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RANDOM SPHERES AND OPERADS

RÉMI LÉANDRE

Communicated by Martin Schlichenmaier

Abstract. We define a stochastic diffeology over the n-fold loop-space of a n-
connected manifold. We perform a stochastic cohomology in the sense of Chen
and Souriau and we show that the stochastic cohomology groups are equal to the
classical de Rham cohomology groups of the n-fold loop space. We give a sto-
chastic analogue of the classical fact that the homology groups of the n-fold loop
space are an algebra for the little cube operad.

1. Introduction

In algebraic topology (see [8], [13], [16], [40]), people consider as models on the
n-fold loop space Ωn

x(M), the space of maps from R
n into the compact manifold

M which are equal to x outside a cube (which can depends on the map). The n-
fold loop space is not the same as the set of applications from the n-dimensional
sphere S

n to M which sends the north pole of the sphere to x. The interest of
the n-fold loop space is that there are many different structures. For instance, it
carries an action of the little cube operad [40], such that its homology appears as
an algebra associated to this operad or in a more sophisticated way, as a n-algebra
[13].

The goal of this article is to define a stochastic n-fold loop space and to define a
stochastic homology theory which is compatible with the action of the little cube
operad.

There is something analogous in one dimension: the Moore loop space. Taking
into consideration as a model of the loop space, the based loop space endowed
with Brownian bridge measure, a tentative description of the stochastic Moore
loop space was produced in [21] which is involved with the long time behavior
of the heat kernel. The cohomology of the smooth Moore loop space is an Hopf
algebra, but our program in [21] fails in the definition of suitable tensor products
of Sobolev forms if we consider Sobolev cohomology of the stochastic Moore
loop space.
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68 Rémi Léandre

There are two types of cohomology theory for the Brownian bridge, which deal
with forms almost surely defined:

The first one is related to Sobolev cohomology theory. To a random form, which
is almost surely defined, is associated a series of Sobolev norms, as is classi-
cal in Malliavin Calculus. Namely the main originality of Malliavin Calculus
with respect of its precursors (see works of Albeverio, Elworthy, Hida, Fomin,
Berezanskii...) is that the space of test functions is an algebra constituted of func-
tional, almost surely defined, because there is no Sobolev imbedding theorem in
infinite dimension. The main theorem, which gives a stochastic extension of the
classical results in the algebraic topology of Chen and Adams, is the following:
if the manifold is simply connected, the Sobolev cohomology of the Brownian
bridge is equal to the Hochschild cohomology ([18], [22], [23], [29]). Therefore,
the stochastic cohomology in the Sobolev sense of the loop space is equal to the
cohomology of the smooth loop space.

The second one is related to the stochastic calculus of Chen and Souriau, which
is a stochastic interpretation of the considerations of Chen and Souriau for diffe-
ology ([12], [17], [45]). We will not discuss here the Hilbert tangent space over a
random loop, which was introduced by Jones and Léandre [18] and by Bismut in a
preliminary form [7]. Therefore, a Sobolev norm is not associated with a random
form. The stochastic cohomology for much diffeology is equal to the cohomology
of the smooth loop space, or to the cohomology of the Hölder loop space ([27],
[28], [30]).

In the first part of this article, we will construct a stochastic diffeology over
Ωn

x(M), our considerations are related to the construction of the heat kernel mea-
sure over a loop group of Airault and Malliavin. We consider some stochastic
processes over Ωn

x(M), which depend continuously on a finite-dimensional pa-
rameter. Our construction of some examples of random plots with values in the
n-fold loop space are, in fact, n + 1-dimensional, and are inspired by the con-
struction of Léandre [34] and [36] in order to construct random tori and random
cylinders, and not by the construction of Airault and Malliavin [1], Brzezniak and
Elworthy [10], Brzezniak and Léandre [11] and Léandre [35] in order to construct
random cylinders, where the models were two dimensional.

In Section 2, starting from the heat kernel diffeology, we construct a stochastic
Chen-Souriau diffeological Calculus of the n-fold loop space. The main theorem
is that the stochastic cohomology with respect of this diffeology of the stochastic
n-fold loop space, is equal to the cohomology of the Hölder n-fold loop space.
The proof is not based upon the sheaf cohomology, as it was done in [28] for loop
space and in [35] for tori, but is an analogy of the proof of [30] based upon the
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Cech cohomology associated with some cover of the loop space (see [9] pp. 166-
167 for the abstract statement of this proof).

