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Abstract. We study solutions of Grassmannian sigma-model both in finite-
dimensional and infinite-dimensional settings. Mathematically, such solutions are
described by harmonic maps from the Riemann sphere CP

1 or, more generally,
compact Riemann surfaces to Grassmannians. We describe first how to construct
harmonic maps from compact Riemann surfaces to the Grassmann manifold
Gr(C

d), using the twistor approach. Then we switch to the infinite-dimensional
setting and consider harmonic maps from compact Riemann surfaces to the Hilbert–
Schmidt Grassmannian GrHS(H) of a complex Hilbert space H . Solutions of this
infinite-dimensional sigma-model are, conjecturally, related to Yang–Mills fields
on R4.

1. Introduction

In this paper we describe classical solutions of Grassmannian sigma-models in
finite-dimensional and infinite-dimensional settings. The study of such solutions
in the finite-dimensional case was initiated by physicists (cf. e.g., [4,8,13]). Math-
ematically, sigma-model solutions correspond to harmonic maps from compact
Riemann surfaces to Grassmannians Gr(C

d).

In the first part of this paper (Sections 2, 3 and 4) we explain how to construct
such maps, using the twistor approach. The main idea of this approach, when ap-
plied to the construction of harmonic maps from a Riemann surface M to a given
Riemannian manifold N , is to construct a certain twistor bundle π : Z → N over
N , which has the following property. The twistor space Z is an almost complex
manifold such that for any pseudoholomorphic map ψ : M → Z its projection
ϕ := π ◦ ψ to N is a harmonic map ϕ : M → N . In our case N = Gr(C

d) and
the role of the twistor bundle over Gr(C

d) is played by homogeneous flag bundles
π : Fr(C

d) → Gr(C
d). Using the twistor approach, one can try to reduce the

original “real” problem of constructing harmonic maps of compact Riemann sur-
facesM to Gr(C

d) to the “complex” problem of constructing pseudoholomorphic
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maps M → F r(C
d). In the case of the Riemann sphere M = CP

1 both problems
are, in fact, equivalent, as shown in [5]. A complete description of harmonic maps
CP

1 → Gr(C
d), i.e., harmonic spheres in Gr(C

d), was given by Wood in [17]
and reformulated in twistor terms in [6].

In the second part of the paper (Section 5) we switch to the infinite-dimensional
case and consider harmonic maps from compact Riemann surfaces to the Hilbert–
Schmidt Grassmannian GrHS(H) of a complex (separable) Hilbert space H , mod-
elled on the space L2(S1,C) of square integrable functions on the unit circle S1.
This Grassmannian consists of closed (infinite-dimensional) subspaces W in H ,
“differing not much” from the standard Hardy subspace H+ = H2 in L2(S1,C).
“Differing not much” means that the orthogonal projection of such a subspace
W to H+ is Fredholm, while its orthogonal projection to the orthogonal com-
plement H− := H⊥

+ is Hilbert–Schmidt. All subspaces W ∈ GrHS(H) are,
of course, infinite-dimensional, but they have a finite “virtual dimension”, given
by the Fredholm index of their projection to H+. Using this fact, we can con-
struct homogeneous “virtual” flag bundles F r(H) → GrHS(H), playing the role
of twistor bundles over the Grassmannian GrHS(H). Applying again the twistor
approach, we can construct harmonic maps M → GrHS(H) as projections of
pseudoholomorphic maps M → F r(H).

Solutions of the described infinite-dimensional Grassmann sigma-model in the
case M = CP

1 are, conjecturally, related to the Yang–Mills fields on R
4. This

conjecture is based on the Atiyah’s result, asserting that for a compact Lie group
G the moduli space of G-instantons on R

4 can be identified with the space of
(based) holomorphic maps from the Riemann sphere CP

1 into the loop space
ΩG. Motivated by this result, we can expect that the space of (based) harmonic
maps CP

1 → ΩG can be likewise identified with the moduli space of Yang–Mills
G-fields on R

4. Since the loop space ΩG can be isometrically embedded into the
Hilbert–Schmidt Grassmannian GrHS(H), we can construct harmonic spheres in
ΩG, as in the finite-dimensional case, by projecting pseudoholomorphic spheres
in virtual flag manifolds F r(H) to GrHS(H).

Brief content of the paper. We start by recalling basic properties of harmonic
maps of Riemannian manifolds in Section 2. In Section 3 we restrict to the
case of Grassmann manifolds Gr(C

d) and define homogeneous flag bundles over
Gr(C

d). In Section 4 a twistor construction of harmonic maps into Grassman-
nians, due to [6] and [5], is presented. In Section 6 we introduce the Hilbert–
Schmidt Grassmannian GrHS(H) and Grassmannians Gr(H) of virtual dimen-
sion r. The loop space ΩG can be isometrically embedded into GrHS(H), so
that harmonic maps ϕ : M → ΩG can be considered as harmonic maps into
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Grassmannians Gr(H). Harmonic maps ϕ : M → Gr(H) may be constructed as
projections of pseudoholomorphic maps ψ : M → F r(H) to virtual flag mani-
folds F r(H).

