

JOURNAL OF Geometry and Symmetry in Physics

GRASSMANNIAN SIGMA-MODELS

ARMEN SERGEEV

Communicated by Martin Schlichenmaier

Abstract. We study solutions of Grassmannian sigma-model both in finitedimensional and infinite-dimensional settings. Mathematically, such solutions are described by harmonic maps from the Riemann sphere \mathbb{CP}^1 or, more generally, compact Riemann surfaces to Grassmannians. We describe first how to construct harmonic maps from compact Riemann surfaces to the Grassmann manifold $G_r(\mathbb{C}^d)$, using the twistor approach. Then we switch to the infinite-dimensional setting and consider harmonic maps from compact Riemann surfaces to the Hilbert– Schmidt Grassmannian $\operatorname{Gr}_{HS}(H)$ of a complex Hilbert space H. Solutions of this infinite-dimensional sigma-model are, conjecturally, related to Yang–Mills fields on \mathbb{R}^4 .

1. Introduction

In this paper we describe classical solutions of Grassmannian sigma-models in finite-dimensional and infinite-dimensional settings. The study of such solutions in the finite-dimensional case was initiated by physicists (cf. e.g., [4,8,13]). Mathematically, sigma-model solutions correspond to harmonic maps from compact Riemann surfaces to Grassmannians $G_r(\mathbb{C}^d)$.

In the first part of this paper (Sections 2, 3 and 4) we explain how to construct such maps, using the twistor approach. The main idea of this approach, when applied to the construction of harmonic maps from a Riemann surface M to a given Riemannian manifold N, is to construct a certain twistor bundle $\pi : Z \to N$ over N, which has the following property. The twistor space Z is an almost complex manifold such that for any pseudoholomorphic map $\psi : M \to Z$ its projection $\varphi := \pi \circ \psi$ to N is a harmonic map $\varphi : M \to N$. In our case $N = G_r(\mathbb{C}^d)$ and the role of the twistor bundle over $G_r(\mathbb{C}^d)$ is played by homogeneous flag bundles $\pi : \mathcal{F}_r(\mathbb{C}^d) \to G_r(\mathbb{C}^d)$. Using the twistor approach, one can try to reduce the original "real" problem of constructing harmonic maps of compact Riemann surfaces M to $G_r(\mathbb{C}^d)$ to the "complex" problem of constructing pseudoholomorphic maps $M \to \mathcal{F}_{\mathbf{r}}(\mathbb{C}^d)$. In the case of the Riemann sphere $M = \mathbb{CP}^1$ both problems are, in fact, equivalent, as shown in [5]. A complete description of harmonic maps $\mathbb{CP}^1 \to G_r(\mathbb{C}^d)$, i.e., harmonic spheres in $G_r(\mathbb{C}^d)$, was given by Wood in [17] and reformulated in twistor terms in [6].

In the second part of the paper (Section 5) we switch to the infinite-dimensional case and consider harmonic maps from compact Riemann surfaces to the Hilbert–Schmidt Grassmannian $\operatorname{Gr}_{\mathrm{HS}}(H)$ of a complex (separable) Hilbert space H, modelled on the space $L^2(S^1, \mathbb{C})$ of square integrable functions on the unit circle S^1 . This Grassmannian consists of closed (infinite-dimensional) subspaces W in H, "differing not much" from the standard Hardy subspace $H_+ = H^2$ in $L^2(S^1, \mathbb{C})$. "Differing not much" means that the orthogonal projection of such a subspace W to H_+ is Fredholm, while its orthogonal projection to the orthogonal complement $H_- := H_+^{\perp}$ is Hilbert–Schmidt. All subspaces $W \in \operatorname{Gr}_{\mathrm{HS}}(H)$ are, of course, infinite-dimensional, but they have a finite "virtual dimension", given by the Fredholm index of their projection to H_+ . Using this fact, we can construct homogeneous "virtual" flag bundles $\mathcal{F}_{\mathbf{r}}(H) \to \operatorname{Gr}_{\mathrm{HS}}(H)$, playing the role of twistor bundles over the Grassmannian $\operatorname{Gr}_{\mathrm{HS}}(H)$. Applying again the twistor approach, we can construct harmonic maps $M \to \operatorname{Gr}_{\mathrm{HS}}(H)$.

Solutions of the described infinite-dimensional Grassmann sigma-model in the case $M = \mathbb{CP}^1$ are, conjecturally, related to the Yang–Mills fields on \mathbb{R}^4 . This conjecture is based on the Atiyah's result, asserting that for a compact Lie group G the moduli space of G-instantons on \mathbb{R}^4 can be identified with the space of (based) holomorphic maps from the Riemann sphere \mathbb{CP}^1 into the loop space ΩG . Motivated by this result, we can expect that the space of (based) harmonic maps $\mathbb{CP}^1 \to \Omega G$ can be likewise identified with the moduli space of Yang–Mills G-fields on \mathbb{R}^4 . Since the loop space ΩG can be isometrically embedded into the Hilbert–Schmidt Grassmannian $\mathrm{Gr}_{\mathrm{HS}}(H)$, we can construct harmonic spheres in ΩG , as in the finite-dimensional case, by projecting pseudoholomorphic spheres in virtual flag manifolds $\mathcal{F}_{\mathbf{r}}(H)$ to $\mathrm{Gr}_{\mathrm{HS}}(H)$.