In Section 3, we define an action of the little cube operad over the stochastic n-fold
loop space and we deduce that the stochastic homology groups of the n-fold loop
space are an algebra with respect to this operad. This is possible because we take
a very rich stochastic diffeology and therefore a rather poor class of functionals,
unlike the poor diffeology of [34] which is not compatible with the action of
the little cube operad, but which is involved with a much more larger class of
functionals.

This article requests the study of diffusion processes over infinite-dimensional
manifolds. In a abstract way, these processes were studied by Kuo [19] and the
russian school [5]. But our work is motivated by the higher-dimensional consid-
erations of the works of Airault and Malliavin [1] and Brzezniak and Elworthy
[10].

We refer to the two surveys of Léandre ([26], [32]) for analysis over loop space
and topology.

2. Stochastic n-fold Loop Space

Let us consider the Hilbert space of functions f from R into R such that
∫

R

|f(s)|2ds+

∫

R

|f ′(s)|2ds = 〈f, f〉 <∞. (1)

The map which associates f(t) to f is continuous for the Hilbert structure. There-
fore there exists an element et(t

′) from the Hilbert space such that f(t) = 〈f, et〉.
This element et is called the Green kernel associated to the Hilbert space. We
can explicitely compute e0. It is equal to λ1t′≤0 exp[t′] + µ1t′>0 exp[−t′] (for
some convenient choice of λ and µ) and et is deduced by translation. To the
Hilbert space is associated an operator I − ∂2/∂s2. We consider the Hilbert
by using the functions from R

n into R associated to the product of operators
A =

∏n
i=1(I − ∂2/∂s2i ). We consider also the Hilbert space H of functions from

R
n into R such that ∫

Rn

h(S)Ah(S)dS <∞. (2)

Since we consider a product situation, the Green kernel associated to this operator
is

∏
esi

(s′i) = eS(S′) where S = (s1, .., sn). We consider a compact manifold,
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imbedded isometrically into R
d, and we consider the set of functions from R

n

into R
d. We can explicitly compute the Green kernel (or the reproducing kernel),

and obtain a Hilbert space H
d built by functions from R

n into R
d: S → h(S) if

S = (s1, .., sn). The base point x of M is identified with 0 in R
d. In the sequel,

we will consider the Brownian motion with values in H: u→ Bu(.). This gives a
n+1 parameter process. In this case t→ Bt(S) is a finite dimensional Brownian
motion and the correlation between B.(S) and B.(S

′) is given by 〈eS , eS′〉Id Rd

In the sequel, we will define by (Ω, Ft, P ) the filtered probability space where this
Brownian motion is defined.

In order to construct precisely the Brownian motion with values in H, we consider
an orthonormal basis fi of H and some independent R-valued Brownian motion
Bi,t. Bt(s) is therefore equal to

∑
Bi,tfi(S). We remark that with the previous

definition we have

〈Bt(S), Bt(S
′)〉 = t

∑
fi(S)fi(S

′) = t〈eS , eS′〉. (3)

(We have as if the Gaussian field takes its values in R in order to simplify the
exposition). (t, S) → Bt(S) is in fact only Hölder!

Let us recall that a continuous process t → Mt is a R-valued martingale in L2

with respect of the filtration Ft if E[|Mt|
2] <∞ and if for t′ > t

E[Mt′ |Ft] = Mt (4)

almost surely. A semi-martingale is defined as the sum of a continuous martingale
and of continuous finite variation process t → Vt such that Vt is Ft-measurable
for all t. The right-bracket of continuous martingale Mt is the unique continuous
increasing process 〈M,M〉 which is Ft measurable and such that

M2
t − 〈M,M〉t (5)

is a continuous martingale. The interest of the right-bracket of a martingales is
the following: let p > 0. The Lp norm of supt<1 |Mt| can be estimated in term
of the Lp norm of 〈M,M〉

1/2
1 . It is the purpose of Burkholder-Davies-Gundy

inequalities.