2. Harmonic Maps. General Properties

Let ϕ : (M,g) → (N,h) be a smooth map of a Riemannian manifold M with a
Riemannian metric g into a Riemannian manifold N with a Riemannian metric h.
We define the energy of the map ϕ as the Dirichlet integral

E(ϕ) =
1

2

∫
M

|dϕ(p)|2volg . (1)

The norm of the differential may be computed in local coordinates as follows.
Denote by (xi) local coordinates at p ∈ M and by (uα) local coordinates at
q = ϕ(p) ∈ N . Then

|dϕ(p)|2 =
∑
i,j

∑
α,β

gij ∂ϕ
α

∂xi

∂ϕβ

∂xj
hαβ

where ϕα = ϕα(x) are the components of ϕ, (gij) and (hαβ) are the metric
tensors of M and N respectively, (gij) is the inverse matrix of (gij) and volg is
the volume element of the metric g.

Definition 1. A smooth map ϕ : M → N is called harmonic if it is extremal
for the functional E(ϕ) with respect to all smooth variations of ϕ with compact
supports.

The Euler–Lagrange equation for the energy functional E(ϕ) is called otherwise
the harmonic map equation. In the local coordinates (xi) on M and (uα) on N ,
introduced above, it has the following form

∆Mϕ
γ +

∑
i,j

gij
∑
α,β

NΓγ
αβ(ϕ)

∂ϕα

∂xi

∂ϕβ

∂xj

= 0 (2)

where ∆M is the standard Laplace–Beltrami operator on M , given by

∆Mϕ
γ =

∑
i,j

gij

{
∂2ϕγ

∂xi∂xj

−
∑

k

MΓk
ij

∂ϕγ

∂xk

}
.
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Here, MΓk
ij denotes the Christoffel symbols of the Levi-Civita connection M∇ of

M and NΓγ
αβ are the Christoffel symbols of the Levi-Civita connection N∇ of N .

In the particular case N = R
n the equation (2) becomes linear and reduces to the

Laplace–Beltrami equation

∆Mϕ
γ = 0 , γ = 1, . . . , n

on the components of the map ϕ.

A non-trivial nonlinear example of harmonic maps is provided by the so called
SO(3)-model, arising in the theory of ferromagnets. In this example we consider
smooth maps ϕ : R

2 → S2 with finite energy E(ϕ) < ∞. The finite energy
condition implies that such maps should stabilize at infinity, i.e., ϕ(x) → ϕ0 for
|x| → ∞. Therefore, ϕ extends to a map

ϕ : S2 = R
2 ∪∞ −→ S2

which has a topological invariant, called the degree of the map ϕ

degϕ =

∫
S2

ϕ∗vol .

Here, vol is the normalized volume form on S2. It is useful to introduce here
complex coordinates in order to have better formulas. We denote by z = x1 + ix2

the complex coordinate on R
2 and by w the complex coordinate in the image

S2 \ {∞}, given by the stereographic projection.

Then the energy of the map ϕ = w(z) in these coordinates will be given by the
following formula

E(ϕ) = 2

∫
C

|∂zw|
2 + |∂z̄|

2

(1 + |w|2)2
|dz ∧ dz̄| (3)

while the degree of ϕ is computed, according to

degϕ =
1

2π

∫
C

|∂zw|
2 − |∂z̄ |

2

(1 + |w|2)2
|dz ∧ dz̄| . (4)

Comparing the last two formulas, we obtain an estimate of the energy from below

E(ϕ) ≥ 4π|degϕ| . (5)

It follows that the minimum of the energy E(ϕ) for a fixed k = deg ϕ is attained
on holomorphic functions w = ϕ(z) for k ≥ 0, and on antiholomorphic functions
w = ϕ(z) for k ≤ 0.
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Fixing the asymptotic value ϕ0 by the SO(3)-invariance (we set ϕ0 = 1), one can
write down the minima of E(ϕ) for k ≥ 0 in the form

w = ϕ(z) =
k∏

j=1

z − aj

z − bj

where aj, bj are arbitrary complex numbers. In particular, the space of minima
for a fixed k is parameterized by 4k + 2 real parameters.

If we compare the harmonic map equation with the Yang–Mills duality equations
on R

4, then the holomorphic (respectively, anti-holomorphic) maps ϕ : R
2∪∞ →

S2 will correspond to the instanton (respectively, anti-instanton) solutions of the
duality equations. We shall see later that this correspondence can be established
on a more deep level.

It may be shown that in the case of SO(3)-model the energy functional E(ϕ) has
no critical points, except for the described local minima. In other words, there
are no other harmonic maps ϕ : R

2 ∪∞ → S2, apart from the holomorphic and
anti-holomorphic ones. We note that the holomorphic and anti-holomorphic maps
yield the local minima of the energy E(ϕ) also for smooth maps between general
complex manifolds.

Namely, suppose that our Riemannian manifold (M,g) is provided with a com-
plex (or almost complex) structure MJ , compatible with the Riemannian metric
g, and, likewise, the target manifold (N,h) has a complex (or almost complex)
structure NJ , compatible with the Riemannian metric h.

Definition 2. A smooth map ϕ : M → N is called (pseudo)holomorphic if and
only if the tangent map ϕ∗ : TM → TN commutes with the (almost) complex
structures on M and N , i.e.,

ϕ∗ ◦
MJ = NJ ◦ ϕ∗

and it is called anti-(pseudo)holomorphic if and only if ϕ∗ anti-commutes with the
(almost) complex structures on M and N .

