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Abstract. The study of Riemann surfaces with parametrized boundary compo-
nents was initiated in conformal field theory (CFT). Motivated by general princi-
ples from Teichmüller theory, and applications to the construction of CFT from
vertex operator algebras, we generalize the parametrizations to quasisymmetric
maps. For a precise mathematical definition of CFT (in the sense of G. Segal), it is
necessary that the moduli space of these Riemann surfaces be a complex manifold,
and the sewing operation is holomorphic. We report on the recent proofs of these
results by the authors.

1. Introduction

The results described in this paper are proved in detail in [19], which also con-
tains an extensive introduction. As well as giving an overview of some of those
results, we expand on certain conceptually important points. In particular, we ex-
plain why the use of quasisymmetric boundary parametrizations, in the geometric
framework for conformal field theory, is both natural and necessary from the point
of view of Teichmüller theory.

1.1. Description of Problem and Results

Let ΣB be a bordered Riemann surface of type (g, n) with n ≥ 1, i.e., a Rie-
mann surface of genus g bounded by n closed curves ∂iΣ

B , i = 1, . . . , n, which
are homeomorphic to S1. An important object in conformal field theory is the
rigged Riemann surface, which is a Riemann surface ΣB together with a set of
homeomorphisms ψi : ∂iΣ

B → S1. As well as the ordering, each boundary com-
ponent is labeled as either incoming or outgoing. Keeping track of this data is not
important for our results, so it is subsequently neglected. We denote the rigged
Riemann surface by an ordered pair (ΣB, ψ), where ψ = (ψ1, . . . , ψn), and the
ordered n-tuple of homeomorphisms ψ is referred to as a rigging.
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Generally speaking, one specifies that the riggings are in some subclass of homeo-
morphisms. In the conformal field theory literature, riggings are taken to be either
analytic homeomorphisms or diffeomorphisms. We will take the riggings to be
quasisymmetric homeomorphisms, which will be defined in Section 2.2.

The rigged Riemann moduli space M̃B(g, n) is defined as the space of rigged
Riemann surfaces up to biholomorphic equivalence. More precisely

Definition 1. The rigged Riemann moduli space is defined by

M̃B(g, n) = {(ΣB, ψ)}/ ∼

where (ΣB
1 , ψ

1) ∼ (ΣB
2 , ψ

2) if and only if there exists a biholomorphism σ :
ΣB

1 → ΣB
2 such that ψ2 ◦ σ = ψ1.

(The superscript “B” stands for “border”, and serves to distinguish M̃B from the
equivalent puncture model in Section 3.1.)

An important operation is the sewing operation, in which two rigged Riemann
surfaces (Σ1, ψ

1) and (Σ2, ψ
2) are joined along a boundary curve by using the

riggings. That is, for boundary curves ∂iΣ
B
1 and ∂jΣ

B
2 , for fixed i and j, de-

fine ΣB
1 #ijΣ

B
2 = (ΣB

1 t ΣB
2 )/ ∼ , where two boundary points p1 ∈ ∂iΣ

B
1 and

p2 ∈ ∂jΣ
B
2 are equivalent if and only if p2 = (ψ2

j )
−1(ψ1

i (p1)). The role of the
reciprocal is to produce an orientation reversing map.

Our main results are that the (infinite-dimensional) quasisymmetrically rigged
Riemann moduli space M̃B(g, n) is a complex manifold, and that the sewing
operation is holomorphic. We also give, for the first time, the precise relation of
M̃B(g, n) to the Teichmüller space of bordered surfaces of genus g bounded by
n closed curves, which is not possible without the use of quasisymmetries. These
results are summarized in Theorem 10, Section 3.4.

The first proof of the holomorphicity of the sewing operation, in the case of ana-
lytic riggings, was given by the first author in his thesis [18], but this has not yet
been published. In genus-zero with analytic riggings, the holomorphicity of the
sewing was proved by Huang [7].