We consider a set of semi-martingales parametrized by t ∈ [0, 1] and depending
of the parameter S ∈ R

n

Xt(S) = Mt(S) + Vt(S), X0(S) = x. (6)

We define over this set of semi-martingales a set of norms

E[〈M1(S) −M1(S
′),M1(S) −M1(S

′)〉p/2]1/p ≤ C1
pd(S, S

′)1/2 (7)
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where 〈 , 〉 denotes the right bracket of semi-martingale theory and d(S, S ′) is
the Euclidean distance over R

n for d(S, S′) ≤ 1. Moreover

E[(

1∫

0

d|Vt(S) − Vt(S
′)|)p]1/p ≤ C2

pd(S, S
′)1/2. (8)

We suppose that

E[〈M1(0),M1(0)〉
p/2]1/2 ≤ C3

p (9)

E[(

1∫

0

d|Vt(0)|)
p]1/p ≤ C4

p . (10)

Using Kolmogorov’s lemma (see [41]), we deduce that the random field S →
X1(S) is almost surely Hölder with an Hölder exponent < 1/2. The random field
is in fact almost surely 1/2 − ε -Hölder for all ε > 0.

Definition 1. The space SP∞ is the space of semi-martingales X.(.) with values
in R

d (2.2) submitted to the conditions that C1
p , C2

p , C3
p and C4

p are finite for all
p. This endows SP∞ with a structure of Fréchet space.

Since M is isometrically imbedded into R
d, we consider the projection map Π(y)

from R
d into Ty(M), the tangent space of M at y. We consider the family of

stochastic differential equations in the sense of Stratonovitch

dtxt(S) = g(S)Π(xt(S))dtBt(S), x0(S) = x. (11)

Theorem 2. x.(.) belongs to SP∞. Moreover, x1(S) belongs to M and is equal
to x outside a deterministic compact set of R

n.

Proof: The proof is straightforward and based upon the Gronwall lemma and the
continuity properties of the Green kernel. We refer to [36] for details. �

We will define on the Hölder n-fold loop space Ωn
x,1/2−ε(M) a stochastic diffeol-

ogy (1/2− ε is the Hölder exponent). Let us explain why we fix the rate 1/2− ε:
the 1/2 − ε Hölder n-fold loop space Ωn

x,1/2−ε(M) is an inductive limit of Ba-
nach manifolds, the injection map being the injection of maps equals to x outside
the cube [−r, r]n into the maps equal to x outside the cube [−(r + 1), r + 1]n.
Maps equals to x outside the cube [−r, r]n are said to belong to Ωr,n

x,1/2−ε(M)
which is a Banach manifold (see beginning of Section 3 for details). A functional
on Ωx,1/2−ε(M) is said Frechet smooth if its restriction to all Ωr,n

x,1/2−ε(M) is
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Frechet smooth. Frechet differentiability on Banach manifolds is a tractable no-
tion. If we consider the space of Hölder n-fold loops without to precise the rate
of Hölderianity, the topological considerations are much more complicated. We
should precise in this last case for instance what is a smooth functional on the
Hölder n-fold loop space, which should lead to boring technical considerations.

Let us recall what is a diffeology following the terminology of Souriau: Let us
consider a topological space M̃ . A diffeology is constituted of a collection of
maps (φU , U) from any open subset U called plots of any R

m into M̃ satisfying
the following requirements:

i) If j : U1 → U2 is a smooth map from U1 into U2 and (φU2 , U2) is a plot,
(φU2 ◦ j, U1) is still a plot called the composite plot

ii) The constant map is a plot
iii) If U1 and U2 are two open subset of the same linear space R

m and if
(φU1 , U1) and (φU2 , U2) are two plots, the union map φU1∪U2 realizes a
plot from U1 ∪ U2 into M̃ .

This allows to Chen and Souriau to define a form. A form σ is given by the data
of smooth forms φ∗Uσ associated to each plot (φU , U). The system of forms φ∗Uσ
over U has moreover to satisfy the following requirements: if (φU2 ◦ j, U1) is a
composite plot, (φU2 ◦ j)

∗σ is equal to j∗φ∗U2
σ.

In the theory of Chen and Souriau, the exterior derivative dσ of σ is given by the
data dφ∗Uσ.

This allows Souriau to define de Rham cohomology of manifolds with singulari-
ties.

Definition 3. A stochasticm-dimensional plot (U, φi,Ωi) of Ωn
x,1/2−ε(M) is given

by the following data:

i) U is an open subset of R
m

ii) Ωi is a countable measurable partition of Ω

iii) u→ φi(u).(.) is a smooth application from U into SP∞

iv) φi(u)1(S) belongs to M over Ωi and is equal to x outside a deterministic
set V of R

n, independent of Ωi.

