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Abstract. It is the general impression that deformation problems are always gov-
erned by cohomology spaces. In this contribution we consider the deformation of
Lie algebras. There this close connection is true for finite-dimensional algebras,
but fails for infinite dimensional ones. We construct geometric families of infinite
dimensional Lie algebras over the moduli space of complex one-dimensional tori
with marked points. These algebras are algebras of Krichever-Novikov type which
consist of meromorphic vector fields of certain type over the tori. The families
are non-trivial deformations of the (infinite dimensional) Witt algebra, and the Vi-
rasoro algebra respectively, despite the fact that the cohomology space associated
to the deformation problem of the Witt algebra vanishes, and hence the algebra is
formally rigid. A similar construction works for current algebras. The presented
results are jointly obtained with Alice Fialowski.

1. Introduction

In this write-up of a talk, presented at the Białowieża meeting on “Geometric
Methods in Physics” in 2005, I will give families of Lie algebras, which are non-
trivial deformations of “formally rigid” infinite dimensional Lie algebras. The
Lie algebras deformed are the Witt algebra, its universal central extension (i.e., the
Virasoro algebra), the current algebras, and their central extensions (i.e., the affine
Lie algebras). These algebras play an important role in Conformal Field Theory
(CFT). The deformed algebras are of Krichever-Novikov type [7] and appear in
particular in the context of a global operator approach to CFT [15], [16].

The algebras to be deformed are formally rigid, i.e., they only admit trivial de-
formations over the formal power series. Nevertheless, the constructed families
are such that the deformations are locally non-trivial, where “locally” means that
they are considered over small Zariski open or analytically open subsets of the
deformation space containing the special point, corresponding to the algebra to be
deformed. This phenomena is peculiar to, and in fact only possible, for infinite
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dimensional algebras. If the Lie algebra is finite-dimensional, then formal rigidity
implies rigidity in the geometric or analytic sense (see below).

Formal rigidity has to do with the Lie algebra cohomology space H2(L,L). In
particular, L will be formally rigid if this space is trivial. This is true e.g. for the
Witt algebra. Nevertheless, our families are non-trivial deformations of the Witt
algebra.

The results presented here were obtained jointly with Alice Fialowski [5], [6].
Some explicit constructions are based on some older work of mine [12]. For the
proofs, the explicit calculations, and further references I refer to these articles.

2. What are Deformations of Lie Algebras

Let L be a Lie algebra over C
1 with Lie bracket µ0 : L × L → L; µ0(x, y) =

[x, y]. Consider on the same vector space L is modeled on, a family of Lie struc-
tures

µt = µ0 + t · φ1 + t2 · φ2 + · · · (1)

with bilinear maps φi : L × L → L, such that Lt := (L, µt) is a Lie algebra and
L0 is the Lie algebra we started with. The family {Lt} is a deformation of L0.

Up to now I did not mention what the “parameter” t should be. Indeed we have
different possibilities:

1. The parameter t is a variable which allows to plug in numbers α ∈ C. In
this case Lα is a Lie algebra for every α for which the expression (1) is
defined. The family can be considered as deformation over the affine line
C[t] or over the convergent power series C{{t}}. The deformation is called
a geometric or an analytic deformation respectively.

2. We consider t as a formal variable, and we allow infinitely many terms in
(1). It might be the case that µt does not exist if we plug in for t any other
value different from 0. In this way we obtain deformations over the ring
of formal power series C[[t]]. The corresponding deformation is a formal
deformation.

3. The parameter t is considered as an infinitesimal variable, i.e., we take
t2 = 0. We obtain infinitesimal deformations defined over the quotient
C[X]/(X2) = C[[X]]/(X2).

1 In fact, the general considerations are true also for arbitrary fields (at least if the characteristic
is 0); But our examples are Lie algebras over C.
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Of course, deformations over more general base (e.g. multi-dimensional, etc.)
might be considered. See Appendix A for a mathematically precise definition of
a deformation.

There is always the trivially deformed family given by µt = µ0 for all values of
t. Two families µt and µ′t deforming the same µ0 are equivalent if there exists a
linear automorphism (with the same vagueness about the meaning of t)

ψt = id + t · α1 + t2 · α2 + · · · (2)

with αi : L → L linear maps such that

µ′t(x, y) = ψ−1
t (µt(ψt(x), ψt(y))). (3)

Definition 1. A Lie algebra (L, µ0) is called rigid if every deformation µt of µ0

is locally equivalent to the trivial family.

Here “locally” means that we only consider the situation for t “near 0”. Of course,
this depends on the category we consider. As on the formal and the infinitesimal
level there exists only one closed point, i.e., the point 0 itself, every deformation
over C[[t]] or C[X]/(X2) is already local. This is different on the geometric and
analytic level. Here it means that there exists an (Zariski or analytically) open
neighbourhood U of 0, such that the family restricted to it is equivalent to the
trivial one. In particular, this implies Lα

∼= L0 for all α ∈ U .

