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THE ADIABATIC LIMIT FOR MULTIDIMENSIONAL
HAMILTONIAN SYSTEMS
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Abstract. We study some properties of multidimensional Hamiltonian systems
in the adiabatic limit. Using the properties of the Poincaré-Cartan invariant we
show that in the integrable case conservation of action requires conditions on the
frequencies together with conservation of the product of energy and period. In the
ergodic case the most general conserved quantity is not volume but rather symplec-
tic capacity; we prove that even in this case there are periodic orbits whose actions
are conserved.

1. Introduction

Our purpose is to study some properties of Hamiltonian dynamics in the adiabatic
limit for systems with an arbitrary number of degrees of freedom under certain
conditions on the initial and final frequencies.

Put expeditiously, the adiabatic limit is the limit of slow change of some time-
dependent parameters. For instance, the adiabatic limit of the motion of a pen-
dulum with variable length and/or mass is the (ideal) motion of this pendulum
when the rate of change of the frequency becomes “infinitely small”. The adi-
abatic limit does usually not coincide with the limit of the dynamics obtained
by “freezing” the parameter (if the parameters are kept constant, energy is con-
served, while it is usually not in the adiabatic limit, cf. the pendulum). While
the adiabatic invariance of Hamiltonian systems with one degree of freedom is
well understood (see for instance Arnold’s paper [2] for a thorough discussion),
the case of multidimensional systems is far from being understood. This is due to
the fact that the traditional approaches to the study of adiabatic invariance make
use, at one moment or another, of an averaging procedure (i.e. a first order per-
turbation calculation), and such perturbation methods usually fail when there are
several degrees of freedom. For a lucid discussion of the difficulties which appear
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when one tries to average over more than one angle see Verhulst [29] and [23]
where some interesting mechanical systems are studied using averaging methods.

We will show that:

• In the completely integrable case the passage to the adiabatic limit is not
sufficient to guarantee conservation of action; one needs for that additional
assumptions on the initial and final periods; under these assumptions, con-
servation of action is equivalent to the conservation of the productenergy
× period.

• In the ergodic case, the most natural candidates for adiabatic invariance are
the symplectic capacities of the interior of the energy shell. These are bet-
ter invariants than volume for the following two reasons: first, a symplectic
capacity can have a finite value even if the volume is infinite; a second rea-
son is that there exists a privileged symplectic capacity, the Hofer-Zehnder
capacity, which is closely related to the notion of action of periodic orbits.

The main results of symplectic topology that we need in this article are reviewed
in an Appendix (Section 6).

Notations and Basic Assumptions. We will use indifferently the notations(x, p)
andz for points in phase space. The phase spaceR2n

z = Rn
x × Rn

p is endowed
with the standard symplectic form

σ = dp ∧ dx =
n∑

j=1

dpj ∧ dxj

and we denote byJ the standard symplectic matrix of order2n

J = J =
(

0n In

−In 0n

)
.

The euclidean scalar product on any spaceRm will be denoted by brackets〈·, ·〉,
and the associated norm by| · |.
The extended (time-dependent) phase space isR2n+1

z,t = R2n
z ×Rt. For a function

H ∈ C∞(R2n+1
z,t ,R) the associatedsuspended Hamiltonian vector fieldis defined

by X̃ = (J∂zH, 1); its projection onx, p space is the usual Hamiltonian vector
field X = J∂zH. The trajectories of̃X are the solutionst 7−→ (z(t), t) of the
differential system

ż(t) = J∂zH(z(t), t), ṫ = 1.
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We will denote byf̃t the flow of X̃ (it is the suspended Hamiltonian flowdeter-
mined byH), and we define the associatedtime-dependent flowft,t′ by

(ft,t′(z′), t) = f̃t−t′(z′, t′). (1)

Notice that Chapman-Kolmogorov’s law holds forft,t′

ft,t′ ◦ ft′,t′′ = ft,t′′ , ft,t = Id. (2)

(we will always make the simplifying – but inessential – assumption that the flows
are defined for all times). The Poincaré-Cartan invariant one-form will be denoted
by α̃H . Let us recall that

α̃H = 〈p,dx〉 −Hdt. (3)

The adjective “invariant” comes from the fact thatα̃H is a relative integral invari-
ant of the suspended Hamiltonian field̃XH , that is

iX̃H
dα̃H = 0 (4)

whereiX̃H
is the contraction operator with̃XH (see [22]). A fundamental conse-

quence of (4) is the following: let̃γ be a curve in extended phase space, andS the
surface in extended phase space swept out by(f̃t). Let δ be any closed curve on
S. Then ∫

δ
α̃H = 0 (5)

(see for instance [12]).

2. Definition of the Adiabatic Limit

Let H(·, λ) be afamily of Hamiltonians depending in aC∞ fashion on a multi-
parameterλ = (λ1, ..., λd). It is assumed thatλ can vary in some open subsetD
of Rd (d ≥ 1). Whenλ is allowed to depend on time, the functiont 7−→ λ(t)
describes a curve inD and the familyH(·, λ) has thus become a time-dependent
HamiltonianH(·, λ(t)). In all what follows it is assumed thatλ = λ(t) is constant
outside an interval[0, T ] (T > 0), so that for timest ≤ 0 or t ≥ T Hamilton’s
equations forH(·, λ(t)) form an autonomous differential system. The sets

Σin = {z ; H(z, λ(0)) = Ein} , Σfin = {z ; H(z, λ(T )) = Efin}
will be called the “initial and final energy shells”. The sets bounded by these
shells are

Ωin = {z ; H(z, λ(0)) ≤ Ein} , Ωfin = {z ; H(z, λ(T )) ≤ Efin} .
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2.1. Completely Integrable Systems

Assume that each of the HamiltoniansH(·, λ) is integrable: there exists a canon-
ical change of variablesgλ : (φ, I) 7−→ (x, p) (generally depending onλ) such
that forfixedλ we have

H(z, λ) = (H(gλ(φ, I), λ) = K0(I, λ).