1.2. Why Use Quasisymmetric Parametrizations?

Naturally, in tackling the problem of constructing the complex structure on rigged
moduli space, one is led to apply the Teichmüller theory of bordered Riemann
surfaces. This theory is constructed using quasisymmetries [10, 14], which arise
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as boundary values of quasiconformal maps, as will be outlined in Section 2. Thus
one is led to use quasisymmetric boundary parametrizations.

Although it may be possible to construct the complex structure on the moduli
space of Riemann surfaces rigged with other classes of mappings, such as dif-
feomorphisms (see e.g. [13]), it remains an interesting question to establish the
connection of such a moduli space to the standard Teichmüller space. For this, the
results presented in this paper seem to be necessary.

1.3. Motivation of the Problem from Conformal Field Theory

Conformal field theory (CFT) is a special class of two-dimensional quantum field
theories that first arose in statistical mechanics. Mathematically the algebraic
structure is encoded in the notion of a vertex operator algebra. In string theory, the
study of the geometry of CFT was initiated in [4]. The rigged Riemann surfaces,
described above, appear as the worldsheets of interacting strings.

Around 1986, Segal [20] and Kontsevich independently extracted the mathemat-
ical properties the non-rigorous path integrals in CFT should have, and gave a
purely mathematical definition of CFT. Substantial work was done recently by
Fiore, Hu and Kriz in [3, 6] to make the categorical structures in this definition
rigorous. Problems in the complex analytic aspects of the definition have been
solved by the authors in [18, 19].

Although this definition has existed since 1986, no general construction for arbi-
trary genus has been given. Significant progress has been made by developing and
using the theory of vertex operator algebras and their representations. With a se-
ries of papers, culminating in [8, 9], Huang has completed a general construction
of genus-zero CFT. The genus-one theory is also essentially complete.

To construct higher-genus CFT completely however, many holomorphicity issues
must be addressed. In the notion of a weakly conformal field theory, as defined
by Segal [20], the operators in the CFT are required to depend holomorphically
on the associated rigged Riemann surface. For this definition to make sense, the
rigged moduli spaces must be complex manifolds and the sewing operation is re-
quired to be holomorphic. Our results (Theorem 10) solve this particular problem.
Moreover, in constructing CFT from vertex operator algebras it will be necessary
to sew using parametrizations that are more general than analytic. This was the
original motivation for our generalization to quasisymmetries in [19].

The Teichmüller space of the disk T(D), which contains the Teichmüller spaces of
all Riemann surfaces covered by the disk, is closely related to the homogeneous
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space Diff(S1)/Möb(S1). Convincing evidence has been advanced that it might
serve as a basis for a non-perturbative formulation of closed bosonic string theory
(see [5] and [16] for an overview and references). Thus, it is of interest to establish
the relation of the rigged moduli spaces to the Teichmüller spaces of bordered
Riemann surfaces. See Section 4 for further comments.

2. Teichmüller Theory of Bordered Riemann Surfaces

2.1. Quasiconformal Maps

Let Σ be a Riemann surface. A Beltrami differential on Σ is a (−1, 1) dif-
ferential ω, i.e., a differential given in a local biholomorphic coordinate z by
µ(z)dz̄/dz, such that µ is Lebesgue-measurable in every choice of coordinate
and ||µ||∞ < 1. The expression ||ω||∞ is well-defined, since µ transforms un-
der a local biholomorphic change of parameter w = g(z) according to the rule
µ̃(g(z))g′(z)g′(z)−1 = µ(z) and thus |µ̃(g(z))| = |µ(z)|. Denote the space of
Beltrami differentials on Σ by L∞

(−1,1)(Σ)1.

The Beltrami equation is the differential equation given in local coordinates by
∂f = ω∂f where ω is a Beltrami differential. We have the important theorem

Theorem 2. Given any Beltrami differential on a Riemann surface Σ, there ex-
ists a homeomorphism f : Σ → Σ1, onto a Riemann surface Σ1, which is dif-
ferentiable almost everywhere and is a solution of the Beltrami equation almost
everywhere. This solution is unique in the sense that given any other solution
f̃ : Σ → Σ̃1, there exists a biholomorphism g : Σ1 → Σ̃1 such that g ◦ f = f̃ .