3. Deformations and Cohomology

There is the wide-spread conviction that deformations can always be described
in terms of cohomology objects. This is only true to a certain extent. For Lie
algebra deformations the relevant cohomology space is H2(L,L), the space of
Lie algebra two-cohomology classes with values in the adjoint module L. Recall
that the cohomology classes are classes of two-cocycles modulo coboundaries.
An antisymmetric map φ : L → L is a Lie algebra two-cocycle if

φ([x, y], z)+φ([y, z], x)+φ([z, x], y)−[x, φ(y, z)]+[y, φ(z, x)]−[z, φ(x, y)] = 0.
(4)

It is a coboundary if there exists a linear map ψ : L → L with

φ(x, y) = (d1ψ)(x, y) = ψ([x, y])− [x, ψ(y)] + [y, ψ(x)]. (5)

From (1) we get that the Jacobi identity for µt implies that the first non-vanishing
φi is a two-cocycle. Furthermore, if µt and µ′t are equivalent then the correspond-
ing φi and φ′i are cohomologous.
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The following results are well-known:

1. H2(L,L) classifies infinitesimal deformations [2]

2. If dim H2(L,L) < ∞, then all formal deformations up to equivalence can
be realized in this vector space [4]

3. If H2(L,L) = 0, then L is infinitesimally and formally rigid (follows from
1 and 2)

4. If dimL < ∞, then H2(L,L) = 0 implies that L is also rigid in the geo-
metric and analytic sense [2], [9], [10].

As our examples show, Point 4 is not true anymore if one drops the condition
dimL <∞.

For the Witt algebra W one has H2(W,W) = 0 ( [3], see also [5]). Hence it is
formally rigid. For the classical current algebras g = g⊗C[z−1, z] with g a finite-
dimensional simple Lie algebra, Lecomte and Roger [8] (partly based on results
of Garland [1]) showed that g is formally rigid. Nevertheless, for both types of
algebras including their central extensions we have deformations which are both
locally geometrically and analytically non-trival [5], [6].

4. The Geometric Families

The Witt algebra is the Lie algebra consisting of those meromorphic vector fields
on the Riemann sphere P

1(C) = S2, which are holomorphic outside {0,∞}. It
has the following basis and the corresponding structure equations

ln = zn+1 d

dz
, n ∈ Z, and [ln, lm] = (m− n) ln+m. (6)

By defining deg(ln) := n, it becomes a graded Lie algebra. The Virasoro algebra
is its universal central extension.

The Krichever-Novikov vector field algebras [7], [11] are generalization of the
Witt algebra to arbitrary higher genus compact Riemann surfacesX . They consist
of meromorphic vector fields onX , which are holomorphic outside a certain finite
set of points. In general the algebras are not graded anymore, but only almost-
graded (see [11], [14] for the details and further references). Here, I will only deal
with examples and will also ignore central extensions.

Let T = C/L be a complex one-dimensional torus, i.e., a Riemann surface of
genus 1. Here L denotes the lattice L = 〈1, τ〉Z, τ ∈ C, with im τ > 0. The field
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of meromorphic functions on T is generated by the doubly-periodic Weierstraß ℘
function and its derivative ℘′ fulfilling the differential equation

(℘′)2 = 4(℘− e1)(℘− e2)(℘− e3) = 4℘3 − g2℘− g3 (7)

with the ei pairwise distinct and given by

℘(
1

2
) = e1, ℘(

τ

2
) = e2, ℘(

τ + 1

2
) = e3, e1 + e2 + e3 = 0. (8)

The function ℘ is an even meromorphic function with poles of order two at the
points of the lattice and holomorphic elsewhere. The function ℘′ is an odd mero-
morphic function with poles of order three at the points of the lattice and holo-
morphic elsewhere. It has zeros of order one at the points 1/2, τ/2 and (1 + τ)/2
and all its translates under the lattice.