Sincegλ is canonical we have

d(〈p, dx〉+ 〈φ, dI〉) = dp ∧ dx− dI ∧ dφ = 0

hence there existsSλ = S(x, I;λ) such that

〈p,dx〉+ 〈φ,dI〉 = dSλ (6)

for fixedλ, that is, the functionSλ is a generating function forgλ

(x, p) = gλ(φ, I) ⇐⇒ φ = ∂ISλ , p = ∂xSλ.

An immediate calculation shows that in the(I, φ) coordinates the Poincaré-Cartan
invariant (3) is given by

α̃H = 〈I, dφ〉 − (
K0 + ∂tSλ

)
dt− d(〈φ, I〉 − Sλ)

whereK0(·, λ) only depends on the action variablesI. The solutions of Hamil-
ton’s equations in the(φ, I) variables are hence determined by the Hamiltonian
K = K0 + ∂tSλ, that is

K(φ, I; λ) = K0(I; λ) +
〈
∂λS(x(φ, I), I;λ), λ̇

〉
. (7)

Definition 1. The “passage to the adiabatic limit” for the integrable system with
time-dependent HamiltonianH(·, λ(t)) consists in replacingK(φ, I;λ(t)) by
K0(I; λ(t)).

The motivation for this definition is the following: if the change of the multipa-
rameterλ is very slow, then the term between brackets in (7) can be neglected,
and one is thus inclined to believe that it is a good approximation to replace the
“true” HamiltonianK = K(φ, I; λ) by K0 = K0(I; λ) (the legitimacy of this
procedure is a problem belonging to the theory of differential equations, and will
not be investigated here). The argument is easily made plausible by the example
of the harmonic oscillator with Hamiltonian

H =
n∑

j=1

1
2mj

(p2
j + m2

jω
2
j x

2
j )
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where the multi-parameter isλ = (ω1, ..., ωn). The canonical change of variables
defined by

xj =
√

2Ij/mjωj cos θj and pj =
√

2Ijmjωj sin θj

for 1 ≤ j ≤ n bringsH into the normal form

K0(I, λ) =
n∑

j=1

ωjIj . (8)

If the time-dependence ofλ is implemented, transforming back the solutions of
Hamilton’s equations for (8) does not yield the solutions forH – one has instead
to solve those for

K(I, φ, λ(t)) = K0(I, λ) +
n∑

j=1

ω̇j

2ωj
sin 2φj (9)

before returning to thex, p. It is easy to show, using standard estimates, that if
the ratiosω̇j/ωj are small, e.g.|ω̇j/ωj | ≤ ε ¿ 1, then the error committed when
solving Hamilton’s equations forK0 instead of those forK is O(ε) on the time-
scale0 ≤ t ≤ 1/ε. Observe that formula (9) illustrates the fact that one has to
assume in most cases that the frequencies do not vanish anywhere (see however
the example of the linear coupled oscillator in Subsection 4.2)

An important property is that in the adiabatic limit initial Lagrangian tori are trans-
formed into final Lagrangian tori by the flow. Making use of the terminology
proposed by Weinstein [30] the path followed by an initial torus is called an “iso-
drast”.

Proposition 2. In the adiabatic limit a torusVin ⊂ Σin is transformed by the flow
ft,t′ into a torusVfin ⊂ Σfin.

VT = fT,0(Vin) = Vfin. (10)

Proof: The solutions of Hamilton’s equations forK0 are

I(t) = I(t0), φ(t) = φ(t0) +
∫ t

t0

ω(I(t0), s)ds

where the frequency vectorω = (ω1, ..., ωn) is defined by the usual formula

ω(I, t) = ∂IK
0(I, λ(t)).
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For t ≤ 0 the motion is thus given by

I(t) = I(0), φ(t) = φ(0) + ω(0)t

(ω(0) = ω(I(0), 0)) and fort ≥ T by

I(t) = I(0), φ(t) = φ(0) + φH(T ) + ω(T )(t− T )

(ω(T ) = ω(I(0), T )), where

φH(T ) =
∫ T

0
ω(t)dt. (11)

Choose an arbitrary point

(I(t0), φ(t0)) = (I(0), φ(0) + ω(0)t0) ∈ Vin.

Settingω(t) = ω(I(0), t) the image of that point byfT,0 is

fT,0(I(t0), φ(t0)) = (I(t0), φ(t0) +
∫ T

t0

ω(s)ds)

= (I(0), φ(0) +
∫ T

0
ω(s)ds)

hencefT,0(I(t0), φ(t0)) ∈ Vfin and henceVfin = fT,0(Vin).

The following question will be addressed in Section 3:

Under which assumptions on the HamiltonianH(·, λ) do the periodic orbitsγin

andγfin have the same action in the adiabatic limit?

We will discuss the answer(s) to this question in Theorem 9 of Section 3.

