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SPIN NETWORKS IN QUANTUM GRAVITY

MIGUEL LORENTE

Communicated by Gerald A. Goldin

Abstract. This is a review of one of the approaches to unify Quantum Mechanics
and the theory of General Relativity. Starting from the pioneer work of Regge
and Penrose, other scientists have constructed state sum models, as Feymann path
integrals, that are topological invariant on the triangulated Riemannian surfaces,
and that become the Hilbert-Einstein action in the continuous limit.

1. Introduction

In this review we will present the main ideas of the spin foam approach. This
line of research in quantum gravity has attracted a great deal of attention and been
explored by many physicists and mathematicians.

However, we would first point out there are three main lines of research in quan-
tum gravity denoted as “canonical”, “covariant” and “sum over histories” [20].

The canonical line of research is a theory in which the Hilbert space carries a
representation of the quantum operators corresponding to the full metric without
background metric being fixed. It can be considered as a quantum field theory on
a differentiable manifold. The basis of the Hilbert space are cylindrical functions
defined on a graph (Wilson loops) depending on Ashtehar variables [21]. Very
important results of this approach were the discrete eigenvalues for the area and
volume operators.

The covariant line of research is the attempt to build the theory as a quantum field
theory of the fluctuations of the metric over a flat Minkowski space, or some other
background metric space. The theory has been proved to be renormalizable and
finite order by order [1].

The sum over histories line of research uses the Feymann path integral to quantize
the Einstein Hilbert action. A duality exists between this model and group field
theories. The sum over spin foam can be generated as the Feymann perturbative
expansion of the group field theories. Each space-time appears as the Feymann
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graph of the auxiliary groups field theory [2]. Our presentation concentrates on
this third line of research, namely, the spin network and the spin foam models,
from an historical point of view.

2. Regge Calculus

The Regge’s paper [18] was a pioneer work in the discretization of General Rela-
tivity (GR), motivated by the need to avoid coordinates, because the physical pre-
diction of the theory was coordinate independent. For that reason he discretized
a continuous manifold by n-simplices, glued together by identification of their
(n − 1)-simplices. The curvature lies on the (n − 2)-dimensional subspaces,
known as hinges or bones. For pedagogical reasons we take a triangulation of a
two-dimensional surface. When a collection of triangle meeting at a vertex is flat-
tened there will be a gap or deficit angle ε, indicating the presence of curvature.
Using the Gauss-Bonet formula we can calculate the excess angle by ε = KA,
where K is the curvature at that vertex and A is the area of the triangles around
the vertex. If the number of vertices increases we can take K = ερ, where ρ is
the density of vertices in the triangulation (equal to the number of vertices by unit
area). This method is easily enlarged to higher dimensions.

In order to connect with GR we translate into the triangulated surface (the skele-
ton) the Hilbert-Einstein action L = (1/8π)

∫

K
√−gd4x where K is the scalar

curvature in four-dimensions. The discrete version for a four-dimensional skele-
ton is given in terms of the deficit angle in each bone where the curvature K is
calculated and some measure function L is defined

L =
N
∑

n=1

εnLn

here the summation extends to all the bones in the skeleton. In the continuous case
Einstein’s equations are derived from a stationary action, varying L with respect
to the metric. In the discrete version one derives the action with respect to the
edge lengths, because in the simplicial decomposition all the properties can be
derived from these edges. Using Schlaefli differential identity one finds

δL =
1

8π

N
∑

n=1

εnδLn = 0 ⇒
N
∑

n=1

εn
∂Ln

∂lp
= 0

which is the discrete version of Einstein’s equations [19].
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3. The Ponzano-Regge Model

Some years later Ponzano and Regge [17] made use of {6j} symbols attached to
the tetrahedra decomposition in order to calculate the state sum and were able to
connect it to the Feymann integral corresponding to the Hilbert-Einstein action.
The {6j} Wigner symbols are a generalization of the Clebsch-Gordan coefficients
that appear in the coupling of two angular momenta J = J1 + J2. The new basis
is given in term of the old basis

|j1j2jm〉 =
∑

〈j1j2m1m2|j1j2jm〉|j1j2m1m2〉.

If we couple J with a new angular momentum J3 we have two possibilities

(J1 + J2) + J3 = J or J1 + (J2 + J3) = J.

In the first case the new basis is given (in obvious notation)

|j1j2j3j12jm〉 =
∑

〈j1j2j3m1m2m3|j1j2j3j12jm〉|j1j2j3m1m2m3〉.