Let us explain why we do the partition of Ω in Ωi, i.e., we describe the way how
we deform a random n-fold loop. For instance, we would like to retract a random
n-fold loop in a constant loop: it is in general impossible to do that globally. We
can do that only locally: this explains the apparition of this partition of Ω in Ωi.
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In the sequel, we will restrict our stochastic plots to the terminal time φi,1, i.e., we
identify two elements SP∞ by their terminal time. We call such plots (U, φi,1,Ωi).

We will give an example of stochastic plots starting from the considerations of
[36] to construct Brownian cylinders attached to branes.

Let F (u, S, y) be a smooth function from U × R
n ×M into M such that outside

a compact set of R
n, F (u, S, y) = x. Then u → {S → F (u, S, x1(S))} defines

a stochastic plot from the open subset U into Ωn
x,1/2−ε(M).

Since we have a stochastic diffeology associated to Ωn
x,1/2−ε(M), we can con-

struct a stochastic cohomology theory associated with this diffeology, according
to the previous works of Léandre ([25], [27], [28], [30], [31], [33], [34]).

Definition 4. An element σst of Λk
st, the set of stochastic forms of degree k, is

given by the following data: let us consider a stochastic m-dimensional plot φ =
(U, φi,1,Ωi) with values in Ωn

x,1/2−ε(M). On U , we associate a random k-form
σU = φ∗σst. Moreover, the system of random forms φ∗σst checks the following
properties:

i) Let j be a deterministic map from U 1 into U2 and let φ2 = (U2, φ2
i,1,Ωi)

be a stochastic plot. We associate with these data the composite plot φ1 =
(U1, φ1

i,1,Ωi) given by φ1
i,1(u1) = φ2

i,1(j(u1)). We have, almost, surely as
random forms

φ1∗σst = j∗φ2∗σst (12)

ii) If φ1 = (U, φ1
i ,Ω

1
i ) and φ2 = (U, φ2

i ,Ω
2
i ) are two stochastic plots such that

φ1
i,1 = φ2

j,1 ◦ ψ on a set of probability not 0 in Ωj for a given measurable
transformation ψ of Ω, then

φ1∗σst = φ2∗σst ◦ ψ (13)

almost surely over this set, where the two plots are corresponding by the
transformation ψ.

We can define the stochastic exterior derivative of a stochastic form σst by the
data dφ∗σst for any stochastic plot φ.

Remark 5. We can identify two stochastic plots (u, φ1
i,1,Ω

1
i ) and (U, φ2

j,1,Ω
2
j ) if

φ1
i,1(.) = φ2

j,1(.) almost surely over Ω1
i ∩ Ω2

j for all i and j.

Remark 6. Since S → φi,1(u)(S) has a smooth version in u and a 1/2 − ε-
Hölder version in S, a Frechet smooth form over Ωn

x,1/2−ε(M), the n-fold 1/2−ε-
Hölder loop space, defines a stochastic form. So we have the set of Frechet smooth
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forms Λk
1/2−ε for the compact support Hölder topology over Ωn

x,1/2−ε(M) and,
naturally

Λk
1/2−ε ⊆ Λk

st. (14)

Theorem 7. The set of stochastic forms ⊕Λk
st = Λ.

st is a differential algebra for
the stochastic exterior derivative.

Proof: Let φ be a stochastic plot. σ1
st ∧ σ

2
st is defined by φ∗σ1

st ∧ φ
∗σ2

st and dσst

is defined by dφ∗σst. �

Definition 8. The stochastic de Rham cohomology groups Hk
st are defined by

KerdΛ
k
st/ImdΛ

k−1
st .

Remark 9. Instead of using heat-kernel diffeology, we can use the random field
diffeology where we use only the condition

E[|X(S) −X(S ′)|p]1/p ≤ C1
pd(S, S

′)1/2. (15)

3. Isomorphism of Cohomology

Let us make the following hypothesis:

Hypothesis H: the compact manifold M is n-connected.