2.2. Ergodic Hamiltonian Systems

In the completely integrable case each motion (periodic or not) forever winds
around a given Lagrangian torus belonging to the Lagrangian foliation of the en-
ergy shell. Lagrangian tori being submanifolds with measure zero of the energy
shell, any particular motion is thus confined to a very small region of the energy
shell. This is in strong contrast with the generic non-integrable case where the
motion is chaotic, and where every point wanders ergodically over its own energy
shell. We remark, for later use (Subsection 4.1), that periodic orbits may however
exist on the energy shell, independently of the existence of so-called “islands of
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stability”; this does not contradict ergodicity, since the system does not reach all
the points of the energy shell in finite time. The question that poses itself is then
whether there exists some quantity which could be a good candidate for adiabatic
conservation. A classical heuristic argument is the following: as time-dependence
onλ is implemented, an ensemble of points onΣin will qualitatively have similar
trajectories, and in particular have approximately the same energies if the change
of the parameterλ is small. Thus, if the change ofλ is “infinitely slow” an initial
ensemble located onΣin will evolve after timeT into a final ensemble located on
Σfin. This heuristic observation motivates the following definition:

Definition 3. The “passage to the ergodic adiabatic limit” for chaotic(ergodic)
Hamiltonian systems consists in assuming that every pointz0 ∈ Σin becomes after
timeT a pointzT = fT,0(z0) ∈ Σfin for everyz0 ∈ Σin.

In the ergodic adiabatic limit the initial energy shell is thus transformed into the
final energy shell by the flow

Σfin = ΣT = fT,0(Σin). (12)

In view of Liouville’s theorem the phase space volume enclosed by the energy
shell is invariant in the ergodic adiabatic limit; the consequences of this fact have
been explored by many authors, e.g. [3, 8, 26]. It turns out that there are, as was
hinted at in the introduction, more general quantities which are excellent candi-
dates for adiabatic conservation. These quantities are thesymplectic capacitiesof
the interior of the energy shells (the notion of symplectic capacity is reviewed in
the Appendix). In fact:

Proposition 4. Let Ωin (respectivelyΩfin) be the set bounded by the energy shell
Σin (resp.Σfin). In the ergodic adiabatic limit we have

c(Ωfin) = c(Ωin) (13)

for every symplectic capacityc onR2n
z .

Proof: All symplectic capacities are symplectic invariants, i.e. they are preserved
by canonical transformations. In particular

c(Ωfin) = c(fT,0(Ωin)) = c(Ωin).

An immediate consequence of (13) is:
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Corollary 5. The areaπR2 of the big circle of the largest phase space ball that
can be squeezed insidēΩ = {z ; H(z, λ) ≤ E} is constant in the ergodic adia-
batic limit.

Proof: The areaπR2 is a symplectic capacity, namely the “Gromov width” ofΩ̄
(see formula (34) in the Appendix).

The following questions will be answered in Section 4:

Is there a periodic orbit onΣin which ends into a periodic orbit onΣfin having the
same action? Is there a relation between the initial and final energies?

We will see that the answer to both questions is “yes”.

3. Study of the Integrable Case

It will be assumed throughout this Section that the initial energy shellΣin carries a
periodic orbitγin (this statement is independent of the choice of Hamiltonian; see
Proposition 16 of the Appendix). This is the case for instance ifΩin is compact
and convex, but this is indeed not a necessary condition because one can show
that almost every energy shell carries periodic orbits (see for instance [18]). Let
t 7−→ z(t) be the trajectory of a point situated onγin at timet = 0. That point
will in general leave the hypersurfaceΣin and travel trough phase space, but since
the Hamiltonian becomes anew time-independent fort ≥ T , it will remain onΣfin

after timeT . We make the assumption that the motion again becomes periodic;
throughz(T ) thus passes a periodic orbitγfin of H(z, λ(T )), lying on the final
energy shellΣfin.

Let us investigate under which conditions we have
∮

γin

〈p,dx〉 =
∮

γfin

〈p,dx〉

in the adiabatic limit. We begin by discussing some conditions on the initial and
final frequencies.

3.1. Conditions on the Frequencies

What do these considerations imply for the initial and final periodic orbits? Since
γin is a periodic orbit lying on the torusVin it is described in terms of the angle-
action variables by the formulas

Ij(t) = Ij(0), φj(t) = φj(0) + ωj(0)t, −τin ≤ t ≤ 0.
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In order that these relations effectively describe a periodic motion, we impose the
following resonance condition:

Condition 6. (Initial Resonance)LetJin be the set of integersj for whichIj(t) 6=
0 andωj(0) > 0. We assume that there existsjin ∈ Jin such that all the frequen-
ciesωj(0) are proportional toωjin(0).

Denoting that fundamental frequencyωjin(0) by ωin the orbitγin ⊂ Vin thus has
periodτin = 2π/ωin. Similarly:

Condition 7. (Final Resonance)LetJfin be the set of integersj for whichIj(t) 6=
0 andωj(T ) > 0. We assume that there existsjfin ∈ Jfin such that all the frequen-
ciesωj(0) are proportional toωjfin(0).

The orbitγfin ⊂ Vfin then has periodτfin = 2π/ωfin whereωfin = ωjfin(0).
We will assume in the sequel thatJ ={1, ..., k} (k ≤ n); up to a reordering of
the coordinates, this is of course no restriction.