The complexified tangent bundle T CM = TM ⊗ C can be decomposed into the
direct sum

TCM = T 1,0M ⊕ T 0,1M

of subbundles with fibres, given by the (±i)-eigenspaces of the almost complex
structure operator MJ . If we extend the tangent map ϕ∗ complex linearly to the
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complexified tangent bundles, then we obtain a map ϕ∗ : TCM → TCN , which,
in accordance with the above decomposition, splits into the sum of four operators

∂′ϕ : T 1,0M → T 1,0N, ∂′′ϕ : T 0,1M → T 1,0N (6)

∂′ϕ̄ = ∂′′ϕ : T 1,0M → T 0,1N, ∂′′ϕ̄ = ∂′ϕ : T 0,1M → T 0,1N . (7)

The introduced operators may be considered as sections of the bundle (T ∗M)C ⊗
ϕ−1(TCN). In these notations a map ϕ is pseudoholomorphic (respectively anti-
pseudoholomorphic) if and only if ∂ ′′ϕ = 0 (respectively ∂ ′ϕ = 0).

Generalizing the phenomena, observed for the SO(3)-model, it may be proved (cf.
[9]) that for the (almost) Kähler manifolds the holomorphic and anti-holomorphic
maps ϕ : M → N always realize the local minima of the energy functional
E(ϕ) but, in general, there exist other critical points of E(ϕ), i.e., non-minimal
harmonic maps.

We restrict now to the case, when M is a compact Riemann surface. Denote by
∇ the connection on the bundle ϕ−1(TCN) over M , induced by the Levi–Civita
connection N∇ on the Riemannian manifold N . If z is a local complex coordinate
on M , we set

δϕ = ϕ∗(∂/∂z) , δ̄ϕ = ϕ∗(∂/∂z̄)

where δϕ and δ̄ϕ are considered as sections of the bundle ϕ−1(TCN). (More
generally, we denote by δ = ∇∂/∂z , δ̄ = ∇∂/∂z̄ the components of the connection
∇.) The differential dϕ is represented in the form

dϕ = dz ⊗ δϕ + dz̄ ⊗ δ̄ϕ

and the harmonic map equation (2) may be written in the form

δ̄δϕ =
(
∇∂/∂z̄ϕ∗

)( ∂

∂z

)
= 0 (8)

or, equivalently, as

δδ̄ϕ =
(
∇∂/∂zϕ∗

)( ∂

∂z̄

)
= 0 .

If N is a Kähler manifold, then, according to (6)

δϕ = ∂′ϕ+ ∂′′ϕ , δ̄ϕ = ∂′′ϕ+ ∂′ϕ

and the harmonic map equation for ϕ takes the form

δ̄∂′ϕ = 0 (9)
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or equivalently
δ∂′′ϕ = 0 .

According to the Koszul–Malgrange theorem (cf. [11]), any complex vector bun-
dle E over a Riemann surface M with a connection ∇ has a unique complex
structure J , such that E → M is a holomorphic vector bundle with respect to J ,
for which the ∂̄J -operator coincides with the (0, 1)-component ∇0,1 of the con-
nection ∇. This complex structure J is called the KM-structure.

In its terms, the first of the harmonicity conditions (8) means that δϕ is a holo-
morphic section of the bundle ϕ−1(TCN) with respect to the KM-structure on
ϕ−1(TCN), induced by the connection N∇. In the same way, the first of condi-
tions (9) means that ∂ ′ϕ is a holomorphic section of the bundle ϕ−1(T 1,0N).

3. Flag Manifolds and Flag Bundles

To define the flag manifolds in C
d, we fix a decomposition of d into the sum of

natural numbers d = r1 + · · · + rn and denote r := (r1, . . . , rn).

Definition 3. A flag manifold F r(C
d) of type r in C

d consists of collections E =
(E1, . . . , En) of mutually orthogonal linear subspaces Ei of dimension ri in C

d

such that C
d = E1 ⊕ · · · ⊕En.

By this definition, a flag is a collection of mutually orthogonal subspaces, rather
than a nested sequence of linear subspaces, associated with the standard image
of a flag. However, one can easily produce a standard flag (V1, . . . , Vn) in C

d

with V1 ⊂ · · · ⊂ Vn = C
d from our collection E = (E1, . . . , En), setting Vi :=

E1 ⊕ · · · ⊕Ei.

In particular, for r = (r, d − r) the flag manifold

F(r,d−r)(C
d) = {E = (E,E⊥) ; dimE = r} = Gr(C

d)

coincides with the Grassmann manifold of r-dimensional subspaces in C
d.

We have the following homogeneous representation of the flag manifold

F r(C
d) = U(d)/ U(r1) × · · · × U(rn) .

There is also another, complex homogeneous representation for this manifold

F r(C
d) = GL(d,C)/Pr
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where P r is the parabolic subgroup of blockwise upper-triangular matrices of the
form ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ r1 ∗ ∗ . . . ∗

r1

0 ∗ r2 ∗ . . . ∗

r2

...
. . .

...
rn

0 0 0 . . . rn ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with blocks of dimensions ri × ri in the boxes.

These representations imply that F r(C
d) has a natural complex structure, which

we denote by J1. Moreover, F r(C
d), provided with this complex structure, is a

compact Kähler manifold.

In the particular case r = (r,N − r) we obtain well known homogeneous repre-
sentations for the Grassmann manifold

Gr(C
d) = U(d)/U(r) × U(d− r) = GL(d,C)/P(r,d−r) .

We construct now a series of homogeneous flag bundles over the Grassmann man-
ifold Gr(C

c), which play an important role in the sequel. Let F = F r(C
N ) be

the flag manifold of type r = (r1, . . . , rn) in C
d with the homogeneous represen-

tation
F = F r(C

N ) = U(d)/U(r1) × · · · × U(rn) .

