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Abstract. We study some properties of multidimensional Hamiltonian systems
in the adiabatic limit. Using the properties of the Poincaré-Cartan invariant we
show that in the integrable case conservation of action requires conditions on the
frequencies together with conservation of the product of energy and period. In the
ergodic case the most general conserved quantity is not volume but rather symplec-
tic capacity; we prove that even in this case there are periodic orbits whose actions
are conserved.

1. Introduction

Our purpose is to study some properties of Hamiltonian dynamics in the adiabatic
limit for systems with an arbitrary number of degrees of freedom under certain
conditions on the initial and final frequencies.

Put expeditiously, the adiabatic limit is the limit of slow change of some time-
dependent parameters. For instance, the adiabatic limit of the motion of a pen-
dulum with variable length and/or mass is the (ideal) motion of this pendulum
when the rate of change of the frequency becomes “infinitely small”. The adi-
abatic limit does usually not coincide with the limit of the dynamics obtained
by “freezing” the parameter (if the parameters are kept constant, energy is con-
served, while it is usually not in the adiabatic limit, cf. the pendulum). While
the adiabatic invariance of Hamiltonian systems with one degree of freedom is
well understood (see for instance Arnold’s paper [2] for a thorough discussion),
the case of multidimensional systems is far from being understood. This is due to
the fact that the traditional approaches to the study of adiabatic invariance make
use, at one moment or another, of an averaging procedure (i.e. a first order per-
turbation calculation), and such perturbation methods usually fail when there are
several degrees of freedom. For a lucid discussion of the difficulties which appear
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when one tries to average over more than one angle see Verhulst [29] and [23]
where some interesting mechanical systems are studied using averaging methods.

We will show that:

¢ In the completely integrable case the passage to the adiabatic limit is not
sufficient to guarantee conservation of action; one needs for that additional
assumptions on the initial and final periods; under these assumptions, con-
servation of action is equivalent to the conservation of the proelinetgy
x period

¢ In the ergodic case, the most natural candidates for adiabatic invariance are
the symplectic capacities of the interior of the energy shell. These are bet-
ter invariants than volume for the following two reasons: first, a symplectic
capacity can have a finite value even if the volume is infinite; a second rea-
son is that there exists a privileged symplectic capacity, the Hofer-Zehnder
capacity, which is closely related to the notion of action of periodic orbits.

The main results of symplectic topology that we need in this article are reviewed
in an Appendix (Section 6).

Notations and Basic AssumptionsWe will use indifferently the notations:, p)

and z for points in phase space. The phase spgte = R” x R? is endowed
with the standard symplectic form

U:dp/\d:c:dej/\dxj
j=1

and we denote by the standard symplectic matrix of ord®t

On  In
J=1J= (—In 0n>'

The euclidean scalar product on any sp&€ewill be denoted by brackets, -),
and the associated norm by|.

The extended (time-dependent) phase spaRéﬁél = R?" x R;. For a function
H e C”(Rzﬁ“, R) the associatesuspended Hamiltonian vector figgidefined
by X = (Jd,H,1); its projection onz, p space is the usual Hamiltonian vector
field X = JO.H. The trajectories o are the solutiong — (z(t),t) of the
differential system

2(t) = JO.H(z(t),t), t=1.
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We will denote by7, the flow of X (it is the suspended Hamiltonian flaeter-
mined byH), and we define the associatimie-dependent floy . by

(fer(2),t) = ft—t’(zlvt/)' (1)
Notice that Chapman-Kolmogorov’s law holds ffr
ft,t’ o ft’,t” = ft,t“a ft,t = 1. (2)

(we will always make the simplifying — but inessential — assumption that the flows
are defined for all times). The Poincaré-Cartan invariant one-form will be denoted
by ay. Let us recall that

apg = (p,dz) — Hdt. (3)

The adjective “invariant” comes from the fact thigy is a relative integral invari-
ant of the suspended Hamiltonian field;, that is

ix,dam =0 (4)

wherez'j(H is the contraction operator with;; (see [22]). A fundamental conse-
quence of (4) is the following: let be a curve in extended phase space,&itie
surface in extended phase space swept outfpy Letd be any closed curve on

S. Then
/ G =0 (5)
)

2. Definition of the Adiabatic Limit

(see for instance [12]).