Are these two conditions sufficient to ensure exact (or adiabatic) conservation of
the actions of the initial and final periodic orbitsγin andγfin? No, unlessn = 1, in
which case the orbits coincide with the Lagrangian tori since the latter are simply
the circles carrying these orbits. This is immediately seen as follows. The initial
resonance condition implies that

∮

γin

〈I, dφ〉 =
k∑

j=1

Ij(0)
∫ 0

−τin

ωj(s)ds

=
k∑

j=1

Ij(0)ωj(0)τin

=
k∑

j=1

2πkjIj(0).

Similarly, the final resonance condition leads to

∮

γin

〈I, dφ〉 =
k∑

j=1

2πk′jIj(0)

hence we will have equality of the initial and final actions ifkj = k′j (the condi-
tion is of course not necessary). We will henceforth always make the following
assumption of proportionality on the initial and final frequencies:
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There exists a constantρ(T ) > 0 such that we have

ωj(T ) = ρ(T )ωj(0) for j ∈ J

that is
(ω1(T ), ..., ωk(T )) = ρ(T )(ω1(0), ..., ωk(0)). (14)

Notice that this assumption holds in particular whenω(T ) = ω(0), i.e. in the case
of a cyclic evolution whereλ describes a loop in parameter space.

We emphasize that both the resonance conditions and the proportionality assump-
tion above are about the initial and final motionsonly. No assumption whatsoever
is made on the intermediary frequencies.

Remark 8. Condition (14) implies that the Maslov indices ofγin and γfin are
equal: by definition these Maslov indices are

m(γin) = 2
∑

j

kj , m(γfin) = 2
∑

j

k′j .

Notice that the converse is not generally true: the equalitym(γin) = m(γfin) does
not imply(14).

This remark is useful in the context of “adiabatic switching”, where one tries to
find the energy of a “deformed” Hamiltonian in terms of a known (integrable) one.

3.2. Adiabatic Limit and Energy

In many physics textbooks one often establishes the adiabatic invariance of the
action variable for the Hamiltonian

H =
1
2
(p2 + ω2(t)x2)

by the following argument. Under the assumption that the frequency changes
“infinitely slowly” in the time interval[0, T ], one proves that the ratioE(t)/ω(t)
between the instantaneous energy and frequency is conserved during the motion
(this property is in fact obvious, passing to angle-action variables in the adiabatic
limit). Now, the initial and final periodic orbits are the ellipses

1
2E(0)

(p2 + ω2(0)x2) = 1 and
1

2E(T )
(p2 + ω2(T )x2) = 1
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respectively. The areas of these ellipses are identical with the initial and final
actions; since these areas are2πE(0)/ω(0) and2πE(T )/ω(T ) respectively, one
concludes to the conservation of action.

We are going to use the invariance property (4) of the Poincaré-Cartan form (3)
to show that this relation between initial and final actions and initial and final
energies persists for multidimensional systems. (We mention that the properties of
the Poincaré-Cartan invariant have been used in [7] to establish results of adiabatic
invariance for quite general systems of linear differential equations.)

Let us state and prove the main result of this Section:

Theorem 9. Assume that eachH(·, λ) is integrable and that there exists a canon-
ical change of variablesgλ such that

H(gλ(z), λ) = K(I, λ) for every λ ∈ D.

Let Ein = H(z(0), λ(0)) andEfin = H(z(T ), λ(T )) be the initial and final en-
ergies, andτin, τfin the periods ofγin andγfin. If the proportionality assumption
(14)holds, then

∮

γin

〈p, dx〉 −
∮

γfin

〈p,dx〉 = Einτin −Efinτfin (15)

and hence ∮

γin

〈p, dx〉 =
∮

γfin

〈p, dx〉 ⇐⇒ Einτin = Efinτfin. (16)

Proof: Let us denote byt 7−→ z(t) the trajectory carrying the periodic orbitsγin

andγfin. The integrability assumption implies that for timet ≤ 0 the motion takes
place on an initial Lagrangian torusVin ⊂ Σin and for timet ≥ T on a final torus
Vfin ⊂ Σfin. We lift the periodic orbitsγin andγfin to curves

γ̃in : [−τin, 0] −→ R2n+1
z,t and γ̃fin(t) : [T, T + τfin] −→ R2n+1

z,t

in extended phase space, defined by

γ̃in(t) = (γin(t), t) and γ̃fin(t) = (γfin(t), t).

We define two arcs̃ξin andξ̃fin inR2n
z,t as follows:ξ̃in is the segment of line joining

(z(0), 0) to (z(−τin),−τin) = (z(0),−τin), that is

ξ̃in(s) = (z(0),−sτin), 0 ≤ s ≤ 1 (17)



30 Maurice A. de Gosson

andξ̃fin is the (non-isochronous) deformation ofξ̃in defined, for0 ≤ s ≤ 1, by

ξ̃fin(s) = f̃T+(1−s)τfin+sτin(z(0),−sτin) (18)

that is, by definition of the suspended flow̃ft

ξ̃fin(s) = (fT+(1−s)τfin,−sτin(z(0)), T + (1− s)τfin). (19)

Taking into account the periodicity relationsz(0) = z(−τin) andz(T ) = z(T +
τfin) we have

ξ̃fin(0) = f̃T+τfin
(z(0), 0) = (fT+τfin,0(z(0)), T + τfin) = (z(T ), T + τfin)

and
ξ̃fin(1) = f̃T+τin(z(0),−τin) = (fT,0(z(0), T ) = (z(T ), T )

thusξ̃fin is an arc joining the endpoint(z(T ), T+τfin) of γ̃fin to its origin(z(T ), T )
(in this order). LetΓ be the surface swept out bỹξin during its travel; its boundary
is the one-cycle

γ̃ = ξ̃in + γ̃1 − ξ̃fin − γ̃2

whereγ̃1 is the piece of trajectory in extended phase space joining(z(0), 0) to
(z(T ), T + τfin) andγ̃2 that joining(z(0),−τin) to (z(T ), T )

γ̃1(t) = (ft,0(z(0)), t), 0 ≤ t ≤ T + τfin

γ̃2(t) = (ft,0(z(0)), t), −τin ≤ t ≤ T .