In fact, such a solution must have derivatives in L2. If ||ω||∞ = 0, then f must be
a biholomorphism. The solutions of the Beltrami equation are called quasiconfor-
mal mappings. We will take this as the definition for the purposes of this paper,
although there are various equivalent definitions of quasiconformal mappings.

Although the Teichmüller space of a compact or punctured Riemann surface with-
out boundary can be constructed with the use of diffeomorphisms, it is well known
that quasiconformal maps are necessary in defining the Teichmüller space of bor-
dered Riemann surfaces. Note that a quasiconformal map on a bordered Riemann
surface need not be even differentiable. Conversely, a diffeomorphism need not
be quasiconformal if no restrictions are placed on its boundary behavior.

Given a Beltrami differential and the corresponding quasiconformal solution to
the Beltrami equation f : Σ → Σ1, one can pull back the complex structure on



86 David Radnell and Eric Schippers

Σ1 to obtain a new complex structure on Σ. Thus, one can regard a Beltrami
differential as a change of the complex structure on Σ.

2.2. Quasisymmetric Maps

A quasisymmetric mapping of the extended real line h : R ∪ {∞} → R ∪ {∞}
is an increasing homeomorphisms such that h(∞) = ∞ and satisfying, for some
k > 0, the inequality

1

k
≤

∣∣∣∣
h(x+ y) − h(x)

h(x) − h(x− y)

∣∣∣∣ ≤ k

for all x ∈ R and y > 0. Every quasiconformal self-map of the upper half-plane f
satisfying f(∞) = ∞ has quasisymmetric boundary values. Beurling and Ahlfors
[2] demonstrated that the converse is true, namely that every quasisymmetric map
extends to a quasiconformal map of the upper half-plane. This accounts for the
importance of quasisymmetries in the Teichmüller theory of bordered surfaces.

Quasisymmetric mappings of S1 are defined by mapping the real line to the unit
circle S1 with a Möbius transformation and applying the above definition. For
a Riemann surface, one can similarly define a quasisymmetry of a component of
the border that is homeomorphic to S1, by mapping an annular neighborhood of
the boundary curve to an annular neighborhood of the disc. By standard extension
results for quasiconformal maps [12], we have the following characterization of
quasisymmetries of boundary curves [19].

Theorem 3. Let ΣB be a bordered Riemann surface, with boundary curve ∂iΣ
B

homeomorphic to S1. A map h : ∂iΣ
B → S1 is a quasisymmetry if and only if h

has a quasiconformal extension to an annular neighbourhood of ∂iΣ
B .

Note that not every quasisymmetry is a diffeomorphism. Denote homeomor-
phisms, diffeomorphisms and quasisymmetries of S1 by Homeo(S1), Diff(S1)
and QS(S1) respectively. Then

Diff(S1) ( QS(S1) ( Homeo(S1).

2.3. Conformal Welding and the Sewing Operation

Let h ∈ QS(S1) be normalized so that it fixes three points, say 1, −1 and i. Let
D be the open unit disk and let D∗ = Ĉ \ D̄. It is a result of Pfluger [17] and
Lehto and Virtanen [11] that there exists a domain Ω ⊂ C and a pair of conformal
mappings f : D → Ω, and g : D∗ → Ĉ \ Ω̄, that have quasiconformal extensions
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to the plane and satisfy h = g−1 ◦ f when restricted to S1. If it is specified that f
and g must be normalized so that their extensions preserve 1, 0, and −1, then these
maps are uniquely determined. This pair of maps is referred to as a solution to the
“sewing problem”. The sewing problem plays a prominent role in the construction
of the Teichmüller spaces of Riemann surfaces which are covered by the disc.