In the second case the new basis is given by

|j1j2j3j23jm〉 =
∑

〈j1j2j3m1m2m3|j1j2j3j23jm〉|j1j2j3m1m2m3〉.

The transformating matrix between the two bases is given precisely by the {6j}
symbols, namely

U(j12j23) = (−1)j1+j2+j3+j
√

(2j12 + 1)(2j23 + 1)

{

j1 j2 j12
j3 j j23

}

.

Given a tetrahedra decomposition of a three-dimensional surface we can attach
a {6j} symbol to each tetrahedra, the edges of which are equal in length to the
numerical values of the angular momenta appearing in the 6j-symbol.

j
1

j
2

j
12

j
3

j j
23

j
1

j
2

j
3

j
12

j
23

j

⇔

This choice is consistent with the inequalities

j12 < j1 + j2 and j23 < j2 + j3
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and the equalities

j1 + j2 + j12 ⊂ N, j2 + j3 + j23 ⊂ N.

The {6j} symbols are proportional to the Racah polynomials [14]

(−1)j1+j2+j3
√

(2j12 + 1)(2j23 + 1)

{

j1 j2 j12
j3 j j23

}

=

√

ρ(x)

dn
U (α,β)

n (x, a, b).

From this equality and the assymptotic properties of Racah polynomials one can
derive a very important limit

{

j1 j2 j3
j4 j5 j6

}

−→
ji→∞

1√
12πV

cos

{

6
∑

i=1

(

ji +
1

2

)

ϑi +
π

4

}

where V is the volume of the tetrahedra and ϑi the exterior dihedral angle adjoint
to the edge ji. In order to see the connection between {6j} symbols and quantum
gravity we take a tetrahedra decomposition and external edges li of the bounding
surface and internal edges xi. Then Ponzano and Regge construct the state sum
as follows

S(li) =
∑

xi

∏

tetrahedra

{6j}(−1)X
∏

edges

(2xi + 1)

where X is a phase factor. Substituting the {6j} symbols by their assymptotic
values and the function cosine by the Euler expression we arrive at

S(li) =
∑

xi

∏

i=1

(2xi + 1) exp

{

i

[(

∑

tetrahedra k

ϑk
i

)

− πpi + 2π

]

xi .

We may replace the summation with an integral. Then the most important contri-
bution comes from the stationary phase, that is to say when one has
∑

tetrahedra

(π − ϑk
i ) = 2π.

Introducing this value in the state sum we obtain [19]

S(li) =

∫

∏

xi

(2xi + 1) exp(i
∑

jlεl) dxi

where ε` = 2π −∑
k

(π − θk
l ).

The summation
∑

jlεl approaches the Hilbert-Einstein action that was given in
the Regge calculus, therefore, in the limit the state sum strongly resembles the
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Feymann summation over all possible histories with Lagrangian density L =
(1/8π)

∫

R
√−gd4x namely

S =

∫

dµ(xi)e
iL.

4. Penrose’s Spin Networks

Penrose was interested in the interpretation of space-time [16] by purely combi-
natorial properties of some elementary units that are connected among themselves
by some interactions that follow the angular momentum quantum rules, and form
a network of elementary units with assigned spins. Soon it was realized that the
spin network was analog to simplicial quantum gravity, in particular the Ponzano-
Regge model [12]. His networks had trivalent vertices and the edges were labeled
with spin, satisfying the standard conditions at the vertices. The model was gen-
eralized to any group different from the rotation group. Formally a spin network
is a triple (γ, ρ, ι) where

i) γ is a graph with a finite set of edges e and a finite set of vertices v

ii) to each edge e we attach an irreducible representation of a group G, ρe

iii) to each vertex v we attach an intertwiner.

When we take the dual of an spin network we obtain a triangulated figure, which,
after embedding in a three-dimensional manifold becomes the triangulation of
Regge calculus.