The stripΓ consists of characteristic curves of̃XH ; hence, using respectively
Stokes’ theorem and the consequence (5) of the relative invariance property (4) of
the Poincaré–Cartan form we have∫

γ̃
α̃H =

∫

Γ
dα̃H = 0 (20)

that is ∫

γ̃1

α̃H −
∫

γ̃2

α̃H =
∫

ξ̃fin

α̃H −
∫

ξ̃in

α̃H . (21)

By definition of the paths̃γ1 andγ̃2 we have

γ̃1 + γ̃fin = γ̃in + γ̃2

whereγ̃in(t) = (γin(t), t) for −τin ≤ t ≤ 0 andγ̃fin(t) = (γfin(t), t) for T ≤ t ≤
T + τfin , hence

∫

γ̃1

α̃H −
∫

γ̃2

α̃H =
∮

γin

〈p, dx〉 −
∮

γfin

〈p,dx〉
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since we have
∫

γ̃1

α̃H =
∫

γ̃1

〈p,dx〉 −Hdt =
∫

γ1

〈p,dx〉

and ∫

γ̃2

α̃H =
∫

γ̃2

〈p,dx〉 −Hdt =
∫

γ2

〈p,dx〉 .

The equality (21) is thus equivalent to
∮

γin

〈p,dx〉 −
∮

γfin

〈p, dx〉 =
∫

ξ̃in

α̃H −
∫

ξ̃fin

α̃H . (22)

It follows that it is sufficient to prove that
∫

ξ̃in

α̃H −
∫

ξ̃fin

α̃H = Einτin − Efinτfin. (23)

We first notice that since〈p, dx〉 = 0 along ξ̃in and that the value of the Hamil-
tonian along̃ξin is

H(z(0), λ(−sτin)) = H(z(0), λ(0)) = Ein

we have ∫

ξ̃in

α̃H =
∫

ξ̃in

Hdt =
∫ 1

0
Ein(−τin)dt = Einτin. (24)

Let us next prove that ∫

ξ̃fin

α̃H = Efinτfin

the theorem will follow. Let

ξfin(s) = fT+(1−s)τfin,−sτin(z(0)), 0 ≤ s ≤ 1

be the projection of̃ξfin(s) on phase spaceR2n
z (cf. (19)). Since

fT+(1−s)τfin,−sτin = fT+(1−s)τfin,T ◦ fT,0 ◦ f0,−sτin(z(0))

andf0,−sτin(z(0) ∈ γin, we will have (recalling thatVT = Vfin)

ξfin(s) ∈ VT = Vfin ⊂ Σfin

hence the value of the Hamiltonian alongξ̃fin is

H(ξfin(s), λ(T + (1− s)τfin)) = H(ξfin(s), λ(T )) = Efin.
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It follows that

∫

ξ̃fin

Hdt = −
∫ 1

0
Efin(−τfin)dt = Efin τfin.

There remains to show that ∮

ξfin

〈p, dx〉 = 0. (25)

Passing to angle-action variables(φ, I) and settingz(0) = (I(0), φ(0)), ω(t) =
ω(I(0), t) we have

ξfin(s) = (I(0), φ(0) +
∫ T+(1−s)τfin

−sτin

ω(t)dt)

= (I(0), φ(0) + φH(T ) + sω(0)τin + (1− s)ω(T )τfin).

The assumption (14) implies that we haveω(T )τfin = ω(0)τin and hence

ξfin(s) = (I(0), φ(0) + φH(T ) + ω(T )τfin)

so that ∮

ξfin

〈p,dx〉 =
∮

ξfin

〈I, dφ〉 = 0

as was to be proven.

Remark 10. The observant reader will have noticed that the proof of the identity
(22)only used the fact thatγin andγfin were periodic orbits carried by the initial
and final energy shells. Neither integrability, nor the proportionality assumption
(14), were used at this stage of the proof of Theorem9 above. We will in fact see
in the proof of Theorem11 that integrability is not even necessary to establish the
equality(25).

4. The Ergodic Case

We assume in this section that the HamiltoniansH(·, λ) have no other constants
of the motion than the energy (for fixedλ). The motion is thus chaotic, and we
assume that we are in the situation of the ergodic adiabatic limit.
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4.1. Ergodic Limit and Periodic Orbits

In the ergodic adiabatic limit, an initial energy shell uniquely determines the final
energy shell. The following result is the ergodic version of Theorem 9:

Theorem 11. Assume that the initial energy shellΣin carries a periodic orbitγin.
In the ergodic adiabatic limit:i) the trajectory through any point ofΣin becomes
after timeT a periodic orbitγfin of the final energy shell, andii) we have both

∮

γin

〈p,dx〉 =
∮

γfin

〈p,dx〉 and Einτin = Efinτfin (26)

whereτin andτfin are the periods ofγin andγfin, respectively.