Ωn
x,1/2−ε(M) is imbedded in Ωn

x,1/2−ε(M), whose differentiable structure is in-
herited from the differentiable structure of the Hölder n-loop space of the linear
space R

d Ωn
0,1/2−ε(R

d). In order to obtain an atlas of the manifold Ωn
x,1/2−ε(M) =

∪Ωr,n
x,1/2−ε(M), we proceed as follows: let I(r) be a cube of center 0 and radius

r. Ωr,n
0,1/2−ε(M) is the set of maps from R

n into M which are equal to 0 outside
I(r). A smooth function F over Ωn

x,1/2−ε(M) is a function whose restriction F r

to Ωr,n
x,1/2−ε(M) is smooth, for the structure of the manifold of Ωr,n

x,1/2−ε(M) given

below. We consider ir to be the inclusion from Ωr,n
x,1/2−ε(M) into Ωr+1,n

x,1/2−ε(M),
(r belongs to N). A smooth form σ over Ωn

x,1/2−ε(M) is a sequence of smooth
forms σr over Ωr,n

x,1/2−ε(M) such that i∗rσr+1 = σr. It remains to define an atlas
over Ωr,n

0,1/2−ε(M). Let Sr be an element of R
n which is far from I(r). There is a

family of straight lines fr,S(t) which starts at Sr and arrive in S in I(r) (t ≤ 1).
We write

γ(S) = expγα(fr,S(1))[τS(1)H(S)] (16)
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where τs(t) is the parallel transport over the curve t → γα(fr,S(t)) and γα(.)
is a countable dense family of smooth elements of Ωr,n

x,1/2−ε(M). We choose, for

S → H(S) an Hölder map from R
n into R

d which equals to 0 outside I(r). Since
M is supposed to be n-connected, we can deform the element γα(.) with support
in I(r) in the constant element, and we get the deformation (t, S) → γα(fr,S(t))
which is smooth in the two parameters. Therefore, S → τS(1) is smooth, and so,
we can choose, for S → H(S) an Hölder map from R

n into R
d which equals to 0

outside I(r). The basis of a neighborhood is given by Or,α,β such that the 1/2− ε
norm of H(.) is smaller than β.

Let Si,N be the dyadic subdivision of I(r) of length 2N . Let xi be a finite set of
elements of M such that the balls B(xi, δ) constitute an open cover of M for δ
small enough. By induction over n, we can find a system of elements γr,N (S) of
Ωr,n

x,1/2−ε(M) such that for all sites Si,N , γr,N (Si,N ) is equal to one of the xj and

the distance between γr,N (Si,N ) and γ(Si′,N ) for two contiguous sites is smaller
than δ. For n = 1, we choose piecewise geodesics. Moreover

∫

I(r)

|
∂r

∂s1..∂sn
γr,N (S)|2ds <∞. (17)

Let Or,N (δ′) be the set of open balls for the uniform norm over R
n of element

γ(.) of Ωn
x,1/2−ε(M) such that

sup
S∈Rn

d(γ(S), γr,N (S)) ≤ δ′. (18)

We can find δ′ small enough such that the set of Or,N (δ′) constitutes a cover of
Ωn

x,1/21−ε(M).

Remark 10. If we suppose γ(S) = 0 outside I(r), we do not get an open subset
of Ωn

x,1/2−ε(M)

Theorem 11. Let Or,N (δ′) be the previous cover of Ωn
x,1/2−ε(M). There exists a

smooth partition of unity gr,N associated with this cover for Ωn
x,1/2−ε(M).

Proof: Let us introduce a smooth function g from [0,∞] into [1,∞] which is
exactly equal to 1 over [0, δ′]. We suppose that g behaves as |δ′′ − r|−k when
r → δ′′ by lower values and is infinite for r > δ′′ and finite for r < δ′′. We
introduce a smooth function h from [1,∞[ on [0, 1] with compact support which
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is equal to one only at 1. We introduce the function

Fr,N (γ) = h(

∫

Rn

g(d(γ(S), γr,N (S))dS

volI(r)
). (19)

Since we consider the Hölder n-fold loop space, we have
∫

Rn

g(d(γ(S), γr,N (S))dS = ∞ (20)

if supRn d(γ(S), γr,N (S)) ≤ δ′′ for k big enough. This shows that Fr,N (γ)
is smooth for the compact Hölder topology, is equal to one over B(γr,N , δ′) ∩
Ωr,N

x,1/2−ε(M) for the uniform distance, and is equal to zero outside the ball
B(γr,N , δ′′) for the uniform distance.