Joining the two halves of the disc together using the quasisymmetry h, we obtain
a topological space homeomorphic to the sphere. That is, let

D̄#hD̄∗ = D̄ t D̄∗/ ∼

where t denotes the disjoint union and two points z1 ∈ ∂D̄ and z2 ∈ ∂D̄∗ are
equivalent if and only if h(z1) = z2; i.e., f(z1) = g(z2). Since f and g are
conformal on D and D∗ respectively, they can be used to pull back the complex
structure on Ĉ in such a way that with the resulting complex structure, D̄#hD̄∗ is
biholomorphic to Ĉ via the continuous extension of the map

F (z) =

{
f(z) when z ∈ D

g(z) when z ∈ D∗.

The procedure outlined in the last two paragraphs is referred to as conformal
welding.

Given a surface obtained by applying the sewing operation to two rigged Riemann
surfaces as described in Section 1.1, it is not difficult to extend the conformal
welding procedure to define a complex structure on this new surface. For details
and references see [19].

If the two Riemann surfaces are sewn together with analytic riggings, it is a triv-
ial matter to construct a complex structure on the new surface. However, if the
riggings are quasisymmetric, then some kind of extension theorem for quasicon-
formal maps is necessary.

2.4. Teichmüller Space and Its Complex Structure

We now define the Teichmüller space of a bordered Riemann surface and give a
brief description of its complex structure. For a comprehensive treatment see [10]
or [14]. Note that this Teichmüller space is infinite-dimensional.

Given a bordered Riemann surface ΣB , two quasiconformal mappings g1 and g2
are said to be homotopic rel boundary if they are equal on ∂ΣB and there is a
homotopy F : ΣB × [0, 1] → ΣB such that F (p, t) = g1(p) = g2(p) for all
t ∈ [0, 1] and p ∈ ∂ΣB .
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Definition 4. Let ΣB be a bordered Riemann surface of type (g, n). The Teich-
müller space of ΣB , denoted by TB(ΣB), is defined by

TB(ΣB) = {(ΣB, f,Σ1)}/ ∼

where f : ΣB → Σ1 is a quasiconformal map onto a Riemann surface Σ1. Two
triples are equivalent (ΣB, f1,Σ1) ∼ (ΣB, f2,Σ2) if and only if there exists a
biholomorphism σ : Σ1 → Σ2 such that f−1

2 ◦ σ ◦ f1 is homotopic to the identity
rel ∂ΣB .

The Teichmüller space of the disc TB(D) can be identified with QS(S1)/Möb(S1).
It is called the universal Teichmüller space since it canonically contains the Te-
ichmüller spaces of every Riemann surface covered by D.

By Theorem 2 there is a map ΦΣB : L∞

(−1,1)(Σ
B)1 → TB(ΣB) from the space

of Beltrami differentials to the Teichmüller space, given by mapping a Beltrami
differential µdz̄/dz to the corresponding quasiconformal solution of the Beltrami
equation. The map ΦΣB is called the fundamental projection.

It was shown by Bers [1] that this Teichmüller space is an infinite-dimensional
manifold with complex structure modeled on a complex Banach space. The fol-
lowing two facts regarding this complex structure are essential for our purposes.

Theorem 5. The fundamental projection ΦΣB : L∞

(−1,1)(Σ
B)1 → TB(ΣB) is

holomorphic. It possesses local holomorphic sections; that is, for any point p ∈
TB(ΣB) there is an open neighbourhood U of p and a holomorphic mapping
η : U → L∞

(−1,1)(Σ
B) such that ΦΣB ◦ η is the identity.

3. Construction of the Complex Structure on Rigged Riemann Moduli
Space and Holomorphicity of Sewing

3.1. The Puncture Model of Rigged Riemann Moduli Space

In the conformal field theory literature, the rigged Riemann moduli space is of-
ten represented in an equivalent form in terms of punctured, rather than bordered,
Riemann surfaces with local biholomorphisms at the punctures for riggings. This
puncture picture is obtained from the border picture by sewing caps onto the
boundary curves.