Proof: By definition of the ergodic adiabatic limit for any pointz0 of Σin the
final energy is given byEfin = H(fT,0(z0), λ(T )), andfT,0(γin) ⊂ Σfin. Let us
showγT = fT,0(γin) indeed is a periodic orbit ofH(·, λ(T )); sincefT,0(z0) ∈
fT,0(γin) this will prove part i) of the Theorem. Since in the ergodic adiabatic
limit we have

ΣT = fT,0(Σin) = Σfin

it follows that

Σfin = {z ; H(z, λ(T )) = Efin} = {u ; H(f−1
T,0(u), λ(0)) = Ein}.

In view of Proposition 16 of the Appendix the HamiltoniansH(f−1
T,0(·), λ(0)) and

H(·, λ(T )) have the same periodic orbits onΣfin. For the flow ofH(f−1
T,0(·), λ(0))

beingfT,0 ◦ ft,0 ◦ f−1
T,0 it follows thatγT is a periodic orbit ofH(f−1

T,0(·), λ(0)),
hence also ofH(·, λ(T )). Let us prove ii). Thatγin andγfin have same action
follows immediately from the fact thatfT,0 is canonical

∮

γfin

〈p,dx〉 =
∮

fT,0(γin)

〈p,dx〉 =
∮

γin

〈p, dx〉 .

To prove the second equality (26) we use Remark 10 following the proof of The-
orem 9 to notice that we have∮

γin

〈p,dx〉 −
∮

γfin

〈p,dx〉 =
∫

ξ̃in

α̃H −
∫

ξ̃fin

α̃H

whereξ̃in andξ̃fin are defined by (17), (18). In view of the equality of the actions
of γin andγfin just established we thus have

∫

ξ̃in

α̃H =
∫

ξ̃fin

α̃H .
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As in the proof of Theorem 9 we obviously have
∫

ξ̃in

α̃H = Ein τin

so there remains to show that
∫

ξ̃fin

α̃H = Efinτfin (27)

to prove the second equality (26). We have
∫

ξ̃fin

α̃H =
∮

ξfin

〈p,dx〉 −
∫ 1

0
H(ξfin(s), λ(T ))(−τfin)dt

whereξfin is defined by

ξfin(s) = fT+(1−s)τfin,−sτin(z0).

Set, for0 ≤ s ≤ 1,

γ(s) =

{
fT,−2sτin(z0) for 0 ≤ s ≤ 1/2

fT+2(1−s)τfin,0(z0) for 1/2 ≤ s ≤ 1.

and
γ̃(s) = (γ(s), T + (1− s)τfin), 0 ≤ s ≤ 1.

Sinceγ(0) = γ(1) = fT,0(z0) the paths̃γ andξ̃fin (see (19)) have same endpoints.
On the other hand both̃γ andξ̃fin lye on the same surfaceΓ swept out bỹξin during
its travel. In view of the relative invariance ofα̃H we thus have

∫

ξ̃in

α̃H =
∫

γ̃
α̃H .

Let us show that ∫

γ̃
α̃H = Efinτfin

this will prove the second equality (26). By definition ofα̃H we have
∫

γ̃
α̃H =

∮

γ
〈p,dx〉 −

∫ 1

0
H(γ(s), λ(T ))(−τfin)ds.

Since in the ergodic adiabatic limit we have both

fT,−2sτin(z0) ∈ Σfin and fT+2(1−s)τfin,0(z0) ∈ Σfin
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and henceH(γ(s), λ(T )) = Efin for 0 ≤ s ≤ 1, it follows that

∫ 1

0
H(γ(s), λ(T ))(−τfin)ds = −Efinτfin.

There remains to show that we have
∮

γ
〈p,dx〉 = 0.

Now,

fT,−2sτin(z0) = fT,0 ◦ f0
2sτin,0(z0)

wheref0
t,0 is the flow ofH(·, λ(0)), hence

s 7−→ fT,−2sτin(z0) (0 ≤ s ≤ 1/2)

is a reparametrization of the loopfT,0(γin). Similarly,

fT+2(1−s)τfin,0(z0) = fT
2(1−s)τfin,0 ◦ fT,0(z0)

wherefT
t,0 is the flow ofH(·, λ(T )), hence

s 7−→ fT+2(1−s)τfin,0(z0) (1/2 ≤ s ≤ 1)

is a reparametrization of the opposed path ofγfin = fT,0(γin). It follows that

∮

γ
〈p, dx〉 =

∮

fT,0(γ)
〈p,dx〉 −

∮

fT,0(γ)
〈p, dx〉 = 0

as we set out to prove.

Remark 12. LetH be a time-dependent Hamiltonian. The flowf̄t,0 of the Hamil-
tonianH̄ defined by

H̄(z, t)) = −H(ft,0(z), t) (28)

is given byf̄t,0 = f−1
t,0 (see[27], or [19], Proposition 1, p. 144). This Hamiltonian

(up to a sign) was implicitly used in the proof of Theorem11. Its appearance is
related to the reversibility of the notion of ergodic adiabatic invariance considered
here.
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4.2. Possible Extensions

It has been suggested (for instance in [8]) that volume might in certain cases be
an adiabatic invariant for non-ergodic Hamiltonian systems. This is of course
trivially untrue in most cases (to begin withn-dimensional oscillator). Let us
briefly discuss the possibility for symplectic capacities to be adiabatic invariants.
We begin with the example of a coupled linear oscillator with Hamiltonian

H =
1
2

(
p2
1 + p2

2 + ω2(t)(x1 + x2)2
)

.