If γ belongs to some B(γr,N+1, δ′) without belonging to any B(γr,N ′

, δ′) for
N ′ ≤ N for the balls defined for the uniform distance, we have the property
that sup|S−S′|<2−(N+1) d(γ(S), γ(S′)) > δ1 for a conveniently small δ1 over the
cube I(r). We regularize the functional sup|S−S′|<2−(N+1) as in [30]. We put
ψ(S, S′) = d(γ(S), γ(S ′))2 for γ(S) and γ(S ′) close enough and ψ(S, S ′) = 1
for γ(S) and γ(S ′) far. We put

Hr,N+1(γ) = C(r)2C(N+1)

∫

I(r)×I(r),|S−S′|<2−(N+1)

dSdS′

(δ2 − ψ(S, S′))+k
(21)

for some δ2 < δ1 close to δ1. We choose a function f1 with support [0, C] from
[0,∞] into [0, 1] and we introduce the functional

gr,N+1(γ) = 1 − f1(Hr,N+1). (22)

If supS∈I(r),S′∈I(r)|S−S′|<2−(N+1) ≥ δ2, Hr,N+1 is infinite, because we work on
the Hölder n-fold loop space, if k is big enough. Therefore, Gr,N+1 is smooth on
the Hölder n-fold loop space. Moreover, if this condition is checked,Gr,N+1(γ) =
1. Moreover, ψr =

∑
N FN,rGr,N+1 is smooth over the Hölder n-fold loop space

for the compact support Hölder topology. It is strictly positive over Ωr,n
x,1/2−ε(M).

Let us recall that r is an integer. By using a similar construction to that used
before, we put

Fr(γ) = h(

∫

I(r+1)−I(r)

dS

(δ3 − d(γ(S), x)2)+k
). (23)
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Fr(γ) = 0 implies that γ belongs to some Or+1,N ′

for some γr+1,N ′

where
γr+1,N ′

is not equal to x over a site of I(r + 1) which is not in I(r). In ψr, we
select only the γr,N where there is a site S in I(r)−I(r−1) where γr,N (S) 6= x.
Therefore, we put

Ψ =
∑

Frψr (24)

Ψ is smooth over Ωn
x,1/2−ε(M), finite and strictly positive. The partition of unity

is given by

gr,N =
FN,rGr,N+1Fr

Ψ
. (25)

The support ofgr,N is included in the balls for the uniform distance B(γr,N , δ′′),
which constitutes a cover of Ωn

x,1/2−ε(M).

Let us remark that if we put α = (r,N), the systemOα = B(γr,N , δ′′) constitutes
a cover of the Hölder n-fold loop space. Moreover, there is a lexicographic order
on the system of indices. First, we distinguish if r ≤ r′ or not. Secondly, we
distinguish if N ≤ N ′ or not. And as a last step, we use the lexicographic order
over the lattice on the cube I(r). In the sequel, α1 < α2 < ...αk. Oα is con-
tractible if δ′′ is small enough, as well as Oα1,..,αk

= ∩Oαi
, if this intersection is

not empty. If it is the case, let us introduce a smooth element γα1,..,αk
of Oα1,..,αk

There exists a smooth functional from Oα1,..,αk
× [0, 1] over Oα1,..,αk

such that

i) Fα1,..,αk
(γ(.), t)(S) = Fα1,..,αk

(S, γ(S), t)

ii) Fα1,..,αk
(., ., .) is smooth in S, γ(S) and t

iii) Fα1,..,αk
(S, γ(S), 1) = γ(S)

iv) Fα1,..,αk
(S, γ(S), 0) = γα1,..,αk

(S).

In order to construct this retraction map, we introduce the evaluation map ξS :
γ(.) → γ(S). We remark that ξSOα1,..,αk

is a convex set. If γ(.) ∈ Oα1,..,αk
, γ(S)

and γα1,..,αk
(S) are joined by a unique geodesic which is included in ξSOα1,..,αk

.
We put

Fα1,..,αk
(γ(.), t)(S) = expγα1,..,αk

(S)[t(γ(S) − γα1,..,αk
(S))] (26)

in order to construct our retraction application. γ(S) − γα1,..,αk
(S) denotes the

vector of the unique geodesic joining γα1,..,αk
(S) to γ(S): it is therefore a vector

over γα1,..,αk
(S).

