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Abstract. The purpose of this contribution is to display an outlook of a certain
approach that enables one to study various spectral perturbation phenomena such
as perturbation of eigenvalues and resonances (scattering poles) from the general
viewpoint. Some applications of this elaborated technique are presented as well.

1. Introduction

Let us consider a Hilbert space H and an operator function K(λ, α) which is
analytic in two variables and takes its values in the class of compact operators.
The variable λ stands for the “spectral parameter”, while the second variable α is
treated as a “perturbation parameter”. For a fixed α = α0 the point λ = λ0 is
called singular for the operator family K(λ, α0) if ker(K(λ0, α0) − I) 6= {0}.
The problem in question is to study the analytic properties of the singular points
λ(α) as functions of the parameter α.

Below the notation K(λ) = K(λ, α0) will be used. Let n = dim ker(K(λ0)− I)

and {ϕ
(0)
1 , . . . , ϕ

(0)
n } be a basis of the subspace ker(K(λ0) − I). It may hap-

pens that for a given eigenvector ϕ(0)
j there exists a chain of adjoint vectors

{ϕ
(1)
j , . . . , ϕ

(mj−1)
j } of maximal length (mj − 1) such that

K(λ0)ϕ
(1)
j +K ′(λ0)ϕ

(0)
j = ϕ

(1)
j

K(λ0)ϕ
(2)
j +K ′(λ0)ϕ

(1)
j +

1

2
K ′′(λ0)ϕ

(0)
j = ϕ

(2)
j

. . . . . . . . . . . . . . . . . . . . .

K(λ0)ϕ
(mj−1)
j + . . .+

1

(mj − 1)!
K(mj−1)(λ0)ϕ

(0)
j = ϕ

(mj−1)
j .
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The resolvent (K(λ) − I)−1 is known (see [1]) to have a pole of order m =
max

16j6n
mj at the point λ = λ0 so that the principle part of its Laurent expansion in

the neighbourhood of λ0 is a finite dimensional operator of the form

n
∑

j=1

{

(·, ψ
(0)
j )ϕ

(0)
j

(λ− λ0)mj
+

(·, ψ
(1)
j )ϕ

(0)
j + (·, ψ

(0)
j )ϕ

(1)
j

(λ− λ0)mj−1

+ . . .+
(·, ψ

(mj−1)
j )ϕ

(0)
j + . . .+ (·, ψ

(0)
j )ϕ

(mj−1)
j

λ− λ0

}

where {ψ(0)
j , ψ

(1)
j , . . . , ψ

mj−1)
j } is a certain chain of eigen- and associated adjoint

vectors of the operator functionK∗(λ) corresponding to its singular point λ = λ0.

To study the “perturbation problem” by the analytic properties of singular points
λ(α) of Fredholm operator families an approach will be used that goes back to
Poincare (see [2]). In what follows we shall restrict ourselves to two important
and essentially different cases, namely i) the case of a single “Jordan chain”, i.e.,
n = 1, and ii) the “semi-simple” singular point, i.e., m = n. The general “mixed”
case will be considered elsewhere.

2. Perturbation of Resonances

Consider in H = L2(B), B ⊂ R
3, an operator family

K(λ, α) = (V + αW )R0(λ)

where R0(λ) is an integral operator with the kernel
exp(−iλ|x− y|)

4π|x− y|
, while V +

αW is a multiplication by a C∞
0 (R3) function of variable x and the ball B is

chosen to contain the supports of V (x) and W (x).

It is known (see [3]) that the mappings K(λ, α) : H → H form an entire family
of compact operators. Hence by the analytic Fredholm theorem the resolvent
RV (λ) = R0(λ)

(

I + V R0(λ)
)

for the Schrödinger operator −∆ + V (x) can
be continued from the lower to the upper half-plane as a meromorphic operator
function with finite rank residues.

The poles of the analytic continuation of RV (λ) =
(

−∆+V −λ2
)−1 are called

resonances (scattering poles) related to the Schrödinger operator −∆ + V (x). If
λ = λ0 is a resonance then the equation

(

− ∆ + V (x) − λ2
0

)

ϕ = 0
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has a solution ϕ0(x) called resonance eigenstate possessing the expansion

ϕ0(x) = e−iλ0rr−1
∞

∑

k=0

h
(0)
k (θ)r−k, θ = x/r

valid for large r = |x|. With the eigenstate ϕ0 one can associate the “Jordan
chain” of adjoint resonance states {ϕ1, . . . , ϕm−1} such that (see [4])

(

− ∆ + V (x) − λ2
0

)

ϕs = ϕs−1, s = 1, . . . ,m− 1

and for which the asymptotic representations are valid

ϕs(x) = e−iλ0rrs−1
∞

∑

k=0

h
(s)
k (θ)r−k, r → ∞.

