., a basis of E such that

ω(εj , φj) = −ω(φj , εj) = 1

for 1 ≤ j ≤ r, and 0 for all other pairs of vectors in the basis. Let ej = εj + iφj .

Then

h(ej , ej) = 1, h
(
σ(ej), σ(ej)

)
= −1

for 1 ≤ j ≤ r and 0 for all other pairs. Let V+ be the complex vector space

generated by the ej , 1 ≤ j ≤ r and let V− = σ(V+) be the complex vector space
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generated by the σ(ej), 1 ≤ j ≤ r. Then V+ and V− are complex Lagrangian

subspaces, and

h|V+×V+
� 0, h|V+×V−

= 0, h|V−×V−
� 0 .

Using the basis {e1, . . . , er} (respectively {σ(e1), . . . , σ(er)}), identify V+ (re-

spectively V−) with Cr, and hence E � V+×V− with Cr ×Cr. In these setting,

σ(ξ, η) = (η, ξ) and the forms ω and h are given by

h
(
(ξ, η), (ξ′, η′)

)
= ξtξ

′
− ηtη′, ω

(
(ξ, η), (ξ′, η′)

)
= −2i (ξtη′ − ηtξ′)

for ξ, ξ′, η, η′ ∈ Cr. Let D̃ be the set of complex vector subspaces L of E, of

dimension r, which satisfy

ω|L×L = 0, h|L×L � 0 .

The set D̃ is an open set in the complex Lagrangian manifold, which contains V−.

Let z be in Mat(r, C). We regard z as an operator from V− into V+ and let

Lz = {(zη, η) ; η ∈ V−} ⊂ E

be its graph. Observe that 0 is mapped to V−.

Proposition 54. The map z �−→ Lz is a holomorphic isomorphism of D onto D̃.

The condition ω|Lz×Lz
= 0 is a consequence of the symmetry of z, whereas the

condition h|Lz×Lz
� 0 is a consequence of ‖z‖ < 1.

Extend in a C-linear way the action of the symplectic group G to E, and observe

that G preserves both ω and h. Hence the group G acts on D̃, and on D by

transfering the action.

Thanks to Proposition 41, the Shilov boundary S of D is given by

S = {z ∈ Symm(r, C) ; zz∗ = 1} .

If z is in S, then its graph Lz satisfies both ω|L×L = 0 and h|L×L = 0. Such

a space L is stable by σ, and hence has to be the complexification of some La-

grangian subspace L of E. Conversely, the complexification of any Lagrangian

L of E can be obtained as the graph of some element in S. Hence the Shilov

boundary of D is identified with the Lagrangian manifold Λr, in a G-equivariant

way.
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Let L1, L2, L3 be three Lagrangians in E. Then, following Kashiwara (see [23]),

consider the quadratic form Q = QL1,L2,L3
on L1 × L2 × L3 defined by:

Q(ξ1, ξ2, ξ3) = ω(ξ1, ξ2) + ω(ξ2, ξ3) + ω(ξ3, ξ1) (51)

where ξ1 ∈ L1, ξ2 ∈ L2, ξ3 ∈ L3. If g is in G, then

Qg(L1),g(L2),g(L3) = QL1,L2,L3
◦ g−1

so that the signature of Q is an invariant under the action of G. Define the triple
Maslov index of the triple (L1, L2, L3) by

ι(L1, L2, L3) = signQL1,L2,L3
.

This defines an invariant (under the action of the symplectic group) for triples

of Lagrangians. Through the identification of the Lagrangian manifold with the

Shilov boundary of the Siegel disc, the triple Maslov index coincides with the

triple invariant on S × S × S which we have defined in Theorem 52.

For all classical domains of tube-type, there is an analog of Kashiwara’s formula

for the triple invariant (see [5]). The situation is specially interesting for the do-

main corresponding to the Euclidean Jordan algebras of rank two (type IV).

7. G-orbits in S × S × S (Tube-type Case)

The reference for this section is [9].