Let H(-, A) be afamily of Hamiltonians depending in @ fashion on a multi-
parameten = (\1,..., \y). Itis assumed that can vary in some open subget

of R? (d > 1). When\ is allowed to depend on time, the function— A(t)
describes a curve i and the familyH (-, ) has thus become a time-dependent
HamiltonianH (-, A\(¢)). In all what follows it is assumed that= A(t) is constant
outside an intervalo, 7] (T > 0), so that for timeg < 0 ort > T Hamilton’s
equations fot (-, A(t)) form an autonomous differential system. The sets

Yin={z; H(z,\0)) = En}, Xin={z; H(z,\(T)) = Efin}

will be called the “initial and final energy shells”. The sets bounded by these
shells are

Qin={z; H(z,\(0)) < Ein}, Qsin=1{z; H(z,\(T)) < FEiin} .
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2.1. Completely Integrable Systems

Assume that each of the HamiltoniaHAg-, \) is integrable: there exists a canon-
ical change of variableg, : (¢,I) — (x,p) (generally depending ok) such
that forfixed \ we have

H(z,\) = (H(gA(¢,1),A) = K°(I, \).
Sinceg, is canonical we have
d({p,dx) + (¢,dI)) =dpAdx —dI Adp =0

hence there existS), = S(z, I; \) such that

(p,dz) + (¢, dI) = dSy (6)
for fixed )\, that is, the functiorb’ is a generating function fay,
(:B,p)zg,\(fb,f)<:>¢:815>\, pzaxSA

An immediate calculation shows that in the ¢) coordinates the Poincaré-Cartan
invariant (3) is given by

ap = (I,dp) — (K° + 0,5)) dt — d((p, I) — S)

where K°(-, \) only depends on the action variablesThe solutions of Hamil-
ton’s equations in thég, I') variables are hence determined by the Hamiltonian
K = K° 4 9,5,, thatis

K(¢,1:0) = K'(I; ) + (0aS (a6, 1), LX), A) (7)

Definition 1. The “passage to the adiabatic limit” for the integrable system with
time-dependent Hamiltonia#/ (-, A(¢)) consists in replacingk (¢, I; A(t)) by
KO(I; \(t)).

The motivation for this definition is the following: if the change of the multipa-
rameterX is very slow, then the term between brackets in (7) can be neglected,
and one is thus inclined to believe that it is a good approximation to replace the
“true” Hamiltonian K = K (¢, I;\) by K° = K°(I; \) (the legitimacy of this
procedure is a problem belonging to the theory of differential equations, and will
not be investigated here). The argument is easily made plausible by the example
of the harmonic oscillator with Hamiltonian

n



The Adiabatic Limit for Multidimensional Hamiltonian Systems 23

where the multi-parameter }s= (w1, ...,w,). The canonical change of variables
defined by

xj = /2Ij/mjwjcosf; and  p; =+/2];m w;sinb;

for 1 < j < n bringsH into the normal form
KO(ILN) = wl. (8)
j=1

If the time-dependence of is implemented, transforming back the solutions of
Hamilton’s equations for (8) does not yield the solutions &b+ one has instead
to solve those for

K(I ¢, \1t) =K IA)+> 2% sin 26 9)
j=1""

before returning to the, p. It is easy to show, using standard estimates, that if
the ratiosv; /w; are small, e.glw;/w;| < e < 1, then the error committed when
solving Hamilton’s equations fak'® instead of those foK is O(e) on the time-

scale0 <t < 1/e. Observe that formula (9) illustrates the fact that one has to
assume in most cases that the frequencies do not vanish anywhere (see however
the example of the linear coupled oscillator in Subsection 4.2)

An important property is that in the adiabatic limit initial Lagrangian tori are trans-
formed into final Lagrangian tori by the flow. Making use of the terminology
proposed by Weinstein [30] the path followed by an initial torus is called an “iso-
drast”.

Proposition 2. In the adiabatic limit a torus/;, C i, is transformed by the flow
frpy Into atorusVg, C .

Vr = fro(Vin) = Vin. (10)

Proof: The solutions of Hamilton’s equations féf® are

I(t) = I(to), (1) = Blto) + / w(I(t), s)ds

to

where the frequency vectar = (w1, ..., wy, ) is defined by the usual formula

w(I,t) = 0K (I, \(t)).
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Fort < 0 the motion is thus given by
I(t) = 1(0),  ¢(t) = ¢(0) + w(0)t
(w(0) = w(I(0),0)) and fort > T by
1(t) = 1(0),  ¢(t) = $(0) + d2(T) +w(T)(t = T)
(w(T) = w(I(0),T)), where

T
on(T) = [ wltat. (11)
0
Choose an arbitrary point
(1(to), ¢(to)) = (1(0),#(0) + w(0)to) € Vi
Settingw(t) = w(I(0), t) the image of that point by is

T
fro(I(to), d(to)) = (I(to), ¢(to) +/ w(s)ds)

to
T
= w(s)ds
(10,60 + | wl)as
hencefro((to), #(to)) € Van and henc&s, = fr,0(Vin).

The following question will be addressed in Section 3:

Under which assumptions on the Hamiltoni&f{-, A\) do the periodic orbitsy,
and~sin have the same action in the adiabatic limit?

We will discuss the answer(s) to this question in Theorem 9 of Section 3.