The multiplicity of a resonance λ0 is defined as the dimension of the subspace
spanned by the ranges of all the singular terms in the Laurent series for the re-
solvent RV (λ) at λ = λ0. A multiple resonance with no adjoint states is natu-
rally treated as a semi-simple one. According to the definition, a resonance of the
Schrödinger operator −∆ + V is a singular point of the corresponding operator
function −V R0(λ) and vice versa.

The perturbation problem for the resonances of the Schrödinger operator has been
stated and originally studied (in the case of a simple resonance) in [5]. It was
shown in [6] that all the resonances as a rule are simple, i.e., the multiplicity is
unstable with respect to generic perturbations of a potential. Nevertheless the
question about analytic description of the corresponding perturbation phenomena
remained opened. Our approach gives the following answers to this question:

i) Suppose that λ0 is a resonance of multiplicitym for the Schrödinger opera-
tor −∆+V (x) and there exists a unique (up to a constant factor) resonance

eigenstate ϕ0(x). If A =

∫

W (x)ϕ2
0(x)dx 6= 0 then for sufficiently small

α the operator −∆ + V (x) + αW (x) has m simple resonances λj(α) in
the neighbourhood of λ0 and, moreover

λj(α) − λ0 ∼ α1/m exp

(

2πi

m
j

)

A1/m.

ii) Let λ0 be a semi-simple resonance of multiplicity n for the operator −∆ +
V (x) and the basis {ϕ1, . . . , ϕn} of the corresponding resonance eigen-
state subspace is chosen to satisfy the following condition

∫

V (x)

(
∫

e−iλ0|x−y|V (y)ϕj(y)dy

)

ϕi(x)dx = δij .
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Provided that the eigenvalues {µj} of the matrix
(

∫

W (x)ϕj(x)ϕk(x)dx
)

are all different, the operator −∆+V (x)+αW (x) for α sufficiently small
has (in the neighbourhood of λ0) just n simple resonances λj(α) so that
λj(0) = λ0 and λ′j(0) = −4πiµj .

The perturbation of a semi-simple resonance has been investigated in [7] by a
different method.

3. Single Jordan Chain

To deal with the case of a single Jordan chain {ϕ0, ϕ1, . . . , ϕm−1} of the operator
family K(λ) = K(λ, α0) corresponding to the singular point λ = λ0 it is useful
to introduce the one-dimensional projection

P = (·,Ψ)Φ

where the vectors Φ = K ′(λ0)ϕm−1 +
1

2
K ′′(λ0)ϕm−2 + . . .+

1

m!
K(m)(λ0)ϕ0

and Ψ = K∗′(λ0)ψm−1 +
1

2
K∗′′(λ0)ψm−2 + . . .+

1

m!
K∗(m)(λ0)ψ0 satisfy the

normalization condition

(ϕ0,Ψ) = (Φ, ψ0) = 1.

It can be seen easily that the operator (K(λ0, α0) + P − I) is invertible in H and
that the same holds true for the operator (K(λ, α) + P − I) provided that λ and
α are close enough to λ0 and α0 respectively.

Due to this fact it makes sense to consider (cf. [2]) the following equation
(

(K(λ, α) + P − I)−1Φ,Ψ
)

= 1 (∗)

which determines all singular points λ = λ(α) of the operator functionK(λ, α) in
a certain neighbourhood of λ0. Indeed, given a solution λ = λ(α) of the equation
(∗) one has

ϕ = (K(λ, α) + P − I)−1Φ ∈ ker(K(λ, α) − I)

since (ϕ,Ψ) = 1 by virtue of (∗) and hence Pϕ = Φ. The singular points of
K(λ, α), i.e., the solutions to the equation (∗), that are subject to initial condition
λ(α0) = λ0, prove to be the branches of one or perhaps several multivalued
analytic functions with branching point α = α0 of the order not greater than m.
Under additional condition

(

K ′
α(λ0, α0)ϕ0, ψ0

)

