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EXACT INTEGRATION OF A NONLINEAR MODEL OF STEADY
HEAT CONDUCTION/RADIATION IN A WIRE WITH INTERNAL
POWER
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Communicated by Mauro Spera

Abstract. The paper treats in one dimensional mixed heat transfer problem of
steady conduction and radiation in a wire with internal source. We are led to a
Cauchy problem consisting of a second order nonlinear ordinary differential equa-
tion. A special integrable case with two non independent left boundary conditions
requires a hyperelliptic integral, for which a representation theorem has been es-
tablished through the Gauss hypergeometric function2F1. The relevant steady
solution is then found to grow monotonically with the distance from boundary, up
to a certain limiting position where it suddenly jumps unbounded.

1. Introduction

Conduction, namely the flow of thermal energy through solid bodies, was mod-
elled by Jean B. Fourier (1768-1830) who first inquired into the general princi-
ples of it. Throughout hisThéorie analytique de la chaleur(1822), he established
a partial differential equation (PDE) for analyzing the temperature distribution
within a conducting body. His analytical conduction theory disregards the mole-
cular structure of a body and thinks of it as a continuum, but after Fourier it has
been understood that-on the contrary- conduction is actually caused by particle
collisions. Hislinear PDE, in one dimensional geometry, is

ρ cp
∂T

∂t
(t, x) = χ

∂2T

∂x2
(t, x)

where the material data are: thermal conductivityχ, specific heat capacitycp and
volumetric densityρ. As far as it concerns the spatial effects, the PDE has to be
solved with suitableboundary conditions(BC).

Transient problems(∂T/∂t 6= 0) will also needinitial conditions(IC) on T for
every position in the system: the PDE is parabolic and heat propagates atinfinite
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speed. Several investigators, (see e.g. [4] page 865) pointed out that transient
heat really flows with afinite heat propagation speed, and then the adequate PDE
governing it should be more complicated and of hyperbolic type (telegraphPDE),
see [2]. Nevertheless the instantaneous unsteady equation is sufficient for most
applications, and can be enlarged to include an inner sourceqv = constant, or a
forcing function oft

ρ cp
∂T

∂t
(t, x) = χ

∂2T

∂x2
(t, x) + qv(t)

where each term is a specific power, namely energy for unit time and volume.
Such is the case of a radioactive source, whose power generation depends on
the thermal yield of each transition multiplied by decaying nuclei number (ac-
tivity) for unit time and volume. Moreover, faced with very high temperatures,
a realistic model should take into account radiation by or to the body and which
propagates even in a lack of medium. The radiated power by aT -hot body in
a T0-environment is ruled by the Stefan-Boltzmann law of the fourth powers of
temperatures. In such a way, we do not have a linear conduction equation any
longer, but a mixed conduction/radiationnonlinearPDE

ρ cp
∂T

∂t
(t, x) = χ

∂2T

∂x2
(t, x)− α

(
T 4(t, x)− T 4

0

)
+ qv

a much more difficult problem.

It has not to be confused with a conduction with radiative boundary condition. For
example, for an infinitely longR-cylinder the radial conduction is modelled by a
linear ODE in T (r) and in such case the radiation towards the surroundings will
involve onlyT (R) with anonlinearcondition on it. In our paper we will consider
a one dimensional, steady, thermal, axial conduction with simultaneous radiation,
which we will integrate with the help of the hypergeometric function.

2. The Steady Thermal System and its Nonlinear ODE

Our system consists of a homogeneous, indefinite wire of radiusR, whose mater-
ial is characterized by the constantsρ, cp, χ and having a cross section of areaω
and a perimeterp.

The temperature equation along a thin wire where a constant electric current is
flowing in, was given in 1872 by Verdet

∂T

∂t
(t, x) = k

∂2T

∂x2
(t, x)− ν (T (t, x)− T0) + qv
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according to [3], page 149. Here

1. T (x) is the absolute wire temperature atx, andT0 the constant environment
temperature

2. qv is thepower volumetric densitygenerated inside the wire

3. k =
χ

ρcp
is thethermal diffusivityof wire’s material

4. ν =
Hp

ρcpω
, whereH is the surface coefficient heat transferof the Newton

linear cooling law.

The last equation is asserting that the conduction takes place in the wire only along
x and then not radially; and the system looses heat to its surrounding at a rate pro-
portional to the temperature difference (Newton’s cooling law): what is likely only
with a small difference. If this is not, the heat lost byradiationshall be taken in ac-
count: from the wire’s lengthdx, the radiated power is:̃σp

(
T 4 − T 4

0

)
dx, where

σ̃ is a constant. Inideal conditions, we would have only the Stefan-Boltzmann
constant

σ = 5.669× 10−8Wm−2 0K−4

as area multiplier. With areal body, a factor< 1 involving the emissivity, will re-
late the radiation of the real grey surface to that of the ideal black one. In addition,
not the whole heat radiated by the wire will reach the environment. Thenσ has
to be multiplied by theemissivityand by theview factorto give σ̃. Furthermore,
in steady state∂T (t, x)/∂t = 0, so that our termal stationary balance becomes an
ordinary differential equation

T ′′(x)− 2σ̃

χR

(
T 4(x)− T 4

0

)
+

qv

χ
= 0 (1)

where the symbol′′ means the second derivative operatord2/dx2. The heat will
then be transmitted along the wire, but simultaneously, at eachx a part of it will be
radiated outwards. The model is more accurate for very thinwires, and therefore
certainly not forrods, whose radial dependence ofT has been ignored. Equation
(1) displays a nonlinear, one-dimensional, steady model of both conduction and
radiation through and from a indefinite wire, whose boundary atx = 0 is kept at
the surrounding temperatureT0.