2.2. Ergodic Hamiltonian Systems

In the completely integrable case each motion (periodic or not) forever winds
around a given Lagrangian torus belonging to the Lagrangian foliation of the en-
ergy shell. Lagrangian tori being submanifolds with measure zero of the energy
shell, any particular motion is thus confined to a very small region of the energy
shell. This is in strong contrast with the generic non-integrable case where the
motion is chaotic, and where every point wanders ergodically over its own energy
shell. We remark, for later use (Subsection 4.1), that periodic orbits may however
exist on the energy shell, independently of the existence of so-called “islands of
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stability”; this does not contradict ergodicity, since the system does not reach all
the points of the energy shell in finite time. The question that poses itself is then
whether there exists some quantity which could be a good candidate for adiabatic
conservation. A classical heuristic argument is the following: as time-dependence
on A is implemented, an ensemble of pointsXp will qualitatively have similar
trajectories, and in particular have approximately the same energies if the change
of the parametek is small. Thus, if the change ofis “infinitely slow” an initial
ensemble located anj, will evolve after timeT into a final ensemble located on

Yin. This heuristic observation motivates the following definition:

Definition 3. The “passage to the ergodic adiabatic limit” for chaofiergodic
Hamiltonian systems consists in assuming that every pgiatXi, becomes after
timeT" a pointzr = fro(20) € Zsin for everyzg € Zin.

In the ergodic adiabatic limit the initial energy shell is thus transformed into the
final energy shell by the flow

Yiin = X7 = fro(Zin)- (12)

In view of Liouville's theorem the phase space volume enclosed by the energy
shell is invariant in the ergodic adiabatic limit; the consequences of this fact have
been explored by many authors, e.g. [3, 8, 26]. It turns out that there are, as was
hinted at in the introduction, more general quantities which are excellent candi-
dates for adiabatic conservation. These quantities argytmelectic capacitiesf

the interior of the energy shells (the notion of symplectic capacity is reviewed in
the Appendix). In fact:

Proposition 4. Let ), (respectivelysn) be the set bounded by the energy shell
Yin (resp.Xsin). In the ergodic adiabatic limit we have

c(Qin) = ¢(Qin) (13)
for every symplectic capacityon R?,

Proof: All symplectic capacities are symplectic invariants, i.e. they are preserved
by canonical transformations. In particular

c(Qin) = c(fr,0(Qin)) = c(Qin).

An immediate consequence of (13) is:
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Corollary 5. The arear R? of the big circle of the largest phase space ball that
can be squeezed inside= {z; H(z,\) < E} is constant in the ergodic adia-
batic limit.

Proof: The arear R? is a symplectic capacity, namely the “Gromov width”@f
(see formula (34) in the Appendix).

The following questions will be answered in Section 4:

Is there a periodic orbit ortj, which ends into a periodic orbit oR;, having the
same action? Is there a relation between the initial and final energies?

We will see that the answer to both questions is “yes”.

3. Study of the Integrable Case

It will be assumed throughout this Section that the initial energy shebarries a
periodic orbity;, (this statement is independent of the choice of Hamiltonian; see
Proposition 16 of the Appendix). This is the case for instané®fis compact

and convex, but this is indeed not a necessary condition because one can show
that almost every energy shell carries periodic orbits (see for instance [18]). Let
t — z(t) be the trajectory of a point situated op at timet = 0. That point

will in general leave the hypersurfag, and travel trough phase space, but since
the Hamiltonian becomes anew time-independent forT’, it will remain onXin

after timeT. We make the assumption that the motion again becomes periodic;
throughz(7T') thus passes a periodic orbjt, of H(z, \(T")), lying on the final
energy shelbiin.

Let us investigate under which conditions we have

f (p, dz) = 74 (v, dz)

in the adiabatic limit. We begin by discussing some conditions on the initial and
final frequencies.

3.1. Conditions on the Frequencies

What do these considerations imply for the initial and final periodic orbits? Since
~in IS @ periodic orbit lying on the torus;, it is described in terms of the angle-
action variables by the formulas

L;(t) = 1;0), (1) = ¢;(0) +w;(0)t,  —7mn <L <0.
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In order that these relations effectively describe a periodic motion, we impose the
following resonance condition:

Condition 6. (Initial Resonancel)et Ji, be the set of integersfor which;(t) #
0 andw;(0) > 0. We assume that there exigis € Jin such that all the frequen-
ciesw;(0) are proportional tow;,, (0).

Denoting that fundamental frequeney, (0) by win the orbityin C Vi, thus has
periodrin = 27 /win. Similarly:

Condition 7. (Final Resonancd)et Jsn be the set of integersfor which 7;(t) #
0 andw;(7") > 0. We assume that there exigks € Jsin such that all the frequen-
ciesw;(0) are proportional tow;,, (0).