There is a great difference between our two examples. In the case of the unit

sphere in C2 (which is the Shilov boundary a non tube-type domain of rank 1), the

triple index takes all values in the interval [−1, 1]. In the case of the Lagrangian

manifold Λr (which is the Shilov boundary of a tube-type domain of rank r), the

triple index has values in the set of integers {−r,−r + 1, . . . , r − 1, r}. This

is characteristic of the difference between tube-type domains and non-tube type

domains. This reflects a qualitative difference in the orbit picture of G in S×S×S.

In the non-tube-type case, there is a continuous family of G-orbits, whereas in the

tube-type case, there is only a finite number of G- orbits. In the latter case, one

can even give a classification of the orbits. Let us present some more details for

the tube type case.

So, let D be a bounded symmetric domain of tube-type, realized as the unit ball

in a PHJTS W which is the Hermitification of some Euclidean Jordan algebra W .

Let S be its Shilov boundary.
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Proposition 55. The Shilov boundary S has a natural structure of compact Rie-
mannian symmetric space, for which the group K acts by isometries.

Sketch of the proof (see [25]) . Let c be a point in S, i.e., c is a maximal tripotent

in W. The Peirce decomposition w.r.t. c is just W = W2(c), and Q(c) is a

(conjugate-linear) involution of W. Its set of fixed points W (c) has a structure of

Euclidean Jordan algebra, isomorphic to W . The tangent space TcS of S at c can

be identified with iW (c), and one can transport the invariant inner product on the

Euclidean Jordan algebra W (c) to define an inner product on TcS. As c varies,

this defines a Riemannian structure on S, which is invariant under K. Moreover,

Q(c) maps S into itself, yielding an involutive isometry of S. But Q(c) acts on

TcS � iW (c) by −1, and hence coincides with the geodesic symmetry at c. �

Define a torus to be a maximal flat submanifold in S. One way of obtaining a

torus is to use a Jordan frame (c1, c2, . . . , cr) in W . Then

T := {z =
r∑

j=1

eiθjcj ; θj ∈ R/2πZ}

is a torus in S.

Let T be a torus in S. Then, given any couple (x, y) in S × S, there exists an

element k in K such that kx and ky belong to T (an important result in the theory

of compact Riemannian symmetric spaces, see [17], Chapter VII).

Theorem 56. Let T be a torus in S. Let x, y, z be three points in S. There exists
an element g of G such that g(x), g(y), g(z) belong to T .

In other words, any G-orbit in S × S × S meets T × T × T . This result is very

helpful towards the classification of G-orbits.

To give the classification result, we need one last invariant on S × S × S. Let

x, y, x be three points in S. Form the faceFx,y,z generated by the subset {x, y, z},
and define δ(x, y, z) to be the rank of Fx,y,z . Then clearly, δ(x, y, z) is invariant

under the action of G. Notice that this invariant is symmetric with respect to

permutations of the three points.

Theorem 57. Let x, y, z (respectively x′, y′, z′) be in S×S×S. Then there exists
an element g of G such that x′ = g(x), y′ = g(y), z′ = g(z) if and only if

δ(x, y) = δ(x′, y′), δ(y, z) = δ(y′, z′), δ(z, x) = δ(z′, x′)

δ(x, y, z) = δ(x′, y′, z′), ι(x, y, z) = ι(x′, y′, z′).
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In other words, the five invariants (the three mutual arithmetic distances, the rank

δ of the face generated by the three points and the triple index ι) characterize the

G-orbits. Notice in particular that it implies that there is only a finite number of

G-orbits in S × S × S. Fixing a torus T in S (or a Jordan frame in W ), it is

possible to give a representative in T × T × T of each G-orbit in S × S × S.

The five invariants are not quite independant (for instance, an obvious inequality

is δ(x, y) ≤ δ(x, y, z)), but one can give precisely the conditions on the values of

these invariants in order to have a corresponding G-orbit (see [9] for details). For

the case of the Lagrangian manifold, the classification of the orbits of Sp(2r, R)
into Λr × Λr × Λr is in [19].

8. The Maslov Index for Paths

The main reference for this section is [8].