Our use of quasisymmetries for the border model requires that we make a corre-
sponding adjustment to the class of maps used for riggings in the puncture model.
Let ΣP be a Riemann surface with an ordered set of punctures p = (p1, . . . , pn),
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such that filling in the punctures results in a compact Riemann surface of genus g.
We call this a punctured Riemann surface of type (g, n). Note that for bordered
surfaces, n refers to the number of boundary curves, whereas here it refers to the
number of punctures.

Definition 6. A rigging at one of the punctures pi is given by a quasiconformal
map φi, from a neighbourhood of pi into an open neighbourhood of the unit disc
D̄, which is conformal on φ−1

i (D). Let Oqc(p) denote the set of ordered n-tuples
of riggings (φ1, . . . , φn) whose domains of definition are non-overlapping.

Note that the restriction of a rigging φ to φ−1(S1) is quasisymmetric, but need
not be analytic or even a diffeomorphism.

This definition of rigging is an imitation of Bers’ model of the universal Teich-
müller space.

Definition 7. The puncture model of rigged Riemann moduli space is given by

M̃P (g, n) = {(ΣP , φ)}/ ∼

where ΣP is a Riemann surface with punctures p and φ ∈ Oqc(p). Two pairs
are equivalent (ΣP

1 , φ
1) ∼ (ΣP

2 , φ
2) if and only if there exists a biholomorphism

σ : ΣP
1 → ΣP

2 such that φ2 ◦ σ = φ1 on (φ1)−1(D).

Note that for two pairs to be equivalent it suffices that φ2◦σ = φ1 on (φ1)−1(S1).

By sewing punctured disks onto the boundary components, a bijection between
M̃B(g, n) and M̃P (g, n) can easily be established.

3.2. Rigged Teichmüller Spaces

We now define the rigged Teichmüller spaces in both the border and puncture
models. These are notions motivated by conformal field theory. It is by using
quasisymmetric riggings that we will be able to establish the relation of the rigged
Teichmüller spaces to the standard Teichmüller space (described in Section 2.4)
and hence endow them with complex structures.

Definition 8. Let ΣB be a bordered Riemann surface of type (g, n). Consider
the set of quadruples (ΣB, f,Σ1, ψ) where f : ΣB → Σ1 is a quasiconformal
map onto the Riemann surface Σ1, and ψ is a quasisymmetric rigging on Σ1. The
border model of rigged Teichmüller space is

T̃B
#(ΣB) = {(ΣB, f,Σ1, ψ)}/ ∼
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where (ΣB, f1,Σ1, ψ
1) ∼ (ΣB, f2,Σ2, ψ

2) if and only if there exists a biholo-
morphism σ : Σ1 → Σ2 such that ψ2 ◦ σ = ψ1 and f−1

2 ◦ σ ◦ f1 is homotopic to
the identity.

In this definition we do not require that the homotopy be rel boundary, so this is a
kind of ‘reduced’ Teichmüller space (the # is used to denote this).

Next, we define the puncture model of the rigged Teichmüller space.

Definition 9. Let ΣP be a punctured Riemann surface of type (g, n) with punc-
tures p. Consider the set of quadruples (ΣP , f,Σ1, φ) where Σ1 is a punctured
Riemann surface with punctures p1, f : ΣP → Σ1 is a quasiconformal map such
that f(p) = p1 (preserving the order of the individual points), and φ ∈ Oqc(p

1).
The puncture model of rigged Teichmüller space is

T̃P (ΣP ) = {(ΣP , f,Σ1, φ)}/ ∼

where (ΣP , f1,Σ1, φ
1) ∼ (ΣP , f2,Σ2, φ

2) if and only if there exists a biholo-
morphism σ : Σ1 → Σ2 such that φ2 ◦ σ = φ1 on (φ1)−1(D) and f−1

2 ◦ σ ◦ f1

is homotopic to the identity in such a way that p remains fixed throughout the
homotopy.