In the adiabatic limit we may use the canonical change of the variables(x, p) to
the variables(X, P ) defined by

(X1, X2) = (2ω(t))−1/2(x1 − x2, x1 + x2)

(P1, P2) = (2ω(t))1/2(p1 − p2, p1 + p2)

to bringH into the form

K =
ω(t)
2

(P 2
1 + P 2

2 + X2
1 ).

For fixedt the energy shells are the hypersurfaces

Σ :
ω

2E

(
P 2

1 + P 2
2 + X2

1

)
= 1

let Ω be the phase space region bounded byΣ. Since

ω

2
(P 2

1 + X2
1 ) ≤ ω

2
(P 2

1 + P 2
2 + X2

1 ) ≤ ω

2
(P 2

1 + P 2
2 + X2

1 + X2
2 )

we have
B(

√
2E/ω) ⊂ Ω ⊂ Z1(

√
2E/ω)

whereB(R) is the phase space ball centered at the origin and with radiusR and
Z1(R) is the cylinderx2

j + p2
j ≤ R2. It follows, by (33) in the Appendix, that

c(Ω) = 2πE/ω for any symplectic capacityc. The solutions of Hamilton’s equa-
tions forK satisfy

P 2
1 (t) + P 2

2 (t) + X2
1 (t) = P 2

1 (0) + P 2
2 (0) + X2

1 (0)

for all t, hence the ratio between the instantaneous energy and the frequency is
constant and the equality between the initial and final symplectic capacities fol-
lows. Notice that it does not make sense here to investigate whether the volume
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enclosed by the energy shell is adiabatically conserved since the volume of each
Ω is infinite!

In the general case, assume that the setsΩin andΩfin bounded by the initial and
final energy shells are both compact and convex. Then, in view of the second part
of Theorem 15 in the Appendix, we have

cHZ(Ωin) =
∮

γin

〈p,dx〉 , cHZ(Ωfin) =
∮

γfin

〈p,dx〉 .

if both γin andγfin are minimal periodic loops (i.e., minimizing action on their
respective energy shells);cHZ is the Hofer-Zehnder capacity. However it is not
true in general that two such minimizing periodic loops are connected by a phase
space trajectory. If, however, the minimal periodic orbitγin becomes, after time
T , a periodic orbitγfin carried byΣfin and having same action, then we have

∮

γin

〈p,dx〉 =
∮

γfin

〈p, dx〉 ≥ cHZ(Ωfin)

so thatcHZ(Ωin) ≥ cHZ(Ωfin). If conversely a minimal periodic orbit onΣfin

becomes a periodic orbit onΣin with same action, we will also havecHZ(Ωin) ≥
cHZ(Ωfin) and hence

cHZ(Ωin) = cHZ(Ωfin).

4.3. Quantization

Let us briefly discuss semiclassical quantization from the perspective of ergodic
adiabatic switching. It has been suggested by Berry [3, 5] that (up to asymptotic
corrections) the formula

(
1

2π~

)n ∫

Ω
dnxdnp = N +

1
2

(29)

could provide a good quantization scheme for ergodic systems. This is, of course,
perfectly in accordance with the observed adiabatic invariance of volume for such
systems. Following the discussion above, it could perhaps be advantageous to
replace the quantization condition (29) by its symplectic counterpart

c(Ω) = (N +
1
2
)h, N = 0, 1, 2, ... (30)

wherec is some symplectic capacity. In view of Theorem 11 this leads to the
existence of quantized periodic orbits. Choose in factc = cHZ in (30) and assume
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Ω compact and convex. Then in view of Theorem 15 there exists a periodic orbit
γ ∈ Σ = ∂Ω such that ∮

γ
〈p,dx〉 = (N +

1
2
)h. (31)

Remark 13. It would be interesting to investigate the relation between this ap-
proach and the quantization conditions for isolated periodic orbits proposed in
[28].

It turns out that the conditions (30), (31) are consistent with the quantization
scheme proposed in [12–14], where we made the following Ansatz:

The only admissible trajectories for a HamiltonianH in the ground energy level
are those which lie on some subset (not only an energy shell) of phase space with
capacity1

2h.

That Ansatz might thus be justified a posteriori using ergodic “adiabatic switch-
ing”: one starts with some HamiltonianH0 for which one knows that this Ansatz
is trivially true, and one then introduces time-dependence in order to deformH0

into H. That possibility will be explored in forthcoming research.

5. Concluding Remarks.

We have been investigating in this article a few consequences of the passage to
the adiabatic limit, both in he completely integrable and in the ergodic case. We
have however not studied rigourously the conditions of validity of this limit. As
we already mentioned, there are technical difficulties when one tries to use tech-
niques from averaging theory. The solution of that problem (or at least a clue to
it) might be in a systematic use of the usual comparison theorems of the theory
of ordinary differential equations (Gronwall’s lemma), and the improvement of
existing averaging techniques. Some results for oscillating systems will be given
in a forthcoming research.

A related problem is that of the technique of adiabatic switching, where one tries
to calculate the (semiclassical) energy levels of a HamiltonianH in terms of those
of a HamiltonianH0 whose energy levels are known. This procedure obviously
automatically works for integrable Hamiltonians in all cases where the passage to
the adiabatic limit is legitimate (the semiclassical and adiabatic limit are however
not identical: see [3]). In the ergodic case one knows that the isolated periodic
orbits play a fundamental role (see [16,28], and [6] for a different point of view).
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Theorem 11 can indeed be used to relate ergodic adiabatic invariance to quanti-
zation; one should however note that it says nothing about how to find periodic
orbits to quantize! A related difficulty is that it is very difficult to calculate sym-
plectic capacities outside a few textbook cases (but the same remark applies to the
calculation of volumes!).