The most straightforward BC for a problem like this, is to specify the temperature
at the boundary, aDirichlet-typeBC. It will be recalled here that there is a second
BC assigning somewhere heat flux (proportional to the gradient∂T/∂x, according
to Fourier law) and called aNeumann-typeBC.
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The second condition concernsV0, namely the thermal gradient atx = 0

T ′′(x)− 2σ̃

χR

(
T 4(x)− T 4

0

)
+

qv

χ
= 0, T (0) = T0, T ′(0) = V0. (2)

Now we impose both a Dirichlet and a Neumann boundary condition atx = 0. We
are, in such a way,formally faced with a Cauchy initial value problem like in par-
ticle Mechanics: the above ODE is modelling a undamped, quartic, steady, forced,
one dimensional oscillator physically behaving as our conducting/radiating wire
in thermal equilibrium. Likewise, the prescribed levels of temperature (T0) and
gradient (V0) at boundaryx = 0 can be read as IC of position and speed.

3. Thermal System ODE Integration

The integration of (2) in general case ofboth non-zero and independent left bound-
ary conditionsV0 andT0, leads to a hyperelliptic integral with a nonhomogeneous
5th degree polynomial under square root. In a particular, meaningful case we will
give it in terms of the Gauss hypergeometric function. For the sake of conve-
nience, let us rewrite (2)

T ′′(x) =
5
2

a4T 4(x)− 1
2

b4, wherea =
(

8σ̃

5χR

)1/4

, b = 2
(

T0 +
qν

χ

)1/4

.

We introduce a supplementary constraint between the left boundary dataT0 and
V0

L := V 2
0 − T0(a4T 4

0 − b4) = 0. (3)

Such a constraint has been deliberately set for obtaining an integrable case: should
beL ∈ R, L 6= 0, the stationary distribution ofT with x along the wire would be
different, and would require a more difficult integration, as we have already said.

Then we state the Theorem

Theorem 1. The solutionT (x) of initial value second order nonlinear problem:

T ′′(x) =
5
2

a4 T 4(x)− 1
2

b4, T (0) = T0 > 0, T ′(0) =
√

a4T 5
0 − b4T0 (4)

is defined for

0 ≤ x < x∞ :=
2

3a2T
3/2
0

2F1

(
3
8
, 1

2 ;
11
8

;
b4

a4T 4
0

)
.
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Furthermore
lim

x↑x∞
T (x) = ∞. (5)

Finally, the inverse functionx(T ) of the solution of(4) is given by

x(T ) = x∞ − 2
3a2 T 3/2 2F1

(
3
8
,
1
2
;
11
8

;
b4

a4T 4

)
. (6)

For the proof of Theorem 1, we need to state in advance a definite hyperelliptic
integration formula, as given in Theorem 2. Formula (7) allows to evaluate a
hyperelliptic integral by means of functionsΓ and2F1. It is a new, as far as we
are concerned, and seems to own an intrinsic mathematical interest beyond the
frame of its birth.

Theorem 2. If u > 1, then
∫ u

1

dτ√
τ(τ4 − 1)

=
√

π

4
Γ

(
3
8

)

Γ
(

7
8

) − 2
3u
√

u
2F1

(
3
8
,
1
2
;
11
8

;
1
u4

)
. (7)

Proof: Integrating term by term and making use of the Pochhammer symbol(·)n,
we find

∫ u

1

dτ√
τ(τ4 − 1)

=
1
4

∞∑

n=0

(
1
2

)
n(

n + 3
8

)
n!
− 1

4u
√

u

∞∑

n=0

(
1
2

)
n

u−4n

(
n + 3

8

)
n!

. (8)

We ought to prove the convergence of the two series at right hand side of (8). The
former is a numerical series convergent by the Raabe criterion as if

xn =

(
1
2

)
n(

n + 3
8

)
n!

then we have lim
n→∞n

(
xn

xn+1
− 1

)
=

3
2
.

The latter converges, having the same general coefficient of the previous one,
multiplied byu−1 < 1. Both series can be evaluated through the hypergeometric
function2F1. In fact, we have first to observe that

(
3
8

)
n(

11
8

)
n

=
3
8

n + 3
8

.

Furthermore, recalling the definition of hypergeometric series

2F1(p, r; s; z) =
∞∑

n=0

(p)n (r)n

(s)n

zn

n!
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we obtain

1
4

∞∑

n=0

(
1
2

)
n(

n + 3
8

)
n!