3.3. Modular Groups

Let ΣB be a bordered surface of type (g, n). Although our main results hold for all
such surfaces, we now assume that ΣB is not the disk or an annulus. These cases
can easily be treated separately. Let PQCIB(ΣB) be the space of quasiconformal
self-mappings of ΣB that are the identity on ∂ΣB . Let PQCIB0 (ΣB) be the sub-
space whose elements are isotopic to the identity rel ∂ΣB . Let PModIB(ΣB) =
PQCIB(ΣB)/PQCIB0 (ΣB). For a punctured Riemann surface ΣP of type (g, n),
we define, in an analogous way, PModP (ΣP ).

The space PModIB(ΣB) is a subgroup of the pure (quasiconformal) mapping
class group and is finitely generated by Dehn twists. Let DB(ΣB) be the subgroup
generated by Dehn twists about curves that are isotopic to boundary curves, and
let DI(ΣB) be the subgroup generated by Dehn twists around curves that are not
isotopic to boundary curves. From standard theory we know that DB(ΣB) is
isomorphic to Zn, and PModI(ΣB)/DB(ΣB) ' DI(ΣB).

The usual action of the mapping class group on Teichmüller space is given by
[ρ] · [ΣB, f,Σ1] = [ΣB, f ◦ ρ,Σ1]. Actions on the rigged Teichmüller spaces can
be defined in an identical way. If G is a mapping class group or subgroup, then
we denote the projection map, defined by the above action, by PG.
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3.4. Covering of the Rigged Moduli Spaces by the Teichmüller Space TB(ΣB)

The following commutative diagram captures the relation between the Teich-
müller space, the rigged Teichmüller spaces and the rigged moduli spaces.

TB(ΣB)
P

#

DB

yyrrrrrrrrrr
PDB

%%LLLLLLLLLL

T̃B(ΣB)

PDI

��

∼
=

// T̃P (ΣP )

Pmod

��

M̃B(g, n)
∼
=

// M̃P (g, n)

(1)

Recall that the “n” in M̃B(g, n) stands for the number of boundary curves, where-
as in M̃P (g, n) it stands for the number of punctures. The surface ΣP is obtained
from ΣB by sewing on copies of the punctured disc D̄ \ {0}.

Theorem 10 (Summary of results) 1) All the spaces in Diagram 1 are ob-
tained from TB(ΣB) by quotienting by the action of the mapping class
group and certain subgroups. These actions are biholomorphic, properly
discontinuous and fixed-point free.

2) With the complex structures inherited from TB(ΣB), all the spaces in Dia-
gram 1 become complex Banach manifolds. These complex structures are
the unique ones that make all the maps holomorphic. All the projections
possess local holomorphic sections. The horizontal bijections are biholo-
morphisms.

3) The sewing operation is holomorphic.

4. Concluding Remarks

As remarked in Section 1.3, the connection between the Teichmüller space of the
unit disc T(D) and string theory has been observed by several authors, and the
“sum over paths” might be formalized using T(D). Since T(D) contains all the
Teichmüller spaces TB(ΣB), Diagram 1 and Theorem 10 give further evidence for
this. Recently certain obstacles to that program have been overcome by Takhtajan
and Teo [22], who constructed the Weil-Petersson metric on T(D) and gave its
relation to the Kähler structures on Diff(S1)/Möb(S1) and Diff(S1)/S1.
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Secondly, QS(S1)/Möb(S1) ∼= T(D) contains Diff(S1)/Möb(S1) as one leaf of
a holomorphic foliation [15, 21, 22]. Thus, the problem of relating the quasisym-
metrically rigged moduli space to the diffeomorphic one, though difficult, may be
tractable.

Finally, the recognition that the rigged moduli spaces are intermediate between
the Teichmüller space and the (un-rigged) Riemann moduli space may have ap-
plications to defining a local fiber-like structure of Teichmüller space. For some
preliminary work in this direction see [19].
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