The orbitvyin C Viin then has periodin = 27 /wiin Wherewsin = wjq, (0).
We will assume in the sequel that ={1, ..., k} (¢ < n); up to a reordering of
the coordinates, this is of course no restriction.

Are these two conditions sufficient to ensure exact (or adiabatic) conservation of
the actions of the initial and final periodic orbitg and~;n? No, unless, = 1, in

which case the orbits coincide with the Lagrangian tori since the latter are simply
the circles carrying these orbits. This is immediately seen as follows. The initial

resonance condition implies that

ﬁin (I.dg) = > _1;(0) /0 w;(s)ds

Similarly, the final resonance condition leads to

k
¢ (1.d0) = Y 2wk 10)
Yin j=1

hence we will have equality of the initial and final actiong jf= k; (the condi-
tion is of course not necessary). We will henceforth always make the following
assumption of proportionality on the initial and final frequencies:



28 Maurice A. de Gosson

There exists a constapt7’) > 0 such that we have
w;(T) = p(T)w;(0) for j € 7

that is
(wi(T), ..., wr(T)) = p(T)(w1(0), ..., wr(0)). (14)

Notice that this assumption holds in particular whefi’) = w(0), i.e. in the case
of a cyclic evolution where\ describes a loop in parameter space.

We emphasize that both the resonance conditions and the proportionality assump-
tion above are about the initial and final motiardy. No assumption whatsoever
is made on the intermediary frequencies.

Remark 8. Condition (14) implies that the Maslov indices of, and ~s, are
equal: by definition these Maslov indices are

m(Yin) = 22’%‘7 m(Yin) = 22%

Notice that the converse is not generally true: the equatity;n) = m(vsin) does
not imply(14).

This remark is useful in the context of “adiabatic switching”, where one tries to
find the energy of a “deformed” Hamiltonian in terms of a known (integrable) one.

3.2. Adiabatic Limit and Energy

In many physics textbooks one often establishes the adiabatic invariance of the
action variable for the Hamiltonian

H= %(pQ + W2 (t)x?)
by the following argument. Under the assumption that the frequency changes
“infinitely slowly” in the time interval[0, T'], one proves that the ratiB(¢) /w(t)
between the instantaneous energy and frequency is conserved during the motion
(this property is in fact obvious, passing to angle-action variables in the adiabatic
limit). Now, the initial and final periodic orbits are the ellipses

L 20w =1 and

25(0) (p? + X (T)2?) =1

2E(T)
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respectively. The areas of these ellipses are identical with the initial and final
actions; since these areas are®(0) /w(0) and27 E(T') /w(T') respectively, one
concludes to the conservation of action.

We are going to use the invariance property (4) of the Poincaré-Cartan form (3)
to show that this relation between initial and final actions and initial and final
energies persists for multidimensional systems. (We mention that the properties of
the Poincaré-Cartan invariant have been used in [7] to establish results of adiabatic
invariance for quite general systems of linear differential equations.)

Let us state and prove the main result of this Section:

Theorem 9. Assume that eacH (-, \) is integrable and that there exists a canon-
ical change of variableg, such that

H(gx(2),\) = K(I,\) forevery XeD.

Let Ein = H(2(0),A(0)) and Exin = H(2(T), A(T")) be the initial and final en-
ergies, andry,, 7, the periods ofy, and~g,. If the proportionality assumption
(14) holds, then

74 (p, dz) — 74 (p, dz) = EinTin — FiinTin (15)
Yin Yfin

and hence
f <p7 dIE> = f <p7 d$> < EinTin = EﬁnTﬁn- (16)
Yin aist

n

Proof: Let us denote by — z(¢) the trajectory carrying the periodic orbits,
andyg,. The integrability assumption implies that for timec 0 the motion takes
place on an initial Lagrangian tor8, C ¥, and for timet > T on a final torus
Vin C Xgn. We lift the periodic orbitsy;,, andvg, to curves

Yin ¢ [=7in, 0] — R27 and Fgn(t) : [T, T + 7] — R
in extended phase space, defined by
Yin(t) = (in(t), ) and Jgn () = (y6n(t), 1)

We define two arcén andég, in R2%, as follows:&;, is the segment of line joining
(2(0),0) to (2(—Tin), —Tin) = (2(0), —7in), that is

g}n(s) = (2(0),—s7m), 0<s<1 a7)
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andé&g, is the (non-isochronous) deformation&f defined, for) < s < 1, by

éfin(s) = fT—l—(l—s)Tﬁn-‘rS’ﬁn (2(0)7 _STin) (18)
that is, by definition of the suspended flgw
gfin(s) = (fT—i-(l—s)Tﬁn,—snn (Z(O)), T+ (1 - S)Tﬁn)- (19)

Taking into account the periodicity relationf)) = z(—mn,) andz(T) = z(T +
Tan) We have