On the Lie algebra level this representation corresponds to the decomposition of
the complexified Lie algebra uC(d) into the direct orthogonal sum

uC(d) ∼= gl(d,C) ∼= Cd ⊗ C
d ∼=

(
Ē1 ⊕ · · · ⊕ Ēn

)
⊗ (E1 ⊕ · · · ⊕En)

∼=
[
uC(r1) ⊕ · · · ⊕ uC(rn)

]
⊕
[⊕

i<j

(
ĒiEj ⊕ ĒjEi

) ]
. (10)

In the latter formula we have omitted the symbol of the tensor product in the
expression ĒiEj and its conjugate in order to make the formulas more visible.
The same rule will be applied in the sequel.
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The above decomposition of the Lie algebra uC(d) implies that the complexified
tangent space TC

o F at the origin o ∈ F coincides with

TC
o F =

⊕
i<j

DC
ij :=

⊕
i<j

(
ĒiEj ⊕ ĒjEi

)
.

Every component Dij may be provided with two different complex structures: for
one of them its (1, 0)-subspace coincides with ĒiEj , for another with ĒjEi. By
the Borel–Hirzebruch theorem [2], any U(d)-invariant almost complex structure
J on F is determined by the choice of one of these two complex structures on
every Dij . The almost complex structure J 1, for which

T 1,0
o F =

⊕
i<j

ĒiEj

is called canonical.

Fix an ordered subset σ ⊂ {1, . . . , n}. Denote by σc the complement of σ in
{1, . . . , n} and set r :=

∑
i∈σ ri. We can associate with any of such subsets σ a

homogeneous bundle

πσ : F r(C
N ) =

U(d)

U(r1) × . . .× U(rn)
−→

U(d)

U(r) × U(d− r)
= Gr(C

d) (11)

by assigning: (E1, . . . , En) 	−→ E =
⊕

i∈σ Ei.

The complexified tangent bundle T CF r(C
N ) is decomposed into the direct sum

of vertical and horizontal subbundles. Namely, the vertical subspace at the origin
coincides with

⊕
i,j

DC
ij , where i < j and either i, j ∈ σ, or i, j ∈ σc. Respectively,

the horizontal subspace at the origin is equal to
⊕
i,j

DC
ij , where i < j and either

i ∈ σ, j ∈ σc, or i ∈ σc, j ∈ σ.

We introduce, along with the canonical complex structure J 1, a new U(d)-invariant
almost complex structure J2 on F r(C

N ), by setting it equal to J2 = J1 on hor-
izontal tangent vectors and J 2 = −J1 on vertical tangent vectors. Note that
the constructed homogeneous bundle πσ is not, generally speaking, holomorphic
with respect to both almost complex structures. Moreover, the almost complex
structure J2 is never integrable. However, it turns out that precisely this complex
structure is related to harmonic maps.
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4. Twistor Construction of Harmonic Maps into the
Grassmannian Gr(C

d)

Recall a general definition of the twistor bundle.

Definition 4. Let N be a Riemannian manifold and Z is an almost complex man-
ifold. A smooth bundle π : Z → N is called the twistor bundle, if for any pseudo-
holomorphic map ψ : M → Z of any Riemann surface M into the manifold Z its
projection ϕ = π ◦ ψ : M → N is a harmonic map.

Using the twistor bundle π : Z → N , one can effectively construct harmonic
maps M → N by projecting pseudoholomorphic maps M → Z to N . A gen-
eral theory of twistor bundles is presented in [7], here we restrict to the case of
Grassmann manifolds. We’ll show that the homogeneous flag bundles πσ, con-
structed in the previous Section, are, in fact, twistor bundles in the sense of the
above definition.

Let M be a Riemann surface. Denote by M × C
d the trivial bundle M × C

d →
M , provided with the standard Hermitian metric on C

d. Any subbundle E ⊂
M × C

d of rank r defines a map ϕE : M −→ Gr(C
d) by setting: ϕE(p) :=

the fibre Ep at p ∈M . Conversely, any map ϕ : M → Gr(C
d) defines a subbun-

dle E ⊂M × C
d of rank r.

Consider a smooth map of a Riemann surface M into the Grassmannian Gr(C
d).

Denote by π and π⊥ the orthogonal projections of M ×C
d onto the subbundle E

and its orthogonal complement E⊥. The bundle E is provided with the complex
KM-structure, which is determined in a local chart on M with a local coordinate
z by the ∂̄-operator

∂′′E = π ◦
∂

∂z
◦ π .

The inverse image ϕ−1
E (TCGr(C

d)) of the complexified tangent bundle of the
Grassmannian under the map ϕE admits a decomposition

ϕ−1
E (TCGr(C

d)) ∼= ĒE⊥ ⊕ E⊥E .

In terms of this decomposition the differential of ϕE has local components

A′
E := π⊥ ◦

∂

∂z
◦ π , A′′

E := π⊥ ◦
∂

∂z̄
◦ π .

(In the sequel we sometimes omit the symbol ◦ to simplify the formulas.) In
particular, a bundle E ⊂M ×C

d is holomorphic ⇐⇒ A′′
E = 0, and in this case
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the complex KM-structure on E coincides with the complex structure, induced
from M × C

d. Then

0 = π⊥
[
∂

∂z
(π + π⊥)

∂

∂z̄
−

∂

∂z̄
(π + π⊥)

∂

∂z

]
π

= A′
E∂

′′
E + ∂′

E⊥A
′′
E −A′′

E∂
′
E − ∂′′

E⊥A
′
E = A′

E∂
′′
E − ∂′′

E⊥A
′
E .