5. The Turaev-Viro State-sum Invariant

They defined a state sum for triangulated three-manifold (as in the Ponzano-Regge
model) that was independent as the triangulation and finite [22]. For this purpose
they assign a value from the set Ir = (0, 1/2, 1, (r − 2)/2), integer, to each edge
of the triangulation, subject to the condition that the “coloring” of the three edges
forming a triangle should satisfy the triangle inequalities and their sum should be
an integer less than or equal to r − 2. Define the quantum object

|M |φ = ω−2ρ
∏

tetra k

|Tϕ
k |
∏

edge j

ω2
j
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where ϕ is an admissible coloring of the edge j

ωj = (−i)j [2j + 1]1/2, ω2 =
∑

j∈Ir

ω4
j

and |Tϕ
k | is the quantum 6j-symbol corresponding to the tetrahedron k with col-

oring ϕ, such that
∣

∣

∣

∣

i j k
l m n

∣

∣

∣

∣

= (−1)i+j+k+l+m+n

{

[i] [j] [k]
[l] [m] [n]

}

where [n] is the quantum number satisfying [n] → n. Summing |M |φ over
all admissible coloring we obtain an expresion in the limit q → 1 or r → ∞
that becomes identical to the Ponzano-Regge state sum. Turaev and Viro proved
that their expression is manifold invariant (or independent of triangulation) under
Alexander moves, and also finite.

6. The Three-dimensional Boulatov Model

The Ponzano-Regge state sum and the Turaev-Viro model are defined over three-
dimensional manifold. To enlarge the model to four dimensions it was necessary
to increase the Wigner symbols to 3nj. The key to this approach was given by
Boulatov [9] by the use of topological lattice gauge theories, taking group ele-
ments as variables (matrix models). The basic object is the set of real functions of
three variables φ(x, y, z) (where x, y, z ∈ SU(2)) invariant under simultaneous
right shift of all variables by u ∈ SU(2) and also by cyclic permutation of x, y, z.
This function φ can be expanded, by the Peter-Weyl theorem, in terms of repre-
sentations of SU(2) and 3j-symbols. An action of interest can be constructed with
those functions as follows

S =
1

2

∫

dxdydzφ2(x, y, z)

− λ

4!

∫

dxdydzdudvdwφ(x, y, z)φ(x, u, v)φ(y, v, w)φ(z, w, u).

If we attach the variable to the edges, the first term (the kinematical term) repre-
sents two glued triangles and the second one (the interacting term) four triangles
forming a tetrahedron. Substituting the Fourier expansion of function φ, and in-
tegrating out group variables we obtain an action depending on the Fourier coef-
ficients and 6j-symbols. From this result we calculate the partition function as a
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Feymann path integral with respect to the Fourier coefficients

Z =

∫

Dφe−S =
∑

{C}

λN3

∑

j

∏

l

(2je + 1)
∏

T

{6j}

where the products extend to all tetrahedra T , all edges l, and the summation ex-
tends to all the representations {j}, all the simplicial complexes {C} and N3 is
the number of tetrahedra in complex C. This partition function is equivalent, up
to renormalization, to the Ponzano-Regge state sum applied to a triangulation of
three-dimensional manifold. The underlying mathematical structure is a topolog-
ical lattice gauge theory, it has the advantage that is topological invariant. In order
to prove it, Boulatov used the Alexander moves, by which one complex, and the
corresponding partition function is topological invariant.

7. The Four-dimensional Ooguri’s Model

The three-dimensional Boulatov model paved the way for Ooguri’s model in four
dimensions. [15] Let φ be a real valued function of four variables φ(g1, g2, g3, g4)
on G(gi ∈ G) a compact group. For simplicity we take G = SU(2). We require
φ to be invariant under the right action of G and by cyclic permutation of these
variables. Following the Peter-Weyl theorem, we can expand φ in terms of these
representations and the 3j-symbols. We define the action

S =
1

2

∫

∏

dgiφ
2(g1g2g3g4) +

λ

5!

∫ 10
∏

i=1

dgiφ(g1g2g3g4)

× φ(g4g5g6g7)φ(g7g3g8g9)φ(g9g6g2g10)φ(g10g8g5g1)

where the first term (the kinematical term) represents the coupling of a tetrahe-
drum with itself because each element gi is associated with each face of the tetra-
hedrum, and the second term (the interacting term) represents gluing faces of five
tetrahedra to make a four-simplex. Substituting the Fourier expansion into the
action we can integrate out the group variable, and then the action can be used to
calculate a partition function as a Feyman path integral with respect to this action

Z =

∫

DMe−S(M) =
∑

C

λN4

∑

{j}

∏

t

(2jt + 1)
∏

T

{6j}
∏

S

{15j}

where the integral is defined in terms of the Fourier coefficients M , appearing
in the action and in the measure, the first sum is over all complexes C (four-
dimensional combinatorial manifolds), N4(C) is the number of four-simplices in
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C, the second summation is over all irreducible representations as SU(2) with
angular momentum j; t, T and S are the triangles, tetrahedra and four-simpleces
respectively appearing in the complex. Ooguri also proved that the partition func-
tion is a topological invariant under the Alexander moves. As in the Boulatov
model two complexes are combinatorially equivalent if and only if they are con-
nected by a sequence of transformations called the Alexander moves.