éfin(o) = fT-l—Tﬁn (Z(O)a 0) = (fT+7—ﬁn70(Z<0))7 T+ 7—ﬁn) = (Z(T)v T+ 7—ﬁn)
and . )
§in(1) = fr47,(2(0), =7in) = (fr0(2(0),T) = (2(T),T)
thusés, is an arc joining the endpoift(T), T'+76n) Of Y5y to its origin(2(7), T)
(in this order). Lef" be the surface swept out gy, during its travel; its boundary
is the one-cycle

¥ =&in+ 91 — &in — Vo
where; is the piece of trajectory in extended phase space joif@), 0) to
(2(T), T + 74n) andys that joining(z(0), —7in) to (2(T),T)
Y1(t) = (fr0(2(0)),1), 0 <t <T + iin
Y2(t) = (fr0(2(0)),8), —7mn <t <T.
The stripT" consists of characteristic curves &fy; hence, using respectively

Stokes’ theorem and the consequence (5) of the relative invariance property (4) of
the Poincaré—Cartan form we have

/dH:/ddH:O (20)
5 r

/aH—/&H:/ aH_f G (21)
oGt ’3/2 &fin &in

By definition of the pathg; and4, we have

that is

Y1 + Yan = Yin + Y2

Whereyin () = (in(£), £) for —min < ¢ < 0 aNddgn () = (yin(t), 1) for T < ¢ <
T + 7tin , hence

/%dH—/%dHZ%in (p,da:)—?{ﬁ (p,dz)

n
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since we have

/%dH:Al (Pad$>—Hdt:Ll (p, dz)
/;de:/ﬂ?2 <p7dx>—Hdt:A2 (p, dz) .

The equality (21) is thus equivalent to

%{m (p,dz) — éﬁn (p,dx) = /éin ag — /Eﬁn ap. (22)

It follows that it is sufficient to prove that

and

ﬁ ag — /~ ap = EinTin — EfinTein- (23)
&in &fin
We first notige that sincép,dz) = 0 alongén and that the value of the Hamil-
tonian along;, is
H(2(0), A(=s7in)) = H(2(0), A(0)) = Ein
we have )
gin éin 0

Let us next prove that

[ ag = EfinTen

gﬁn
the theorem will follow. Let

§fin(5) = fT+(1—S)Tﬁn,—STin (Z(O))a 0<s<1
be the projection chﬁn(S) on phase spade?” (cf. (19)). Since
fT-‘r(l—S)Tﬁn,—STin = fT+(1—s)Tﬁn,T o fT,O o fO,fsnn (Z(O))
and fo,—sr, (2(0) € vin, we will have (recalling tha¥Vr = Vg,)
gfin(s) € VT = Vﬁn C Eﬁn

hence the value of the Hamiltonian alofig, is

H (&in(s), M(T + (1 — 8)7an)) = H (&iin(8), AM(T')) = Ein.
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It follows that

1
Hdt = —/ FEfin(—7fin)dt = Efin Thn.
gﬁn 0

There remains to show that

jé (p,dz) = 0. (25)

Passing to angle-action variables, ) and setting:(0) = (1(0), ¢(0)), w(t) =
w(I(0),t) we have

T+(1—3s)Tan

£in(s) = (1(0), 6(0) + / w(t)dt)

—S8Tin

= (1(0),9(0) + on(T) + 5w(0)7in + (1 = 8)w(T)7hn)-
The assumption (14) implies that we hav€l") 7, = w(0)7i, and hence

&in(s) = (1(0), ¢(0) + ¢p(T) + w(T')76in)

so that

]gﬁn (p,dz) = iﬁn (I.dd) =0

as was to be proven.

Remark 10. The observant reader will have noticed that the proof of the identity
(22) only used the fact that;,, and~g, were periodic orbits carried by the initial
and final energy shells. Neither integrability, nor the proportionality assumption
(14), were used at this stage of the proof of TheoBabove. We will in fact see

in the proof of Theorerfil that integrability is not even necessary to establish the
equality(25).

4. The Ergodic Case

We assume in this section that the Hamiltoni&hs, A) have no other constants
of the motion than the energy (for fixed. The motion is thus chaotic, and we
assume that we are in the situation of the ergodic adiabatic limit.
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4.1. Ergodic Limit and Periodic Orbits

In the ergodic adiabatic limit, an initial energy shell uniquely determines the final
energy shell. The following result is the ergodic version of Theorem 9:

Theorem 11. Assume that the initial energy sh&l}, carries a periodic orbity;, .
In the ergodic adiabatic limiti) the trajectory through any point @i, becomes
after timeT" a periodic orbit~g, of the final energy shell, arnig we have both

¢ wde) = § (o) and B = B (26)
“Yin Yfin
wherer;,, and g, are the periods ofy;, and~g,, respectively.