(12)

Otherwise speaking, the bundle A′
E ∈ Hom(E,E⊥) is holomorphic with respect

to the KM-structures on E and E⊥.

In general, we call a bundle E ⊂M × C
d harmonic if

A′
E ◦ ∂′′E = ∂′′

E⊥ ◦A′
E .

The harmonicity of E is equivalent to the harmonicity of the map ϕE : M →
Gr(C

d) (cf. [6]). Note also that a bundle E is harmonic ⇐⇒ its orthogonal
complement E⊥ is harmonic.

In a more general way, consider an arbitrary collection E = (E1, . . . , En) of
mutually orthogonal subbundles Ei in M ×C

d of rank ri with r1 + . . .+ rn = d,
which generates a decomposition of M × C

d into the direct orthogonal sum

M × C
d =

n⊕
i=1

Ei .

We call such a collection of subbundles E = (E1, . . . , En) the moving flag on M .
It determines, in the same way as before, a map ψE : M → Fr1...rn

= F by as-
signing to a point p ∈M the flag, defined by the subspaces (E1,p, . . . , En,p). Con-
versely, any smooth mapψ : M → F determines a moving flag E = (E1, . . . , En),
where Ei = ψ−1Ti is the pull-back of a natural tautological bundle Ti → Fr: the
fibre of Ti at E ∈ F coincides, by definition, with the subspace Ei for 1 ≤ i ≤ n.

As in the Grassmann case, the differential ψE is determined locally by the com-
ponents

A′
ij = πi ◦

∂

∂z
◦ πj , A′′

ij = πi ◦
∂

∂z̄
◦ πj

where πi : M × C
d → Ei is the orthogonal projection.

Theorem 5. (Burstall–Salamon [5]) The homogeneous flag bundle

πσ : (F r(C
d), J2) −→ Gr(C

d)

defined by (11) (cf. Section 3), is a twistor bundle, i.e., for any J 2-holomorphic
map ψ : M → F r(C

d) its projection ϕ = πσ ◦ ψ : M → Gr(C
d) is harmonic.
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To prove the Theorem, it is sufficient to show that for any moving flag E =
(E1, . . . , En), corresponding to a J2-holomorphic map ψE : M → F , the bundle
E :=

⊕
i∈σ Ei is harmonic. The holomorphicity of the map ψE means that

A′
ij = 0 = A′′

ji , if

{
i > j and i, j ∈ σ or i, j ∈ σc

i < j and i ∈ σ, j ∈ σc or i ∈ σc, j ∈ σ .

If k < l and k ∈ σ, l ∈ σc then, as in the Grassmann case, we will have

0 =πl

∑
i

[
∂

∂z̄
πi

∂

∂z
−

∂

∂z
πi

∂

∂z̄

]
πk =

∑
i

(A′′
liA

′
ik −A′

liA
′′
ik)

=
∑
i∈σc

A′′
liA

′
ik −

∑
i∈σ

A′
liA

′′
ik =

(∑
i∈σc

A′′
li

)(∑
i∈σc

A′
ik

)
−
(∑

i∈σ

A′
li

)(∑
i∈σ

A′′
ik

)
= πl

(
∂′′

E⊥ ◦A′
E −A′

E ◦ ∂′′E
)
πk .

(13)

Analogous relations are satisfied for k > l, which implies that A′
E ◦ ∂′′E = ∂′′

E⊥
◦

A′
E , i.e., the bundle E is harmonic.

In the case when M is the Riemann sphere CP
1, it’s possible to prove a converse

of Theorem 5, which is based on the Harder–Narasimhan filtration theorem for
holomorphic vector bundles over CP

1.

Suppose thatE is a holomorphic vector bundle of rank r over CP
1, identified with

a subbundle of the trivial bundle CP
1 ×C

d → CP
1. Then the Harder–Narasimhan

theorem ( [10]) asserts that there exists a filtration of E by holomorphic subbun-
dles

0 = B0 ⊂ B1 ⊂ . . . ⊂ Bk = E

having quotients of the form

Bi/Bi−1
∼= Lβi ⊕ . . .⊕ Lβi︸ ︷︷ ︸

bi times

where Lβi is the βi-th power of the standard Hopf line bundle L over CP
1 and

β1 > · · · > βk. The subbundle Bi can be defined as the smallest holomorphic
subbundle of E, containing the images of all meromorphic sections of E with
divisors of degree, greater or equal to βi. Using the Hermitian metric on C

d, we
can identify the quotient Bi/Bi−1 with the orthogonal complement Bi of Bi−1 in
Bi.
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We can construct an analogous filtration for the orthogonal complement E⊥ of E
in CP

1 ×C
d → CP

1

0 = C0 ⊂ C1 ⊂ . . . ⊂ Cl = E⊥

with quotients of the form

Ci/ Ci−1
∼= Lγi ⊕ . . . ⊕ Lγi︸ ︷︷ ︸

ci times

and γ1 > · · · > γl. We identify again the quotient Ci/Ci−1 with the orthogonal
complement Ci of Ci−1 in Ci.