In symplectic geometry, the theory of the triple Maslov index is only one aspect

of the theory of the Maslov index. There are other indices, more or less related to

the triple Maslov index. Each of them can be generalized in the context of Shilov

boundaries of bounded symmetric domains of tube-type. We will concentrate on

the generalization of the Maslov index for a path of Lagrangians. From our point

of view (which does not follow the historical development of these notions), it

arises naturally in relation to the cocycle property of the triple invariant, when

addressing the question of the existence of a primitive for this cocycle.

Use notation of Section 7. Let m be a Z-valued function on S × S which has the

following properties:

m(g(x), g(y)) = m(x, y), m(y, x) = −m(y, x) (52)

for x, y in S × S and g in G.

Then it is easily verified that the function

μ(x, y, z) = m(x, y) + m(y, z) + m(z, x) (53)

on S × S × S is Z-valued and has the following properties:

i) μ(g(x), g(y), g(z)) = μ(x, y, z) for x, y, z in S and g in G

ii) μ is skew-symetric with respect to permutations of {x, y, z}

iii) μ(x, y, z, t) = μ(x, y, t) + μ(y, z, t) + μ(z, x, t), for all x, y, z, t in S.
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The function m is called a primitive of μ. The attentive reader will observe that

this has a cohomological flavor, which will not be discussed here (for more infor-

mation, see [16] and [27]).

There exists no primitive for the triple invariant ι on S×S×S, i.e., no function m
on S × S satisfying the asumptions (52), and which would satisfy (53) for μ = ι.
But there is in some sense a substitute, by going to the universal cover of S. In

fact S is not simply connected.

Proposition 58. LetD be an irreducible bounded symmetric domain of tube-type,
and let S be its Shilov boundary. Then π1(S), the first homotopy group of S, is
isomorphic to Z.

Recall that the Shilov boundary of the unit ball of W is

S = {z ∈ W ; z = z−1} .

If z is in S, then (detz)−1 = det(z−1) = detz = detz, so that |detz| = 1.

Let S1 = {z ∈ S ; detz = 1}. Then S1 is simply connected and the universal

covering of S can be realized as S̃, where

S̃ := {(z, θ) ∈ S1 × R ; detz = eirθ} .

Then there exists a Z-valued function m̃ on S̃×S̃ which is a primitive of the triple

Maslov index ι, in the sense that:

i) m̃ is invariant by the diagonal action of (some covering of) G

ii) m̃ is invariant by the diagonal action of π1(S), i.e., m(T x̃, T ỹ) = m(x̃, ỹ)
for any T in π1(S)

iii) m̃ is skew-symmetric, i.e., m̃(x̃, ỹ) = −m̃(ỹ, x̃)

iv) for any three points x̃1, x̃2, x̃3 in S̃, the sum

m̃(x̃1, x̃2) + m̃(x̃2, x̃3) + m̃(x̃3, x̃1)

depends only on the projections x1, x2, x3 of x̃1, x̃2, x̃3 on S and is equal

to ι(x1, x2, x3).

The construction of m̃ follows the original construction proposed by Souriau for

the Lagrangian manifold (see [31] or [16]).

Notice that a function on S̃ × S̃, which is invariant by the diagonal action of

π1(S) is nothing but a function defined for paths in S, which is invariant under
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a homotopy of the path (with fixed extremities). This is the point of view in

the original and more geometric approach, due to Maslov, Arnold and Leray for

the Lagrangian manifold, leading to the notion of the Maslov index for a path
of Lagrangians. We sketch a presentation of the generalization of this approach

(see [8] for details).

Fix x0 a point in S, and define the Maslov cycle based at x0 as the set Σ(x0)
defined by

Σ(x0) = S \ {x ∈ S ; x�x0}.

As the point x0 is supposed to be fixed, we drop the index x0. The set Σ = Σ(x0)
is a (real) algebraic hypersurface, as

Σ = {x ∈ S ; det(x− x0) = 0} .

It admits the following stratification:

Σ =
r⊔

j=1

Σ(j), Σ(j) = {x ∈ S ; δ(x, x0) = r − j} .

By computing the codimension of each stratum Σ(j) in S, it can be shown that the

singular set of Σ (which is equal to !r
j=2Σ

(j)) has codimension at least three in

S, the regular stratum Σ(1) being an (open) hypersurface in S.