Proof: By definition of the ergodic adiabatic limit for any poing of X, the
final energy is given byin = H(fro(20), A(T')), and fr,o(vin) C Zfin. Let us
show~r = fro(vin) indeed is a periodic orbit off (-, \(T')); since fro(z0) €
fro(7n) this will prove part i) of the Theorem. Since in the ergodic adiabatic
limit we have

Y1 = fr0(Zin) = Zfin
it follows that

Yin={z; H(z,\(T")) = FEfin} = {u; H(fié(u), A(0)) = Ein}.

In view of Proposition 16 of the Appendix the HamiltoniaH$fié(-), A(0)) and
H(-,\(T")) have the same periodic orbits &R,. For the flow ofH(fié(-), A(0))
being fro o fioo fié it follows that~r is a periodic orbit ofH(fié(), A(0)),
hence also ofi (-, A\(T")). Let us prove ii). Thaty, and~s, have same action
follows immediately from the fact thaftr o is canonical

éﬁ,, (p,dx) —f (p,dx) = ﬁin (p, dz) .

f1,0(¥in)

To prove the second equality (26) we use Remark 10 following the proof of The-
orem 9 to notice that we have

§ wan-§ wan= [ an- [ an
“Yin Yfin fin éﬁn

where&;, andé&si, are defined by (17), (18). In view of the equality of the actions
of i, and~g, just established we thus have

[an={ an
&in Sﬁn
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As in the proof of Theorem 9 we obviously have

[ ayg = Ein T
Ein

so there remains to show that
[ ap = EfinTfin (27)
5ﬁn

to prove the second equality (26). We have

[ an 27{ (p,dz) —/01 H (&in(s), A(T)) (—an)dt

gﬁn gﬁn
whereés, is defined by

fﬁn(S) = fT+(1—s)Tﬁn,—5ﬂn (Z())

Set, for0 < s < 1,

JT,~26m, (70) for 0 <s<1/2
v(s) =
Jr42(1—s)mn 0(20) for 1/2 <s < 1.

and
Y(s) = (v(s), T+ (1 — 8)Tn), 0<s<1.

Sincey(0) = (1) = fro(20) the pathsy andéq, (see (19)) have same endpoints.
On the other hand bothand&s,, lye on the same surfadeswept out by;,, during
its travel. In view of the relative invariance afy we thus have

| an=[an
3 ¥

in

/ oy = EgnTan
v

this will prove the second equality (26). By definition@f; we have

Let us show that

1
[an= 9 o.a0)~ [ HOEAND) s
¥ v 0
Since in the ergodic adiabatic limit we have both

fT,*QSTin (ZO) € Xfin and fT—I—Q(l—s)Tﬁn,O(ZO) € Yfin
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and hencdd (v(s), A(T')) = Egy, for 0 < s < 1, it follows that

1
/0 H(y(5), A(T)) () ds = — Egurin.

There remains to show that we have

jg (p,dx) = 0.

fT,*QSTin (ZO) = fT,O © fQOSTin,O(ZO)

Now,

where 7 is the flow of H (-, A(0)), hence
s+ fr—2sm,(20) (0<s<1/2)
is a reparametrization of the l0gf (i ). Similarly,
Jr4201—s)ra,0(20) = sz(ks)Tﬁn,o o fro(20)
wheref}, is the flow of H (-, \(T")), hence

§ > fT2(1-s)m,,0(20) (1/2<s<1)

is a reparametrization of the opposed path®f = f7.0(7in). It follows that

f<p,dm>: 74 (b, da) — 75 (p,dz) =0
vy fro(y) Jfro(v)

as we set out to prove.

Remark 12. Let H be a time-dependent Hamiltonian. The fifiw of the Hamil-
tonian H defined by

H(z,t)) = —H(ft0(2),1) (28)

is given byf; o = ftjol (se€[27], or [19], Proposition 1, p. 144)This Hamiltonian

(up to a sign was implicitly used in the proof of Theorel. Its appearance is
related to the reversibility of the notion of ergodic adiabatic invariance considered
here.
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4.2. Possible Extensions

It has been suggested (for instance in [8]) that volume might in certain cases be
an adiabatic invariant for non-ergodic Hamiltonian systems. This is of course
trivially untrue in most cases (to begin withrdimensional oscillator). Let us
briefly discuss the possibility for symplectic capacities to be adiabatic invariants.
We begin with the example of a coupled linear oscillator with Hamiltonian

1
H = (p} + 03 + w20 (@1 +22)°).
In the adiabatic limit we may use the canonical change of the variébles to
the variableg X, P) defined by

(X1, X2) = (2w(t)) " Y?(z1 — 9, 71 + 32)

(P1, Py) = (2w(t))"*(p1 — p2, p1 + p2)
to bring H into the form

wl(t
K:;%ﬁ+ﬁ+ﬁ)