Let O be an open subset for the compact Hölder topology on the n-fold loop
space. It is given by a sequence Or of an open subset of Ωr,n

x,1/2−ε(M) such that
irOr ⊆ Ir+1.
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Let Λk
O,st be the set of stochastic forms given in a similar set for the loop space in

[30].

Definition 12. An element σO,st of Λk
O,st: Let (U, φi,Ωi) be a stochastic plot with

values in Ωn
x,1/2−ε(M). By definition, it takes its values in some Ωr,n

x,1/2−ε(M) Let
Ui be the reciprocal image by φi,1 of Or over Ωi. It defines a random subset of
Ui. We associate a random smooth form over Ui φ

∗σO,st, which satisfies a system
of consistency relations analogous to Definition 4.

We refer to [30], definition II.5. As an analogue to Lemma II.6 of [30], we have:

Lemma 13. Λk
O,st is a differential algebra for the stochastic exterior derivative.

We have also a lemma analogous to Lemma II.7 in [30]:

Lemma 14. The stochastic de Rham cohomology associated to ΛOα1,..,αk
,st is

equal to R in degree 0 and is equal to 0 in others degrees, if Oα1,..,αk
6= ∅.

The proof is exactly the same as the proof of Lemma II.7 of [30]. It is based
upon the fact that if φ(u).(.) is a plot on U , then F (t, ., φ(u).(.)) is still a plot on
[0, 1] × U if F is a smooth function in the three argument (t, S, y).

We deduce as in [30], theorem II.9, by using the argument of [9], pp. 166-167, the
following lemma:

Lemma 15. The stochastic cohomology of Ωn
x,1/2−ε(M) is equal to the Cech co-

homology of the Hölder n-fold loop space associated with the cover Oα.

The proof is based upon a suitable spectral sequence and the fact that there are
partitions of unity associated with the cover Oα.

We can repeat Lemma 13 and Lemma 14 for the de Rham cohomology group
Ωn

x,1/2−ε(M) associated to deterministic smooth forms over it.

For that, we get the following theorem, whose proof is exactly the same as the
proof of Theorem A.1 in [30].

Let F be an application from R
n×R

d into R
d which is smooth and bounded with

bounded derivatives of all orders. Let Ψ be the application from Ωn
0,1/2−ε(R

d)
into itself defined by

γ(.) → {S → F (S, γ(S))}. (27)

The application Ψ is called Nemytski map in the literature. We suppose that
F (S, 0) = 0.
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Theorem 16. Ψ is smooth.

This means that Ψ is Fréchet smooth from Ωr,n
0,1/2−ε(R

d) into Ωr,n
0,1/2−ε(R

d) for all
integers r.

We deduce the following from Theorem 16:

Lemma 17. The deterministic de Rham cohomology of Oα1,..,αk
is equal to R in

degree zero and to zero in the others cases, if Oα1,..,αk
6= ∅.

We deduce also the following lemma, as in [9], pp. 166-167:

Lemma 18. The deterministic de Rham cohomology groups of Ωn
x,1/2−ε(M) are

equal to the Cech cohomology groups of Ωn
x,1/2−ε(M) associated to the coverOα.

From Lemma 17 and Lemma 18, we deduce the theorem which is the goal of this
part:

Theorem 19. The stochastic de Rham cohomology groups of Ωn
x,1/2−ε(M) are

equals to the determinist de Rham cohomology groups of Ωn
x,1/2−ε(M).

4. Little Cube Operad and Stochastic Homology

Let us recall the definition of an operad. (For all material about operads, we refer
to the survey [38]).

Definition 20. A topological operad a is given by the following data:

i) A topological space a(k), k ∈ N endowed with an action of the symmetric
group Sk.

ii) A continuous action from a(k)× a(j1)× ..× a(jk) into a(j1 + ..jk) which
is compatible with the different action of the symmetric group.

Example 21. We consider the little cube operad. Let I be the compact subset
[−1, 1] of R and In =

∏n
i=1[−1, 1]. Fn(k) is the space of all maps

∐
i∈[1,k] d(i) :∐

i∈[1,k] I
n → In such that each map d(i) : In → In is a composition of trans-

lations and dilatations, and the maps d(i) have disjoint images. This carries a
natural action of the symmetric group. The action of Fn(j)×Fn(k1)× ..×Fn(kj)
is given as follows: let l ∈]k1 + ..ki; k1 + ..ki+1], l = k1 + ..ki + li, dtot(l) is given
as follows. We consider the box given by dki(lr) which is included in In, and
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we apply d(i) in Fn(j). From this procedure, we obtain a system of k1 + .. + kj

disjoint boxes, which are compatible with the action of the different symmetric
groups.