Let x be a point in Σ(1). The tangent space TxS of S at x has a natural structure

of Euclidean Jordan algebra, and in particular, there is a symmetric cone Ωx in it.

It turns out that Hx, the tangent hyperplane to Σ(1) at x does not meet the cone

Ωx. Hence, as the cone Ωx is convex, it lies entirely inside one open half-space

limited by Hx. A transverse orientation of the Maslov cycle is obtained at each

regular point x of Σ (i.e., x ∈ Σ(1)) by declaring positive the half-space of TxS
limited by Hx that contains the cone Ωx.

These two geometric properties of Σ (the singular set of Σ is of codimension

greater than or equal to 3, Σ admits a transverse orientation) are the key ingredi-

ents in the construction of a Z-valued index for paths, due to Arnold (see [1]).

Definition 59 (admissible path) Let γ(t), 0 ≤ t ≤ 1 be a path in S, with end-
points x = γ(0) and y = γ(1) not in Σ. The path is said to be admissible if the
following conditions are satisfied:

i) γ is a smooth map

ii) γ(t) does not belong to Σ except for a finite number of values of t, say
t1, t2, . . . , tl in the increasing order
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iii) for each j, 1 ≤ j ≤ l, xj = γ(tj) belongs to Σ(1) and the tangent vector
γ̇(tj) of the path at xj is transverse to Σ(1).

Let γ be an admissible path. For each j, 1 ≤ j ≤ l, let εj be +1 if the tangent

vector γ̇(tj) belongs to the positive half-space limited by Hxj
, and εj = −1 if

not. Now define the Maslov index of the path γ (relative to x0) to be

Masx0
(γ) =

l∑

j=1

εj .

Theorem 60. Let x and y be two points in S, not belonging to the Maslov cycle
Σ(x0). Then:

i) any homotopy class of paths with origin x and end y contains an admissible
path.

ii) two admissible paths with origin x and end y which are homotopic have the
same Maslov index.

The theorem allows to extend the defintion of the Maslov index to arbitrary paths,

provided their extremities do not belong to the Maslov cycle based at x0.

The Maslov index of a path depends on the point x0. It is however possible to

construct from it a function on S̃× S̃, which has a simple relation to the primitive

constructed à la Souriau (see again [8] for details).

The Maslov index has many applications in mathematics and in mathematical

physics (metaplectic representation, geometrical optics, semiclassical approxima-

tion to quantum mechanics). See [2], [16], [22], [23], [26].

9. Appendix: List of Bounded Symmetric Domains and their Shilov
Boundaries

We give the list of the simple bounded symmetric domains and the list of the

Shilov boundaries of the simple tube type domains. Notations for Lie groups and

Lie algebras are those of [17]. The classification can be obtained either by first

classifying the simple Riemannian symmetric spaces, then looking for those cases

where k has a non trivial center (this is the approach in [17]) or one can classify

the PHJTS (see [25], Section 4).
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List of simple bounded symmetric domains

V g tube type rank

I Mat(p× q, C) su(p, q) yes if p = q inf(p, q)

II Skew(n, C) so∗(2n, C) yes if n even [n
2 ]

III Symm(n, C) sp(2n, R yes n

IV C× Cn−1 so(2, n) yes 2

V Mat(1× 2, O) e6,(−14) no 2

VI Herm(3, O) e7,(−25) yes 3

N.B. V stands for the corresponding PHJTS, and g is the Lie algebra of the group

of holomorphic diffeomorphisms of the domain.

List of Shilov boundaries of bounded symmetric domains of tube type

W G S

Symm(n, R) Sp(2n, R) Λn � U(n, C)/O(n, R)

Herm(n, C) SU(n, n) U(n, C)

Herm(n, H) SO∗(4n) U(2n, C)/SU(n, H)

R1,n−1 SO0(2, n) S1 × Sn−1/Z2

Herm(3, O) E7,(−25) U(1)E6/F4

NB. W stands for the Euclidean Jordan algebra in the complexification of which

the tube type domain is realized, G is (up to a finite covering) the neutral com-

ponent of the group of holomorphic diffeomorphisms of the domain, and S is its

Shilov boundary.
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