For fixedt the energy shells are the hypersurfaces
w
Ziﬁ(P12+P22+X12):1

let Q2 be the phase space region boundedbyince
w w w
5 P+ X7) < S(PE4PY 4+ XT) < (PP + Py + X7+ X3)

we have
B(\/2E/w) C Q C Z1(\/2FE/w)

whereB(R) is the phase space ball centered at the origin and with ratliasd
Z1(R) is the cyIinderx? + p? < R2. It follows, by (33) in the Appendix, that
c(Q) = 27 E /w for any symplectic capacity. The solutions of Hamilton’s equa-
tions for K satisfy

PE(t) + P5 () + X1 (t) = P{(0) + P3(0) + X7(0)

for all ¢, hence the ratio between the instantaneous energy and the frequency is
constant and the equality between the initial and final symplectic capacities fol-
lows. Notice that it does not make sense here to investigate whether the volume



The Adiabatic Limit for Multidimensional Hamiltonian Systems 37

enclosed by the energy shell is adiabatically conserved since the volume of each
Q is infinite!

In the general case, assume that the Sgtsand 25, bounded by the initial and

final energy shells are both compact and convex. Then, in view of the second part
of Theorem 15 in the Appendix, we have

CHZ(Qin) = f <p,d$>, CHZ(Qﬁn) = j{ <p,d.%’> .

1

if both ~;,, and~g,, are minimal periodic loops (i.e., minimizing action on their
respective energy shells)j;~ is the Hofer-Zehnder capacity. However it is not
true in general that two such minimizing periodic loops are connected by a phase
space trajectory. If, however, the minimal periodic orRit becomes, after time

T, a periodic orbityg,, carried byXg, and having same action, then we have

j{m (p,dz) = éﬁ (p,dz) > crz(Qpn)

so thatcrz () > cmz(Qsn). If conversely a minimal periodic orbit 0By,
becomes a periodic orbit o, with same action, we will also have; 7 (Qin) >
crz(Qfin) and hence

crz(Qin) = caz(Qfin)-

4.3. Quantization

Let us briefly discuss semiclassical quantization from the perspective of ergodic
adiabatic switching. It has been suggested by Berry [3, 5] that (up to asymptotic
corrections) the formula

1\" 1
— npd'p = N + = 2
<27rh> /Qd xd"p —1—2 (29)

could provide a good quantization scheme for ergodic systems. This is, of course,
perfectly in accordance with the observed adiabatic invariance of volume for such
systems. Following the discussion above, it could perhaps be advantageous to
replace the quantization condition (29) by its symplectic counterpart
1

c(Q) = (N + 5)h, N=01,2,.. (30)
wherec is some symplectic capacity. In view of Theorem 11 this leads to the
existence of quantized periodic orbits. Choose infaetcy ~ in (30) and assume
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2 compact and convex. Then in view of Theorem 15 there exists a periodic orbit
v € ¥ = 09 such that

f(p, dz) = (N + %)h (31)
v

Remark 13. It would be interesting to investigate the relation between this ap-
proach and the quantization conditions for isolated periodic orbits proposed in
[28].

It turns out that the conditions (30), (31) are consistent with the quantization
scheme proposed in [12—-14], where we made the following Ansatz:

The only admissible trajectories for a Hamiltoni&hin the ground energy level

are those which lie on some subset (not only an energy shell) of phase space with
capacitys h.

That Ansatz might thus be justified a posteriori using ergodic “adiabatic switch-
ing”: one starts with some Hamiltonia, for which one knows that this Ansatz

is trivially true, and one then introduces time-dependence in order to defigrm

into H. That possibility will be explored in forthcoming research.

5. Concluding Remarks.

We have been investigating in this article a few consequences of the passage to
the adiabatic limit, both in he completely integrable and in the ergodic case. We
have however not studied rigourously the conditions of validity of this limit. As
we already mentioned, there are technical difficulties when one tries to use tech-
niques from averaging theory. The solution of that problem (or at least a clue to
it) might be in a systematic use of the usual comparison theorems of the theory
of ordinary differential equations (Gronwall's lemma), and the improvement of
existing averaging techniques. Some results for oscillating systems will be given
in a forthcoming research.

A related problem is that of the technique of adiabatic switching, where one tries
to calculate the (semiclassical) energy levels of a HamiltoAian terms of those

of a HamiltonianH, whose energy levels are known. This procedure obviously
automatically works for integrable Hamiltonians in all cases where the passage to
the adiabatic limit is legitimate (the semiclassical and adiabatic limit are however
not identical see [3]). In the ergodic case one knows that the isolated periodic
orbits play a fundamental role (see [16, 28], and [6] for a different point of view).
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Theorem 11 can indeed be used to relate ergodic adiabatic invariance to quanti-
zation; one should however note that it says nothing about how to find periodic
orbits to quantize! A related difficulty is that it is very difficult to calculate sym-
plectic capacities outside a few textbook cases (but the same remark applies to the
calculation of volumes!).