We collect now the subbundles B1, . . . , Bk, C1, . . . , Cl into a single collection of
n = k + l subbundles, denoted by E1, . . . , En, so that each of Ei is isomorphic
to the direct sum of ci copies of Lδi and δ1 ≤ · · · ≤ δn. (If for some j we
have δj = δj+1, we arrange the associated subbundles Ej , Ej+1 in such a way
that Ej corresponds to some Bp and Ej+1 to some Cq.) We introduce a subset
σ ⊂ {1, 2, . . . , n}, uniquely defined by the equalities

E =
⊕
i∈σ

Ei , E⊥ =
⊕
i∈σc

Ei .

We are ready to prove now the converse of Theorem 5.

Theorem 6. (Burstall [3]) Any harmonic map ϕ : CP
1 → Gr(C

d) can be ob-
tained as the projection of a J 2-holomorphic map ψ : CP

1 → Fr(C
d) with

respect to some twistor bundle πσ : Fr(C
d) → Gr(C

d).

To prove the Theorem, we associate, as above, with a harmonic map ϕ : CP
1 →

Gr(C
d) a harmonic subbundle E of rank r in the trivial bundle CP

1 ×C
d →

CP
1. Using the Harder–Narasimhan filtration theorem, we construct, as above, a

moving flag E := (E1, . . . , En) and fix a subset σ ⊂ {1, 2, . . . , n} such that

E =
⊕
i∈σ

Ei , E⊥ =
⊕
i∈σc

Ei .

Denote by ψE : M → F the map, associated with the moving flag E . We have to
prove that this map is J2-holomorphic. In other words, we should prove that

A′
ij = 0 = A′′

ji , if

{
i > j and i, j ∈ σ or i, j ∈ σc

i < j and i ∈ σ, j ∈ σc or i ∈ σc, j ∈ σ .
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Suppose first that i > j and i, j ∈ σ. Then δi > δj and the subbundle Ei is
contained in some holomorphic subbundle Bp of E, orthogonal to Ej . It follows
that A′′

ji = 0, which implies also that A′
ij = 0. The case i, j ∈ σc is treated in a

similar way.

Suppose next that i < j and i ∈ σc, j ∈ σ. Then Ej = Bp for some Bp ⊂ Bp.
Since E is harmonic, it follows that the differential dz ⊗ A′

E is holomorphic (cf.
(8), (9) in Section 2). Here,A′

E is considered as a section of the holomorphic bun-
dle Hom(E,E⊥). Since the image A′

E(Bp) is spanned by meromorphic sections
of E⊥ with divisors of degree, greater than δj + 1, we have

A′
E(Ej) ⊂

⊕
q∈σc, q>j

Eq .

Hence, A′
ij = 0 for i < j, implying also that A′′

j i = 0.The case i ∈ σ, j ∈ σc is
treated in a similar way, using the fact that the subbundle E⊥ is harmonic along
with E.

By the above Theorem 6 the problem of description of harmonic spheres in the
Grassmann manifold Gr(C

d) reduces to the problem of description of J 2-holo-
morphic spheres in flag manifolds F r(C

d). The latter problem was solved by
Wood in [17] (cf. also [5]). The Wood’s method can be roughly described as
follows. Consider a moving flag E = (E1, . . . , En), corresponding to a smooth
map ψ : M → Fr(C

d). If the original map ψ was J1-holomorphic, i.e., holo-
morphic with respect to the canonical complex structure on F r(C

d), then the sub-
bundles E1, . . . , En will be holomorphic with respect to the pulled-back complex
structure Jψ := ψ∗(J1) on M . Suppose that we know already how to construct
J1-holomorphic maps ψ : M → F r(C

d). Then one can convert J1-holomorphic
maps ψ : M → Fr(C

d) into J2-holomorphic maps by replacing some of the
holomorphic subbundles Ei by anti-holomorphic subbundles Ēi (and vice versa
for the orthogonal complements E⊥

i of Ei).

5. Harmonic Maps into the Hilbert–Schmidt Grassmannian

We switch now to the case of infinite-dimensional Grassmann σ-models and try to
extend to this case the methods, developed for finite-dimensional Grassmanians
in the previous sections.

We start from the definition of the Hilbert–Schmidt Grassmannian GrHS(H) of a
complex (separable) Hilbert space H . We take for a model of this Hilbert space
the space L2

0(S
1,C) of square integrable complex-valued functions on the circle

S1 with the zero average over S1.
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Suppose that H has a polarization, i.e., a decomposition

H = H+ ⊕H− (14)

into the direct orthogonal sum of infinite-dimensional closed subspaces. In the
case of H = L2

0(S
1,C) one can take for such subspaces

H± = {γ ∈ H ; γ(z) =
∑
±k>0

γkz
k} .

Any bounded linear operator A ∈ L(H) with respect to the polarization (14) can
be written in the block form

A =

(
a b
c d

)
=

(
a : H+ → H+ , b : H− → H+

c : H+ → H− , d : H− → H−

)
.

Denote by GL(H) the group of linear bounded operators on H , having a bounded
inverse, and introduce the Hilbert–Schmidt group GLHS(H), consisting of opera-
tors A ∈ GL(H), for which the “off-diagonal” terms b and c are Hilbert–Schmidt
operators (briefly: HS-operators). In other words, the group GLHS(H) consists
of operators A ∈ GL(H), for which the “off-diagonal” terms b and c are “small”
with respect to the “diagonal” terms a and d. We denote also by UHS(H) the
intersection of GLHS(H) with the group U(H) of unitary operators in H .

As in the finite-dimensional situation, there is a Grassmann manifold GrHS(H),
called the Hilbert–Schmidt Grassmannian, related to the group GLHS(H).