We finally notice that it would be interesting to investigate whether the study of
adiabatic invariance of symplectic capacity could be done directly by adapting
appropriately the techniques in the proof of Hofer and Zehnder’s theorem 15 of
the Appendix. The proof of this theorem (which is very difficult and technical) is
based on the construction of privileged periodic Hamiltonian orbits.

6. Appendix: Symplectic Capacities and Gromov’s Theorem

Consider a phase space ballB(r) : |x|2 + |p|2 ≤ r2. The area of the projection
of B(r) onto any two-dimensional coordinate plane (sayxj , pk, xj , xk or pj , pk)
is obviouslyπr2. Suppose now that we moveB(r) using canonical transforma-
tions (e.g. a Hamiltonian flow); in view of Liouville’s theorem,B(r) will distort
while keeping a constant volume, hence the areas of the projections on the two-
dimensional planes will change and a priori take arbitrary values. Not so! No
matter how hard we try, the areas of the projections of the distorted ball onconju-
gateplanesxj , pj will never decrease; they will always be at leastπr2. This deep
property of canonical transformations is actually equivalent to Gromov’s squeez-
ing theorem [15] (also known as the “principle of the symplectic camel”):

Theorem 14. (Gromov [15]) There exists no canonical transformation
sendingB(r) into a phase space cylinderZj(R) : x2

j + p2
j ≤ R2 if r ≥ R.

Gromov’s theorem allows us to define, following Ekeland and Hofer [11], the
subsidiary notion ofsymplectic capacity: a symplectic capacity on phase space
R2n

z is the assignment, to every subsetΩ ⊂ R2n
z , of a positive number, or+∞,

such that the following four properties hold:

Cap1: “Monotonicity”: If Ω ⊂ Ω′ thenc(Ω) ≤ c(Ω′);

Cap2: “2 -Homogeneity”: For everyk ∈ R we havec(kΩ) = k2c(Ω);

Cap3: “Symplectic invariance”: If a mapf is a canonical transformation, then
c(f(Ω)) = c(Ω).
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Cap4: “Normalization”: Phase space balls and symplectic cylinders with same
radii have same symplectic capacities:

c(B(r)) = πr2 = c(Zj(r)). (32)

Nota bene: There exist several nonequivalent definitions of the notion of symplec-
tic capacity in the literature; see e.g. [10,19,24,27].

Notice that in view of Cap1 and Cap4 we have

B(r) ⊂ Ω ⊂ Zj(r) =⇒ c(Ω) = πr2 (33)

for every symplectic capacityc.

A basic example of a symplectic capacity is thesymplectic area(also called “Gro-
mov’s width”) of a subsetΩ ⊂ R2n

z ; it is defined by

cG(Ω) = sup
f canonical

{
πr2; f(B(r)) ⊂ Ω

}
. (34)

That the properties (Cap1)–(Cap4) hold forcG is trivial, exceptfor the equality
cG(Zj(r)) = πr2, because it is actuallyequivalentto Gromov’s theorem, and
hencehighly nontrivial!

Any symplectic capacity of the ellipsoidal set defined by the inequality

B(r1, ..., rn) :
1
r2
1

(x2
1 + p2

1) + · · ·+ 1
r2
n

(x2
n + p2

n) ≤ 1 (35)

is equal to

c(B(r1, ..., rn)) = c(Zj(r)) = πr2, r = inf(r1, ..., rn) (36)

It is thus the area of the smallest circle of the ellipse boundingB(r1, ..., rn) (the
n-tuple(r1, ..., rn) is called thesymplectic spectrumof B(r1, ..., rn)).
It turns out that there exists a privileged symplectic capacitycHZ (the “Hofer-
Zehnder capacity”) related to the action of periodic Hamiltonian orbits:

Theorem 15. (Hofer-Zehnder [19])There exists a symplectic capacitycHZ hav-
ing the following properties:i) if ΣE : H = E is the boundary of a compact and
convex regionΩE of phase space, then∣∣∣∣

∮

γ
〈p,dx〉

∣∣∣∣ ≥ cHZ(ΩE)

for every periodic orbitγ of the Hamilton fieldXH on Σ and: ii) there exists a
periodic orbitγ0 which is minimal in the sense that∣∣∣∣

∮

γ0

〈p,dx〉
∣∣∣∣ = cHZ(ΩE). (37)
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That the result above actually is independent of the choice of Hamiltonian having
ΣE as energy shell follows from the following property of regular energy shells:

Proposition 16. Let H andK be two time-independent Hamiltonians. Suppose
thatE andF are regular values of the HamiltoniansH andK, respectively, and
that

Σ = {z ; H(z) = E} = {z ; K(z) = F} . (38)

ThenH and K have the same trajectories onΣ (and, in particular, the same
periodic orbits).

Proof: The idea underlying the proof is simple: sinceE andF are regular values,
the normals∂zH and∂zK to Σ do not vanish, and are thus proportional, and so
are the Hamilton vector fieldsXH = J∂zH andXK = J∂zK; they must thus
have the same trajectories, with different parametrizations. In fact, the symplectic
orthogonal to the tangent space toΣ at every point is a well-defined field of1-
directions. This field defines a foliation in lines of the hypersurfaceΣ. The leaves
of that foliation are the orbits of the vector fields; the result follows.
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