8. The Barrett-Crane Model

A more abstract approach was taken by Barrett and Crane [5] generalizing Pen-
rose’s spin networks to four dimensions. The novelty of this model consists in
the association of representations of SO(4) group with the faces of the tetrahedra,
instead of the edges. They decompose a triangulation of a four-dimensional man-
ifold into four-simplices, the geometrical properties of which are characterized in
terms of bivectors. A geometric four-simplex in Euclidean space is given by the
embedding of an ordered set of 5 points in R4(0, x, y, z, t) which is required to
be non-degenerate (the points should not lie in any hyperplane). Each triangle in
it determines a bivector constructed out of the vectors for the edges. Barrett and
Crane proved that classically, a geometric four-simplex in Euclidean space is com-
pletely characterized (up to parallel translation and inversion through the origin)
by a set of 10 bivectors bi, each corresponding to a triangle in the four-simplex
and satisfying the following properties:

i) the bivector changes sign if the orientation of the triangle is changed

ii) each bivector is simple, i.e., is given by the wedge product of two vectors
for the edges

iii) if two triangles share a common edge, the sum of the two bivectors is simple

iv) the sum (considering orientation) of the 4 bivectors corresponding to the
faces of a tetrahedron is zero

v) for six triangles sharing the same vertex, the six corresponding bivectors
are linearly independent

vi) the bivectors (thought of as operators) corresponding to triangles meeting
at a vertex of a tetrahedron satisfy Tr b1[b2, b3] > 0, i.e., the tetrahedron has
non-zero volume.
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Then Barrett and Crane define the quantum four-simplex with the help of bivectors
thought of as elements of the Lie algebra SO(4), associating a representation with
each triangle and a tensor to each tetrahedron. The representations chosen should
satisfy the following conditions corresponding to the geometrical ones:

i) different orientations of a triangle correspond to dual representations

ii) the representations of the triangles are “simple” representations of SO(4),
i.e., j1 = j2

iii) given two triangles, if we decompose the pair of representations into its
Clebsch-Gordan series, the tensor for the tetrahedron is decomposed into
summands which are non-zero only for simple representations

iv) the tensor for the tetrahedron is invariant under SO(4).

Now it is easy to construct an amplitude for the quantum four-simplex. The graph
for a relativistic spin network is the one-complex, dual to the boundary of the four-
simplex, having five four-valent vertices (corresponding to the five tetrahedra),
with each of the ten edges connecting two different vertices (corresponding to
the ten triangles of the four-simplex each shared by two tetrahedra). Now we
associate with each triangle (the dual of which is an edge) a simple representation
of the algebra SO(4) and to each tetrahedra (the dual of which is a vertex) we
associate an intertwiner; and to a four-simplex the product of the five intertwiner
with the indices suitably contracted, and the sum for all possible representations.
The proposed state sum suitable for quantum gravity for a given triangulation
(decomposed into four-simplices) is

ZBC =
∑

J

∏

triangles

Atriangle

∏

tetrahedra

Atetraheder

∏

four−simplices

Asimplex

where the sum extends to all possible values of the representations J .

x y

z

0

t
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In order to know the representation attached to each triangle of the tesselation, we
take the unitary representation of SO(4) in terms of Euler angles, i.e.,

U(ϕ, θ, τ, α, β, γ) = R3(ϕ)R2(θ)S3(τ)R3(α)R2(β)R3(γ)

where R2 is the rotation matrix in the (x1x3) plane, R3 the rotation matrix in
the (x1x2) plane and S3 the rotation “boost” in the (x3x4) plane. In the angular
momentum basis, the action of S3 is as follows

S3(τ)ψjm =
∑

j′

dj1j2
j′jm(τ)ψj′m

where

dj1j2
j′jm(τ) =

∑

m1+m2=m

〈j1j2m1m2 |. jm〉e−i(m1−m2)τ 〈j1j2m1m2 |. j′m〉

is the Biedenharn-Dolginov function [8].