Definition 7. The Hilbert–Schmidt Grassmannian GrHS(H) is the set of all closed
subspaces W ⊂ H such that the orthogonal projection pr+ : W → H+ is a
Fredholm operator, and the orthogonal projection pr− : W → H− is a Hilbert–
Schmidt operator. Equivalently a subspace W ∈ GrHS(H) if and only if it coin-
cides with the image of a linear operator w : H+ → H such that w+ := pr+ ◦ w
is a Fredholm operator, and w− := pr− ◦ w is a Hilbert–Schmidt operator.

In other words, the Hilbert–Schmidt Grassmannian GrHS(H) consists of the sub-
spaces W ⊂ H , which differ “little” from the subspace H+ in the sense that
the projection pr+ : W → H+ is “close” to an isomorphism and the projection
pr− : W → H− is “small”.

We have the following homogeneous space representation of GrHS(H)

GrHS(H) = UHS(H)/ U(H+) × U(H−) .
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Since UHS(H) acts transitively on the Grassmannian GrHS(H), we can construct
an UHS(H)-invariant Kähler metric on GrHS(H) from an inner product on the tan-
gent space TH+ GrHS(H) at the originH+ ∈ GrHS(H), invariant under the action
of the isotropy subgroup U(H+)×U(H−). The tangent space TH+ GrHS(H) coin-
cides with the space of Hilbert–Schmidt operators HS(H+,H−), and the invariant
inner product on it is given by the formula

(A,B) 	−→ Re
{

tr(AB†)
}
, A,B ∈ HS(H+,H−) .

Note that the imaginary part of the complex inner product tr(AB †) determines a
non-degenerate invariant two-form on TH+ GrHS(H), which extends to an UHS(H)-
invariant symplectic structure on the manifold GrHS(H). Hence, we have a Kähler
structure on GrHS(H), which makes it a Kähler Hilbert manifold.

The evident difficulty, encountered when trying to extend the techniques, devel-
oped for the finite-dimensional Grassmanians, to the case of GrHS(H), is that the
subspaces W ∈ GrHS(H) are infinite-dimensional. In this sense, they all have the
same infinite “dimension”, which does not allow to compare them. However, there
is a substitution of the notion of dimension, which is more helpful for the study of
such subspaces, namely, we can compare them by their “virtual dimension”.

In more detail, the manifold GrHS(H) has a countable number of connected com-
ponents, numerated by the index of the Fredholm operator w+ for a subspace
W ∈ GrHS(H), coinciding with the image of a linear operator w : H+ → H . We
say that a subspace W has the virtual dimension d, if the index of w+ is equal to
d. Denote by Gd(H) the component of GrHS(H), consisting of subspaces W of
virtual dimension d. Then we have the following decomposition of GrHS(H) into
the disjoint union of its connected components Gd(H)

GrHS(H) =
⋃
d

Gd(H) . (15)

Due to this decomposition, the study of harmonic maps of Riemann surfaces
into GrHS(H) is reduced to the study of harmonic maps into the Grassmanni-
ans Gd(H) of virtual dimension d, which may be carried on along the same lines,
as in the case of the Grassmann manifold Gr(C

d).

As in the latter case, for any decomposition d = r1 + · · · + rn of d into the
sum of integers we define the corresponding virtual flag manifold F = Fr(H) of
type r = (r1, . . . , rn), consisting of collections W = (W1, . . . ,Wn) of mutually
orthogonal subspaces Wi ⊂ H of virtual dimension ri. Next, for any ordered
subset σ ⊂ {1, . . . , n} we set r :=

∑
i∈σ ri and construct a homogeneous flag
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bundle
π : Fr(H) −→ Gr(H)

by assigning
(W1, . . . ,Wn) 	−→W =

⊕
Wi .

We introduce the almost complex structures J 1 and J2 on the flag manifold
Fr(H), as in the finite-dimensional situation. We have the following assertion,
analogous to the finite-dimensional case.

Theorem 8. The homogeneous bundle π : (F r(H), J2) → Gr(H) is a twistor
bundle, i.e., for any J2-holomorphic map ψ : M → F r(H) its projection ϕ =
π ◦ ψ : M → Gr(H) is a harmonic map.

The proof of this Theorem is similar to the proof of Theorem 5. Due to Theorem 8,
one can produce harmonic maps M → Gr(H) by projecting J2-holomorphic
maps M → Fr(H) to Gr(H).

There is also an analogue of Theorem 6, valid for harmonic maps ϕ : CP
1 →

Gr(H).

Theorem 9. Any harmonic map ϕ : CP
1 → Gr(H) can be obtained as the

projection of a J2-holomorphic map ψ : CP
1 → Fr(H) with respect to some

twistor bundle πσ : Fr(H) → Gr(H).

Theorem 9 can be proved in the same way, as Theorem 6, if one uses, instead
of the Birkhoff–Grothendieck classification theorem for holomorphic vector bun-
dles over CP

1 (implying the Harder–Narasimhan filtration theorem) its infinite-
dimensional analogue. This analogue, namely, the classification theorem for holo-
morphic vector bundles over CP

1 with the structure group, consisting of invertible
operators of the form I + compact, is proved in [15, 16].

6. Harmonic Maps into Loop Spaces

We can apply the above results to the study of harmonic maps into the loop spaces
ΩG of compact Lie groups G by embedding these loop spaces into the Hilbert–
Schmidt Grassmannian. At the end of this Section we explain, why this case is
particularly interesting for us.