We finally notice that it would be interesting to investigate whether the study of
adiabatic invariance of symplectic capacity could be done directly by adapting
appropriately the technigues in the proof of Hofer and Zehnder’s theorem 15 of
the Appendix. The proof of this theorem (which is very difficult and technical) is
based on the construction of privileged periodic Hamiltonian orbits.

6. Appendix: Symplectic Capacities and Gromov’s Theorem

Consider a phase space bBl(r) : |z|? + |p|?> < r2. The area of the projection

of B(r) onto any two-dimensional coordinate plane (saypy, z;, zx Of p;, pi)

is obviouslyrr2. Suppose now that we move(r) using canonical transforma-
tions (e.g. a Hamiltonian flow); in view of Liouville’s theorer,(r) will distort

while keeping a constant volume, hence the areas of the projections on the two-
dimensional planes will change and a priori take arbitrary values. Not so! No
matter how hard we try, the areas of the projections of the distorted batirgn-
gateplanesr;, p; will never decrease; they will always be at least. This deep
property of canonical transformations is actually equivalent to Gromov’s squeez-
ing theorem [15] (also known as the “principle of the symplectic camel”):

Theorem 14. (Gromov [15]) There exists no canonical transformation
sendingB(r) into a phase space cylindéf;(R) : % + p5 < R*if r > R.

Gromov's theorem allows us to define, following Ekeland and Hofer [11], the
subsidiary notion oymplectic capacitya symplectic capacity on phase space
R2" is the assignment, to every sub$etc R?", of a positive number, o#-oc,
such that the following four properties hold:

Capl: ‘Monotonicity: If Q C Q' thene(Q2) < ¢();
Cap2: “2-Homogeneity: For everyk € R we havec(k)) = k2c(Q);

Capa3: ‘Symplectic invariancg If a map f is a canonical transformation, then

c(f(2)) = ().
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Cap4: ‘Normalizatiori: Phase space balls and symplectic cylinders with same
radii have same symplectic capacities:

c¢(B(r)) = ol = c(Z;(r)). (32)

Nota beneThere exist several nonequivalent definitions of the notion of symplec-
tic capacity in the literature; see e.g. [10,19, 24, 27].
Notice that in view of Capl and Cap4 we have

B(r) c Q C Zj(r) = ¢(Q) = 7r? (33)
for every symplectic capacity.
A basic example of a symplectic capacity is fyenplectic aredalso called “Gro-
mov’s width”) of a subse©2 c R2"; it is defined by

ca(Q) = sup {mr* f(B(r)) C Q}. (34)

f canonical

That the properties (Capl)—(Cap4) hold &gy is trivial, exceptfor the equality
ca(Z;(r)) = wr?, because it is actuallgquivalentto Gromov’s theorem, and
hencehighly nontrivial

Any symplectic capacity of the ellipsoidal set defined by the inequality

1 1
B(ri,.mn) i (@4 pi) + - 4 5 (an +pp) <1 (35)
1 n
is equal to
c(B(r1,.yrn)) = c(Zj(r)) = wr?, v =inf(ry,...,rp) (36)

It is thus the area of the smallest circle of the ellipse boundifg, ..., ) (the
n-tuple(ry, ..., m,) is called thesymplectic spectrumof B(r1, ..., 7))

It turns out that there exists a privileged symplectic capacity (the “Hofer-
Zehnder capacity”) related to the action of periodic Hamiltonian orbits:

Theorem 15. (Hofer-Zehnder [19])There exists a symplectic capacity, hav-
ing the following propertiesi) if X : H = E is the boundary of a compact and
convex regiorf) i of phase space, then

é (p, dz)

for every periodic orbity of the Hamilton fieldX; on X and: ii) there exists a
periodic orbit+° which is minimal in the sense that

7{  {psd)

> cuz(Qg)

= CHz(QE). (37)
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That the result above actually is independent of the choice of Hamiltonian having
Y. as energy shell follows from the following property of regular energy shells:

Proposition 16. Let H and K be two time-independent Hamiltonians. Suppose
that £ and F' are regular values of the Hamiltoniarf$ and K, respectively, and
that

Y={z;H(z) = FE}={z; K(z) = F}. (38)

ThenH and K have the same trajectories dn (and, in particular, the same
periodic orbitg.

Proof: The idea underlying the proof is simple: sinEeandF’ are regular values,

the normals), H andd, K to ¥ do not vanish, and are thus proportional, and so
are the Hamilton vector fieldXy = J0.H and X = J0,K; they must thus
have the same trajectories, with different parametrizations. In fact, the symplectic
orthogonal to the tangent spaceXoat every point is a well-defined field af
directions. This field defines a foliation in lines of the hypersurfdac&he leaves

of that foliation are the orbits of the vector fields; the result follows.
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