9. Evaluation of the State Sum for the Four-dimensional Spin Network

In order to evaluate the state sum for a particular triangulation of the totalR4 space
by four-simplices, we assign an element hk ∈ SU(2) to each tetrahedrum of the
four-simplex (k = 1, 2, 3, 4, 5) and a representation ρkl of SO(4) to each triangle
shared by two tetrahedra. From this triangulation we obtain a two-complex by
the dual graph where one vertex corresponds to a tetrahedrum and an edge corre-
sponds to a triangle, with the ends of the edges identified with the vertices. Then
we attach a representation of SU(2), ρ(hk) and ρ(hl) to the vertices k and l and
contract both representations along the edges (k, l) ≡ e, giving

Trρ(hk)ρ(h
−1
l ) = Trρkl(hkh

−1
l )

where ρkl is the representation of SO(4) corresponding to the product hkh
−1
l ,

the left and right components of the SO(4) group. The state sum for the two-
dimensional complex (the Feymann graph of the model) is obtained by taking the
product for all the edges of the graph and integrating for all the copies of SU(2)

I =

∫

h∈SU(2)5

∏

Trρkl(hkh
−1
l )

Due to the trace condition this expression is invariant under left and right multi-
plication of some elements of SU(2) [3].
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For the representation ρkl we choose the spherical function with respect to the
identity representation. Given a completely irreducible representation of the group
G : g → Tg on the space R, we define the spherical function with respect to the
finite irreducible representation of the subgroup K

fk(g) = Tr{EkTg}

where Ek is a projector of R onto the space Rk of K.

We take for G ≡ SO(4) the simple representation (j1 = j2) and for the subgroup
SU(2) the identity representation k = 0. Since fk is invariant under K we can
restrict the unitary representations to those of the boost S3(τ). With the help of
the Biedenharn-Dolginov function it can be proved

f0(τ) = Tr{E0S3(τ)} =
sin(2j1 + 1)τ

sin τ
·

With this formula it is still possible to give a geometrical interpretation of the
probability amplitude encompassed in the trace. In fact the spin dependent factor
appearing in the exponential of the spherical function

ei(2jkl+1)τkl

corresponding to the two tetrahedra k, l intersecting the triangle kl, can be inter-
preted as the product of the angle between the two vectors hk, hl, perpendicular
to the triangle, and the area Akl = 2jkl + 1 of the intersecting triangle, jkl be-
ing the spin corresponding to the representation ρkl associated to the triangle k, l.
Substituting this value in the state sum, we obtain

I =
∏

h∈SU(2)

1

sin τkl
exp(i

∑

triangle kl

Aklτkl)

where the product extends to all tetrahedra with the vector h perpendicular to
the subspace where the tetrahedra is embedded, and summation is extended to
all the triangle k, l intersected by two tetrahedra k and l. The exponential term
corresponds to the Regge action, that in the assymptotic limit becomes the Hilbert-
Einstein action [6].

Because we are interested in the physical and mathematical properties of the
Barrett-Crane model, we mention some recent work on this model combined with
the matrix model approach of Boulatov and Ooguri [11]. In this work the two-
dimensional quantum space-time emerges as a Feymann graph, in the manner of
the four-dimensional matrix models. In this way a spin foam model is connected
to the Feyman diagram of quantum gravity.
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10. The Lorentzian Spin Foam Model

Now we apply the same technique to calculate the state sum invariant under the
Lorentz group that we have used in the case of the SO(4) group for the Barrett-
Crane model.

The unitary irreducible representation of the SL(2,C) group for the principal se-
ries is given by the formula [7]

(T [m,ρ]
g ψ)(z) = (βz + δ)m+iρ−2(βz + δ)−mψ(

αz + γ

βz + δ
)

where g =

(

α β
γ δ

)

∈ SL(2,C), m, integer, ρ real and ψ(z) ∈ L2(C). The

numbers m, ρ determine the eigenvalues of the representation

C1 = −m
2 − ρ2 − 4

2
, C2 = mρ.

In order to calculate the state sum we need the spherical functions of the irre-
ducible representation of SL(2,C). These are given in terms of the Biedenharn-
Dolginov function that corresponds to the boost operator

d
[m,ρ]
JJ ′M (τ) =

∞
∫

−∞

d−1
J−Mp

(M−m,M+m))
J−M (λ, ρ)e−iτλ

× d−1
J ′−Mp

(M−m,M+m))
J ′−M (λ, ρ)ω(λ)dλ

where J,M are the angular momentum eigenvalues, dn is a normalization con-
stant, and p(α,β)

n are the Hahn polynomials of imaginary argument [14]. Given the
unitary representation Tg of the group SL(2,C) and the identity representation of
SU(2), the spherical function is defined as in the case of SO(4)

f0(τ) = Tr{E0Tg} = d0,ρ
000(τ) =

1

ρ

sin ρτ

shτ

where the last step has been calculated with the residue theorem.