Definition 22. Let us consider a topological vector space V . It is endowed with
a structure of a-algebra if there is an action ρ(k) : a(k)× V ⊗k → V (V ⊗k is the
algebraic tensor product) compatible with the different actions of the symmetric
group Sk and the operation of operads.

Example 23. It is the classical example of algebraic topology. Let us consider
Ω1,n

x,1(M) as the space of C1 maps from In into M , such that over a neighbor-
hood of the boundary of In, the map is equal to x. Fn(k)) acts clearly over
Ω1,n

x,1(M) × ... × Ω1,n
x,1(M) where the product is taken k times by the translation

and dilatations of the time and concatenation of the spheres which are obtained
through this procedure. Fn(k) acts over a product of k cycles in Ω1,n

x,1(M) of
dimension ji, and we get a cycle of dimension

∑
ji. We deduce an action of

Fn(k) over ⊗Hji
(Ω1,n

x,1(M),Z) into H �
ji
(Ω1,n

x,1(M),Z) which is clearly com-
patible with the different actions of the symmetric group (see [40], [8] for more
details).

The goal of this part is to produce an analogous statement for the stochastic ho-
mology groups of Ω1,n

x,1/2−ε(M). We will slightly change the probabilistic model
because we work over In, and we will repeat the considerations of [25] in order
to define stochastic homology groups.

Since we work with Ω1,n
x,1/2−ε(M), instead of taking the Hilbert structure (1), we

will choose the space of functions from [−1, 1] into R such that
+1∫

−1

|f(s)|2ds+

+1∫

−1

|f ′(s)|2ds = 〈f, f〉 <∞ (28)

with Dirichlet boundary conditions f(1) = f(−1) = 0. With this Hilbert struc-
ture, we repeat the considerations of Section 2.

Fn(k) clearly acts over SP⊗k
∞ because (8) and (9) are still checked when we

perform a translation and a dilatation over In. Therefore, Fn(k) acts over the
product

∏n
i=1(U

j , φj
i ,Ω

j
i ) of stochastic plots j = 1, .., k and all the requested

compatibility conditions are checked. We get a stochastic plot parametrized by∏
U j .

We can give the definition of an m-dimensional stochastic simplex of the Hölder
n-fold loop space Ω1,n

x,1/2−ε(M).
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Definition 24. Let ∆m be the canonical simplex of R
m. A stochastic simplex of

Ω1,n
x,1/2−ε(M) is given by the restriction of ∆m to a stochastic plot of a neighbor-

hood U of ∆m into Ω1,n
x,1/2−ε(M).

Let us recall that, in this definition, we are only interested in (∆m, φi,1,Ωi), the
end point of φi.

Let Ωj
i be the sets of the measurable partition of Ω associated with the stochastic

m-simplex (∆m, φj
i,1,Ω

j
i ). We consider the countable partition of Ω Ωj1

i1
∩..∩Ωjl

il
.

This allows us to consider a finite sum or a subtraction of l stochasticm-simplices,
because the partition is still countable. We define the random boundary ∂ of an
oriented stochastic simplex of dimensionm as a sum of oriented (m−1)-simplices
as usual. We consider the boundary of a sum or a subtraction of oriented stochastic
m-simplices. If this random boundary is trivial, we say that we have a stochastic
cycle. Moreover, ∂2 = 0.

Definition 25. Hk,st(Ω
1,n
x,1/2−ε(M),Z) is the k- dimensional stochastic homology

groups of the Hölder n-fold loop space Ω1,n
x,1/2−ε(M) with values in Z.

Fn(k) applies the product of k random cycles of dimension jj l = 1, .., k into a
random cycle of dimension

∑
jj .

We deduce the following theorem:

Theorem 26. H∗,st(Ω
1,n
x,1/2−ε(M),Z)⊗R is an algebra for the little cube operad.

Remark 27. It can be shown, as in [25], that H∗,st(Ω
1,n
x,1/2−ε(M),Z) is equal to

the space of random variables from Ω into the discrete group H∗(Ω
1,n
x,1(M),Z),

from which we are able to get an indirect proof of the previous theorem.
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