Denote by LG = C∞(S1, G) the loop group of G, i.e., the space of C∞-smooth
maps S1 → G, where S1 is identified with the unit circle in C. It is a Lie–Frechet
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group with respect to the pointwise multiplication (cf. [14]), modelled on the loop
algebra Lg = C∞(S1, g), where g is the Lie algebra of the group G. The loop
space ΩG of the group G (or the basic loop space) is the homogeneous space of
the group LG of the form

ΩG = LG/G (16)

where the group G in the denominator is identified with the subgroup of constant
maps S1 → g0 ∈ G. Note that the loop space ΩG may be identified with the
space of based maps in LG, sending 1 ∈ S1 to the unit e of the group G, and so
inherits a Frechet manifold structure from the loop group LG.

The loop group LG acts on ΩG by left translations. Denote by o the origin in
ΩG, represented by the class of constant maps: o = [G]. The tangent space of
ΩG at the origin o is identified with the space Ωg = Lg/g. We represent vectors
of the tangent space To(ΩG) by their Fourier series: an arbitrary vector ξ of the
complexified tangent space T C

o (ΩG) = To(ΩG)⊗C has a Fourier decomposition
of the form

ξ =
∑
k �=0

ξke
ikθ

where the coefficients ξk belong to the complexified Lie algebra gC. A vector
ξ ∈ To(ΩG) ⇐⇒ ξ−k = ξ̄k.

The loop space ΩG has a natural symplectic structure, invariant under the action
of the loop group LG on ΩG. Due to the invariance, it’s sufficient to define its
restriction to To(ΩG) = Ωg. For that we fix an invariant inner product < · , · >
on the Lie algebra g and consider a two-form ω on Lg of the form

ω(ξ, η) =
1

2π

∫ 2π

0
〈ξ(θ), η′(θ)〉dθ, ξ, η ∈ Lg .

This formula defines a left-invariant closed two-form on LG, subject to the condi-
tion: ω(ξ, η) = 0 if and only if at least one of the maps ξ, η is constant. Hence it
can be pushed down to a left-invariant two-form on Ωg, which is non-degenerate
and closed, and so generates a symplectic structure on ΩG.

An invariant complex structure on ΩG is provided by the “complex” representa-
tion of ΩG = LG/G as a homogeneous space of the complex Lie–Frechet group
LGC = C∞(S1, GC), where GC is the complexification of the Lie group G. This
representation has the form (cf. [12] and also [14])

ΩG = LGC/L+GC (17)
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where L+GC = Hol(∆, GC) is a subgroup of LGC, consisting of the maps S1 →
GC, which can be extended smoothly to holomorphic maps of the disc ∆ :=
{|z| < 1} → GC.

The invariant complex structure J 1 on ΩG, induced by the complex representation
(17), has a simple meaning in terms of Fourier series. Namely, the restriction of
J1 to the complexified tangent space T C

o (ΩG) = ΩgC at the origin is given by the
following formula:

ξ =
∑
k �=0

ξke
ikθ 	−→ J1ξ = −i

∑
k>0

ξke
ikθ + i

∑
k<0

ξke
ikθ.

The introduced symplectic and complex structures on ΩG are compatible in the
sense that ω(J1ξ, J1η) = ω(ξ, η) for all ξ, η ∈ To(ΩG) and the symmetric form

g1(ξ, η) := ω(ξ, J1η) on To(ΩG) × To(ΩG)

is positive definite. So this form extends to an invariant Riemannian metric g1 on
ΩG (due to the invariance of ω and J 1). In other words, the loop space ΩG is a
Kähler Frechet manifold, provided with the Kähler metric g1.

We shall study harmonic maps from Riemann surfaces M to the loop spaces
ΩG, by embedding isometrically ΩG into the Hilbert–Schmidt Grassmannian
GrHS(H).

Assume that G is a matrix group, i.e., G is represented as a subgroup of U(n) for
some n. Then we have an isometric embedding

LG −→ UHS(H)

given by the map

γ ∈ LG = C∞(S1, G) 	−→Mγ ∈ UHS(H)

where the multiplication operator Mγ is defined by:

f ∈ H = L2
0(S

1,Cn) 	−→ (Mγf)(z) := γ(z)f(z) for z ∈ S1 .

It is easy to check that Mγ ∈ UHS(H) if γ is smooth ( [12]).

The constructed embedding of the loop group LG into UHS(H) induces an iso-
metric embedding

ΩG −→ GrHS(H) .

So we can consider harmonic maps M → ΩG as taking values in GrHS(H), thus
reducing their study to the study of harmonic maps M → GrHS(H), considered
above.
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The motivation for the study of harmonic maps M → ΩG comes from a result of
Atiyah [1], relating G-instantons on R

4 with holomorphic maps CP
1 → ΩG, i.e.,

holomorphic spheres in ΩG. More precisely, it is proved in [1] that there is the
following one to one correspondence{moduli space of G-

instantons on R
4

}
←→

{
based holomorphic maps
f : CP

1 → ΩG

}
where a holomorphic map f : CP

1 → ΩG is called based if it sends the infinity
∞ ∈ CP

1 to the origin o ∈ ΩG.

Motivated by this result, we can conjecture that there is also a one to one corre-
spondence{based harmonic maps

h : CP
1 → ΩG

}
←→

{
moduli space of solutions of
Yang–Mills G-equations on R

4

}
·
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