11. A SO(3,1) Invariant for the State Sum of Spin Foam Model

As in the case of Euclidean SO(4) invariant model, we take a non degenerate
finite triangulation of a four-manifold. We consider the four-simplices in the ho-
mogeneous space SO(3, 1)/SO(3) ∼ H3, the hyperboloid {x;x.x = 1, x0 > 0}
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and define the bivectors b on each face of the four-simplex, that can be space-like,
null or timelike 〈b, b〉 > 0,= 0 or < 0, respectively [4].

In order to quantize the bivectors, we take the isomorphism

b = ∗L, bab =
1

2
εabcdLe

dgec

with g a Minkowski metric.

The condition for b to be a simple bivector 〈b, ∗b〉 = 0, gives C2 = 〈L, ∗L〉 =
~J · ~K = mρ = 0.

We have two cases:

1) ρ = 0, C1 = 〈L,L〉 = ~J2− ~K2 = m2−1 > 0; L, space-like, b time-like
2) m = 0, C1 = ~J2 − ~K2 = −ρ2 − 1 < 0; L, time like, b space like

(remember, the Hodge operator ∗ changes the signature).

In case 2) b is space-like, 〈b, b〉 > 0. Expanding this expression in terms of space
like vectors, x, y

bµνb
µν = (xµyν − xνyµ)(xµyν − xνyµ) = ‖x‖2‖y‖2 − ‖x‖2‖y‖2 cos2 η(x, y)

= ‖x‖2‖y‖2 sin2 η(x, y)

where η(x, y) is the Lorentzian space-like angle between x and y. This result
gives a geometric interpretation between the parameter ρ and the area expanded
by the bivector b = x ∧ y, namely, 〈b, b〉 = area2{x, y} = 〈∗L, ∗L〉 ∼= ρ2. (This
result is equivalent to that obtained in the Euclidean case where the area of the
triangle expanded by the bivector was proportional to the value (2j + 1), j being
the spin of the representation).

In order to construct the Lorentz invariant state sum we take a non-degenerate
finite triangulation in four-dimensional simplices in such a way that all three-
dimensional and two-dimensional subsimplices have space-like edge vectors which
span space-like subspace. We attach to each two-dimensional face a simple irre-
ducible representation of SO(3, 1) characterized by the parameters [0, ρ].

The state sum is given by the expression [10]

Z =

∞
∫

ρ=0

dρ
∏

triang

ρ2
∏

tetra

Θ4(ρ
′
1, · · · , ρ′4)

∏

4−simplex

I10(ρ
′′
1, · · · , ρ′′10)

where ρ refers to all the faces in the triangulation, ρ′ corresponds to the simple
irreducible representation attached to 4 triangles in the tetrahedra and ρ′′ corre-
sponds to the simple irreducible representation attached to the 10 triangles in the
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four-simplices. The functions Θ4 and I10 are defined as traces of recombination
diagrams for the simple representations. The traces are explicitly given as multi-
ple integrals on the upper sheet H of the two-sheeted hyperboloid in Minkowski
space. For the integrand we take the spherical function

fp(x, y) =
1

ρ

sin ρτ(x, y)

sinhτ(x, y)

where τ(x, y) is the hyperbolic distance between x and y.

The trace of a recombination diagram is given by a multiple integral of products
of spherical functions. For a tetrahedrum we have

Θ4(ρ
′
1, · · · , ρ′4) =

1

2π2

∫

H

fρ1(x, y) · · · fρ4(x, y)dy

where we have dropped one integral for the sake of normalization without losing
Lorentz symmetry.

For a four-simplex we have

I10(ρ
′
1, · · · , ρ′4) =

1

2π2

∫

H4

∏

i<j<1,5

fρij
(xi, xj)dx1dx2dx3dx4.

The last four equations defines the state sum completely, that has been proved to
be finite [6].

The assymptotic properties of the spherical functions are related to the Einstein-
Hilbert action giving a connection of the model with the theory of the general
relativity [13].
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