=
1
4

∞∑

n=0

(
1
2

)
n

(
3
8

)
n

3
8

(
11
8

)
n

n!
=

2
3 2F1

(
3
8
,
1
2
;
11
8

; 1
)

.

Taking the Gauss formula into account, see for instance [5], page 40

2F1(p, r; s; 1) =
Γ(s)Γ(s− p− r)
Γ(s− p)Γ(s− r)

we get

2F1

(
3
8
,
1
2
;
11
8

; 1
)

=
3
8
√

π
Γ

(
3
8

)

Γ
(

7
8

)

and therefore
∫ u

1

dτ√
τ(τ4 − 1)

= − 1
4u
√

u
· 8
3 2F1

(
3
8
,
1
2
;
11
8

;
1
u4

)
+

1
4

8
3

3
8
√

π
Γ

(
3
8

)

Γ
(

7
8

)

hereby we eventually obtain (7).

We can now proceed with the proof of Theorem 1.

Proof of Theorem 1: The initial value problem (4) can be tackled by means of the
classic Weierstraß method, see [7] or also [1], pages 287-292. Such autonomous
equation, key of all our treatment, is

T ′′(x) = f(x), T (0) = T0, T ′(0) = V0

with the relation (3) betweenT0 andV0. Integrating we get

x(T ) =
∫ T

T0

du√
Φ(u)

, with Φ(T ) = 2
∫ T

T0

f(ξ) dξ + V 2
0 .

The sign’s choice is due to the positivity ofT ′(0) = V0, see (4), moreover we have
Φ(T ) = a4T 5 − b4T . Henceforth we find the expression for the inverse function
x(T ) of the solutionT (x) of (4)

x(T ) =
1
a2

∫ T

T0

dτ√
τ5 − (

b
a

)4
τ
. (9)

This implies that the problem is then meaningful forT, T0 ≥ b/a. Moreover
notice that the inversionx(T ) ←→ T (x) is ensured by the construction ofx(T )
itself

x′(T ) =
1

a2

√
T 5 − (

b
a

)4
T

> 0.
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Finally, the integral in (9) forT →∞ converges to a valuex∞, and this means that
the inverse functionT (x) is unbounded forx ↑ x∞. After a change of variable
(9) becomes

x(T ) =
1
a2

(a

b

)3/2
∫ a

b
T

a
b
T0

dτ√
τ (τ4 − 1)

and, using Lemma 2, formula (7), we obtain

x(T ) =
2

3a2

[
1

T
3/2
0

2F1

(
3
8
,
1
2
;
11
8

;
b4

a4T 4
0

)
− 1

T 3/2 2F1

(
3
8
,
1
2
;
11
8

;
b4

a4T 4

)]

i.e., (6). The final step is proving (5), which follows from (6), by taking into
account that

lim
T→∞ 2F1

(
3
8
,
1
2
;
11
8

;
b4

a4T 4

)
= 1.

We close this section by depicting graphics in the(x, T (x)) plane, of a test-
solution that we obtained by our final formula (6) for reasonable values ofa, b, T0.
For getting the local wire temperature as a function ofx, it is enough to ask
Mathematica® to plot the inverse functionof x(T ) as expressed by our equation
(6). The picture below is produced by takingT0 = 11, a = 1/10, b = 1.

Figure 1: Overlap between numerical output from [6] and exact solution from (6)

By comparing our exact solution with the output of a numerical high performance
method [6], a complete and minute overlap is confirmed.

4. Conclusions

The mixed equilibrium heat transmission consisting of ax-conduction through a
indefinite wire with inner source is studied, assuming its boundaryx = 0 isother-
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mal with the environment which all the wire is radiating to. The Cauchy problem
with thermal level and gradient atx = 0 assigned independently would lead to an
hyperelliptic integral which cannot be evaluated in an easy way. A supplementary
constraint between thex = 0 boundary dataT0 andV0, see (3), is therefore in-
troduced so that the resulting integral, even if hyperelliptic yet, can be expressed
by Gauss hypergeometric function2F1. On the contrary, the other constraint:
T, T0 ≥ b/a comes from the problem itself for ensuring the reality of (9). The
relevant solution has been found to be monotonically increasing and unbounded
with a vertical asymptote, see Theorem 1. Then the initial assumption about the
indefiniteness of our wire shall be set aside: there is a length’s limitx∞, depend-
ing onT0 anda andb, whose physical meaning is the following.

At a short distance fromx = 0, the thermal increase is low, being nearly all the
generated power lost by radiation. But for high temperatures we haveT ′(x) ∼
O

(
T 5/2

)
, with T increasing more than exponentially: so thatT will grow more

and more, and radiation will be not capable of dissipating both conducted and pro-
duced power. As a consequence, at a certainx∞, wire temperature suddenly will
jump unbounded, and our problem will have a smooth, monotonic and bounded –
namely physically acceptable – solution for0 ≤ x < x∞.
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