6= 0 this order is exactly equal to
m.
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Theorem 1. Suppose that dim ker(K(λ0) − I) = 1 and (K(λ) − I)−1 has a
pole of order m at the point λ = λ0. If (K ′

α(λ0, α0)ϕ0, ψ0) 6= 0 for eigenvectors
ϕ0 ∈ ker(K(λ0, α0)− I) and ψ0 ∈ ker(K∗(λ0, α0)− I) then for α close enough
to α0 the singular points of K(λ, α) from sufficiently small neighbourhood of λ0

are represented by the Puiseux power expansions in variable (α − α0)
1/m. All

these singular points are necessarily simple and can be enumerated in such a way
that

λs(α) = λ0 + λ(1)
s (α− α0)

1/m + . . . , s = 0, 1, . . . ,m− 1

where λ(1)
s =

(

− (K ′
α(λ0, α0)ϕ0, ψ0)

)1/m
e2iπs/m.

To outline the proof let us introduce the scalar function

F (λ, α) :=
(

(K(λ, α) + P − I)−1Φ,Ψ
)

=
(

(K(λ, α) − I)−1
(

I + P (K(λ, α) − I)−1
)−1

Φ,Ψ
)

where
(

I + P (K(λ, α) − I)−1
)−1

Φ =
{

1 +
(

(K(λ, α) − I)−1Φ,Ψ
)}−1

Φ and
hence

F (λ, α) =

(

(K(λ, α) − I)−1Φ,Ψ
)

1 +
(

(K(λ, α) − I)−1Φ,Ψ
) ·

Since the resolvent (K(λ)− I)−1 has the pole of the order m at the point λ = λ0

so does
(

(K(λ) − I)−1Φ,Ψ
)

and it follows that

F (λ0, α0) = 1, F ′
λ(λ0, α0) = . . .= F

(m−1)
λ (λ0, α0) = 0, F

(m)
λ (λ0, α0) 6= 0.

Therefore by the implicit function theorem solutions λ = λ(α) of the equation
(∗) satisfying initial condition λ(α0) = λ0 are given by the values of analytic
functions which have isolated algebraic branching point at α = α0

λ(α) = λ0 +
∞

∑

n=1

λ(n)(α− α0)
n/p, 0 < p 6 m.

Additional condition F ′
α(λ0, α0) = −(K ′

α(λ0, α0)ϕ0, ψ0) 6= 0 guarantees that
the equation (∗) has a unique solution

α(λ) = α0 +
1

F ′
α(λ0, α0)

(λ− λ0)
m + . . .

where α′(λ0) = . . . = α(m−1)(λ0) = 0 since F (s)
λ (λ0, α0) = 0, 1 6 s 6 m− 1.

It readily follows now that p = m and λ(1) = (F ′
α(λ0, α0))

1/m.
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Remark 2. It is appropriate to compare the assertion of Theorem 1 with the fact
concerning perturbation of a multiple eigenvalue in the finite-dimensional case.
Given a Jordan block J associated with the chain {ϕ0, . . . , ϕm−1} of eigen- and
adjoint vectors one can ask when J + A is diagonal, i.e., the eigenvalue of J (of
multiplicity m) splits into m different and hence simple eigenvalues under such a
perturbation. The sufficient condition for this is as follows (Aϕ0, ϕm−1) 6= 0 (see
e.g. [8]); surely it coincides with that from the Theorem 1 since ϕm−1 = ψ0 in
this case.

4. Semi-simple Singular Point

Consider now the case of a semi-simple singular point λ = λ0 of the operator
family K(λ) = K(λ, α0). Perturbation of a semi-simple isolated eigenvalue of
finite multiplicity has been studied in detail (see e.g. [9]). Theorem 2 below can
be regarded as an analogue (and a generalization as well) of Theorem 2.3 from [9]
within our setting.

Starting the investigation of a semi-simple singular point λ = λ0 of multiplicity
n let {ϕ1, . . . , ϕn} be a certain basis of the eigen-subspace ker(K(λ0) − I) and
let us introduce the finite-dimensional operator

P =
n

∑

j=1

(·,Ψj)Φj

where Φj = K ′
λ(λ0)ϕj and Ψj = K∗′

λ (λ0)ψj while the basis {ψ1, . . . , ψn} of the
subspace ker(K∗(λ0)−I) is chosen in such a way that (Φi, ψj) = (ϕi,Ψj) = δij .