We have to pass here to the algebraic-geometric picture. The map

T → P
2(C), z mod L 7→

{
(℘(z) : ℘′(z) : 1), z /∈ L

(0 : 1 : 0), z ∈ L.
(9)

realizes T as a complex-algebraic smooth curve in the projective plane. The affine
coordinates are X = ℘(z, τ) and Y = ℘′(z, τ). From (7) it follows that its affine
part can be given by the cubic curve defined by

Y 2 = 4(X − e1)(X − e2)(X − e3) = 4X3 − g2X − g3 =: f(X). (10)

The point at infinity on the curve is the point∞ = (0 : 1 : 0). We consider the
subalgebra of those vector fields, which are holomorphic outside of z̄ = 0̄ and
z̄ = 1/2 (respectively in the algebraic-geometric picture, outside the points ∞
and (e1, 0)). A basis of such vector fields is given (with k ∈ Z)

V2k+1 := (X − e1)
kY

d

dX
, V2k :=

1

2
f(X)(X − e1)

k−2 d

dX
. (11)

If we vary the points e1 and e2 (e3 = −(e1+e2)) we obtain families of curves and
associated families of vector field algebras as long as the curves are non-singular.
Let us describe them in detail. Let

Ds := {(e1, e2) ∈ C
2; e2 = s · e1}, s ∈ C, D∞ := {(0, e2) ∈ C

2} (12)

and
B := C

2 \ (D1 ∪D−1/2 ∪D−2). (13)
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Then the curves are non-singular exactly over the points of B. Over the excep-
tional Ds at least two of the ei are the same. For the algebra we obtain

[Vn, Vm]=





(m− n)Vn+m n,m odd
(m− n)

(
Vn+m + 3e1Vn+m−2

+ (e1 − e2)(e1 − e3)Vn+m−4

)
n,m even

(m− n)Vn+m + (m− n− 1)3e1Vn+m−2

+ (m−n−2)(e1−e2)(e1−e3)Vn+m−4, n odd, m even.

(14)

In fact these relations define Lie algebras for every pair (e1, e2). We denote by
L(e1,e2) the Lie algebra corresponding to (e1, e2). Obviously, L(0,0) ∼=W .

Proposition 2. ( [5, Proposition 5.1]) For (e1, e2) 6= (0, 0) the algebras L(e1,e2)

are not isomorphic to the Witt algebraW , but L(0,0) ∼=W .

If we restrict our two-dimensional family to the lines Ds (s 6=∞) then we obtain
a one-dimension family

[Vn, Vm] =





(m− n)Vn+m n,m odd
(m− n)

(
Vn+m + 3e1Vn+m−2

+ e21(1− s)(2 + s)Vn+m−4

)
n,m even

(m− n)Vn+m + (m− n− 1)3e1Vn+m−2

+(m−n−2)e21(1−s)(2+s)Vn+m−4, n odd, m even.

(15)

Here s has a fixed value and e1 is the deformation parameter. (A similar family
exists for s =∞.) It can be shown that as long as e1 6= 0 the algebras over Ds are
pairwise isomorphic, but not isomorphic to the algebra over 0, which is the Witt
algebra. Using the result of Fialowski [3] on H2(W,W) = {0}, we get

Theorem 3. Despite its infinitesimal and formal rigidity, the Witt algebraW ad-
mits deformations Lt over the affine line with L0

∼= W , which restricted to every
(Zariski or analytic) neighbourhood of t = 0 are non-trivial.

5. The Geometric Reason Behind

If we take e1 = e2 = e3 in the definition of the cubic curve (10) we obtain
the cuspidal cubic EC , with affine part given by the polynomial Y 2 = 4X3. It
has a singularity at (0, 0) and the desingularization is given by the projective line



Deformations of the Virasoro Algebra of Krichever – Novikov Type 101

P
1(C). This says there exists a surjective (algebraic) map πC : P

1(C) → EC ,
which outside the singular point is 1 : 1. Over the cusp lies exactly one point. The
vector fields can be degenerated to EC and pull-backed to vector fields on P

1(C).
The point (e1, 0), where a pole is allowed, moves to the cusp. The other point
stays at infinity. In particular, by pulling back the algebra we obtain the algebra
of vector fields with two possible poles, which is the Witt algebra.

The exceptional lines Ds for s = 1,−1/2,−2 are related to interesting geometric
situations. Above Ds \ {(0, 0)} with these values of s, two of the ei are the same,
the third one remains distinct. The curve will be a nodal cubic EN , defined by
Y 2 = 4(X − e)2(X − e). The singularity will be a node with the coordinates
(e, 0). Again, the desingularization will be the projective line πN : P

1(C)→ EN .
But now above the node there will be two points in P

1(C). For the pull-back of
the vector fields we have the following two situations:

1) If s = 1 or s = −2 then e = e1 and the node is a possible point for a
pole. We obtain vector fields on P

1(C) which might have, beside the pole
at∞, poles at two other places. Hence, we obtain a three-point Krichever-
Novikov vector field algebra of genus 0.

2) If s = −1/2 then at the node there is no pole. The number of possible poles
for the pull-back remains two. But the vector fields obtained by pull-back
acquire zeros at the points lying above the node. Hence, we get a certain
subalgebra of the Witt algebra. These algebras have been identified and
studied in detail in [5] and [12].

These deformed families are of importance in the context of going to the boundary
of the moduli space of curves with marked points.

A. The Precise Definition of a Deformation of a Lie Algebra

In the following we will assume thatA is a commutative algebra over K (where K

is a field of characteristic zero) which admits an augmentation ε : A → K. This
says that ε is a K-algebra homomorphism, e.g., ε(1A) = 1. The ideal mε := Ker ε
is a maximal ideal of A. Vice versa, given a maximal ideal m of A with A/m ∼=
K, the natural quotient map defines an augmentation.

If A is a finitely generated K-algebra over an algebraically closed field K then
A/m ∼= K is true for every maximal ideal m. Hence, in this case every such A
admits at least one augmentation and all maximal ideals are coming from aug-
mentations.
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Let us consider a Lie algebra L over the field K, ε a fixed augmentation of A, and
m = Ker ε the associated maximal ideal.

Definition 4. ( [4]) A deformation λ of L with base (A,m), or simply with base
A, is a Lie A-algebra structure on the tensor product A⊗K L, with bracket [., .]λ
such that

ε⊗id : A⊗L → K⊗L = L (16)

is a Lie algebra homomorphism.

Specifically, it means that for all a, b ∈ A and x, y ∈ L,

1) [a⊗ x, b⊗ y]λ = (ab⊗ id )[1⊗ x, 1⊗ y]λ
2) [., .]λ is skew-symmetric and satisfies the Jacobi identity
3) ε⊗ id ([1⊗ x, 1⊗ y]λ) = 1⊗ [x, y].

By condition 1) to describe a deformation it is enough to give the elements
[1 ⊗ x, 1 ⊗ y]λ for all x, y ∈ L. If B = {zi}i∈J is a basis of L it follows from
condition (3) that the Lie product has the form

[1⊗x, 1⊗y]λ = 1⊗[x, y] +
∑

′

i ai⊗zi (17)

with ai = ai(x, y) ∈ m, zi ∈ B. Here
∑

′ denotes a finite sum. Clearly, condition
2) is an additional condition which has to be satisfied.

If we use A = C[t] we get exactly the notion of a one parameter geometric defor-
mation discussed above.

A deformation is called trivial if A⊗K L carries the trivially extended Lie struc-
ture, i.e., (17) reads as [1⊗ x, 1⊗ y]λ = 1⊗ [x, y].

Two deformations of a Lie algebra L with the same base A are called equivalent
if there exists a Lie algebra isomorphism between the two copies of A ⊗ L, with
the two Lie algebra structures compatible with ε⊗ id .

Formal deformations are defined in a similar way. Let A be a complete local
algebra over K, so A =

←−−
lim

n→∞

(A/mn), where m is the maximal ideal of A. Fur-

thermore, we assume that A/m ∼= K, and dim(mk/mk+1) <∞ for all k.

Definition 5. A formal deformation of L with base A is a Lie algebra structure
on the completed tensor product A⊗̂L =

←−−
lim

n→∞

((A/mn)⊗ L) such that

ε⊗̂id : A⊗̂L → K⊗ L = L (18)

is a Lie algebra homomorphism.
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If A = C[[t]], then a formal deformation of L with base A is the same as a formal
one parameter deformation discussed above. There is an analogous definition for
equivalence of deformations parameterized by a complete local algebra.

B. Families for the Current Algebras

The construction of the families above is not restricted to the vector field case.
It also works for the current algebra and affine Lie algebra case. Let g be a
finite-dimensional Lie algebra and A be the algebra of meromorphic functions
on a compact Riemann surface with poles only at a given set of points. Then the
higher genus multi-point current algebra g of Krichever-Novikov type [7], [13]
is defined as

g := g⊗A, with [x⊗ f, y ⊗ g] := [x, y]⊗ fg. (19)

For the classical case we take the projective line and two possible points for poles
and obtain g ⊗ C[z−1, z]. Of course, we can now consider A for the situation
discussed in the vector field case. We take as basis for A

A2k = (X − e1)
k, A2k+1 =

1

2
Y · (X − e1)

k−1 k ∈ Z (20)

and obtain

[x⊗An, y⊗Am]=





[x, y]⊗An+m n or m even
[x, y]⊗An+m + 3e1[x, y]⊗An+m−2

+(e1−e2)(2e1+e2)[x, y]⊗An+m−4 n and m odd.

(21)

If we let e1 and e2 (and hence also e3) go to zero, we obtain the classical current
algebra as degeneration. Again it can be shown that the, on Ds restricted family,
is locally non-trivial, see [6]. There also a formula for the central extension is
given. Recall that by results of Lecomte and Roger [8] (see also Garland [1]) the
current algebra is formally rigid if g is simple. But our families show that it is
neither geometrically nor analytically rigid.
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