One can verify the invertibility of the operator (K(λ, α) + P − I) in H provided
that λ and α are close enough to λ0 and α0 respectively. For such λ and α the
scalar functions

Aij(λ, α) :=
(

(K(λ, α) + P − I)−1Φi,Ψj

)

are well defined and
(

δij − Aij(λ, α)
)

is a matrix representation of the operator
(

I + P
(

K(λ, α) − I
)−1)−1 with respect to the basis {Φi}. Due to this fact a

relationship
F (λ, α) := det

(

δij −Aij(λ, α)
)

= 0 (∗∗)

determines all singular points λ = λ(α) of the operator function K(λ, α) in the
neighbourhood of λ0. Thus the problem concerning the singular points of the
operator function K(λ, α) is reduced to the study of solutions to the equation
(∗∗).
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Theorem 3. Suppose that dim ker
(

K(λ0)−I
)

= n and that the resolvent
(

K(λ)

−I
)−1 has a simple pole at the point λ = λ0. Let {ϕ1, . . . , ϕn} and {ψ1, . . . , ψn}

are the bases of subspaces ker
(

K(λ0) − I
)

and ker
(

K∗(λ0) − I
)

respectively
satisfying the normalization condition

(

K ′
λ(λ0, α0)ϕi, ψj

)

= δij . If all the eigen-
values {µj} of the matrix

(

K ′
α(λ0, α0)ϕi, ψj

)

are different then for α sufficiently
close to α0 there exist (in a certain neighbourhood of λ0) just n simple singular
points λj(α) of the operator family K(λ, α) one can enumerate in such a way
that

λj(α) = λ0 − µj(α− α0) + . . . , j = 1, . . . , n.

The sketch of the proof presented below shows that this approach can be applied
to a rather general situation. Since

(

K(λ0) + P − I
)−1

Φi = ϕi one has

Aij(λ0, α0) = (ϕi,Ψj) = δij

and hence F (λ0, α0) = 0. Taking into account that
(

K∗(λ0)+P
∗−I

)−1
Ψj = ψj

we similarly get

(Aij)
′
λ(λ0, α0)

= −
(

K ′
λ(λ0)

(

K(λ0) + P − I
)−1

Φi,
(

K∗(λ0) + P ∗ − I
)−1

Ψj

)

= −(Φi, ψj) = −δij .

By virtue of the determinants differentiation rule it follows that

F ′
λ(λ0, α0) = . . . = F

(n−1)
λ (λ0, α0) = 0, F

(n)
λ (λ0, α0) 6= 0.

Now according to the implicit function theorem some small neighbourhood of λ0

contains p 6 n roots λk(λ) of the equation (∗∗) for α sufficiently close to α0 and
for a certain q ∈ N the Puiseux expansions are valid

λk(α) = λ0 + λ
(1)
k (α− α0)

1/q + λ
(2)
k (α− α0)

2/q + . . . .

Substituting this expression into F (λ, α) and setting the coefficients at the suc-
cessive (fractional) powers of (α − α0) equal to zero we come (by the induction
arguments) to the conclusion that λ(s)

k = 0, s = 1, . . . , q − 1, and so

λk(α) = λ0 + λ
(q)
k (α− α0) + . . . .

Further on, one can verify that

Aij(λk(α), α) = δij +A
(k)
ij (λ0, α0)(α− α0) + . . .
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where the coefficients A(k)
ij (λ0, α0) are given by

{

λ
(q)
k δij + (K ′

α(λ0, α0)ϕi, ψj)
}

due to the normalization condition (K ′
λ(λ0, α0)ϕi, ψj) = δij . Hence the determi-

nant F (λk(α), α) takes the form

F (λk(α), α) = (−1)n det
(

A
(k)
ij (λ0, α0)

)

(α− α0)
n + . . .

and therefore det
(

A
(k)
ij (λ0, α0)

)

= 0, i.e., −λ(q)
k is an eigenvalue of the matrix

(K ′
α(λ0, α0)ϕi, ψj). Since all the eigenvalues of this matrix are assumed to be

different it follows that p = n and the proof is complete.

Remark 4. The eigenvector ϕk(α) ∈ ker
(

K(λk(α), α) − I
)

has the limit

lim
α→α0

ϕk(α) =
n

∑

j=1

c
(0)
j ϕj

where {c
(0)
1 , . . . , c

(0)
n } is an eigenvector of the matrix

(

K ′
α(λ0, α0)ϕi, ψj

)

corre-
sponding to the eigenvalue −λ′k(α0).
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