Brief content of the paper. We start by recalling basic properties of harmonic maps of Riemannian manifolds in Section 2. In Section 3 we restrict to the case of Grassmann manifolds $G_r(\mathbb{C}^d)$ and define homogeneous flag bundles over $G_r(\mathbb{C}^d)$. In Section 4 a twistor construction of harmonic maps into Grassmannians, due to [6] and [5], is presented. In Section 6 we introduce the Hilbert– Schmidt Grassmannian $\operatorname{Gr}_{\mathrm{HS}}(H)$ and Grassmannians $G_r(H)$ of virtual dimension r. The loop space ΩG can be isometrically embedded into $\operatorname{Gr}_{\mathrm{HS}}(H)$, so that harmonic maps $\varphi : M \to \Omega G$ can be considered as harmonic maps into Grassmannians $G_r(H)$. Harmonic maps $\varphi: M \to G_r(H)$ may be constructed as projections of pseudoholomorphic maps $\psi: M \to \mathcal{F}_r(H)$ to virtual flag manifolds $\mathcal{F}_r(H)$.

2. Harmonic Maps. General Properties

Let $\varphi : (M,g) \to (N,h)$ be a smooth map of a Riemannian manifold M with a Riemannian metric g into a Riemannian manifold N with a Riemannian metric h. We define the *energy* of the map φ as the Dirichlet integral

$$E(\varphi) = \frac{1}{2} \int_{M} |\mathrm{d}\varphi(p)|^2 \mathrm{vol}_g \,. \tag{1}$$

The norm of the differential may be computed in local coordinates as follows. Denote by (x^i) local coordinates at $p \in M$ and by (u^{α}) local coordinates at $q = \varphi(p) \in N$. Then

$$|\mathrm{d}\varphi(p)|^2 = \sum_{i,j} \sum_{lpha,eta} g^{ij} \, rac{\partial\varphi^{lpha}}{\partial x^i} \, rac{\partial\varphi^{eta}}{\partial x^j} \, h_{lphaeta}$$

where $\varphi^{\alpha} = \varphi^{\alpha}(x)$ are the components of φ , (g_{ij}) and $(h_{\alpha\beta})$ are the metric tensors of M and N respectively, (g^{ij}) is the inverse matrix of (g_{ij}) and vol_g is the volume element of the metric g.

Definition 1. A smooth map $\varphi : M \to N$ is called harmonic if it is extremal for the functional $E(\varphi)$ with respect to all smooth variations of φ with compact supports.

The Euler–Lagrange equation for the energy functional $E(\varphi)$ is called otherwise the *harmonic map equation*. In the local coordinates (x^i) on M and (u^{α}) on N, introduced above, it has the following form

$$\Delta_M \varphi^{\gamma} + \sum_{i,j} g^{ij} \sum_{\alpha,\beta} {}^N \Gamma^{\gamma}_{\alpha\beta}(\varphi) \frac{\partial \varphi^{\alpha}}{\partial x_i} \frac{\partial \varphi^{\beta}}{\partial x_j} = 0$$
(2)

where Δ_M is the standard Laplace–Beltrami operator on M, given by

$$\Delta_M \varphi^{\gamma} = \sum_{i,j} g^{ij} \left\{ \frac{\partial^2 \varphi^{\gamma}}{\partial x_i \partial x_j} - \sum_k {}^M \Gamma^k_{ij} \frac{\partial \varphi^{\gamma}}{\partial x_k} \right\} \; .$$

Here, ${}^{M}\Gamma_{ij}^{k}$ denotes the Christoffel symbols of the Levi-Civita connection ${}^{M}\nabla$ of M and ${}^{N}\Gamma_{\alpha\beta}^{\gamma}$ are the Christoffel symbols of the Levi-Civita connection ${}^{N}\nabla$ of N. In the particular case $N = \mathbb{R}^{n}$ the equation (2) becomes linear and reduces to the Laplace–Beltrami equation

$$\Delta_M \varphi^{\gamma} = 0 , \qquad \gamma = 1, \dots, n$$

on the components of the map φ .

A non-trivial nonlinear example of harmonic maps is provided by the so called SO(3)-model, arising in the theory of ferromagnets. In this example we consider smooth maps $\varphi : \mathbb{R}^2 \to S^2$ with finite energy $E(\varphi) < \infty$. The finite energy condition implies that such maps should stabilize at infinity, i.e., $\varphi(x) \to \varphi_0$ for $|x| \to \infty$. Therefore, φ extends to a map

$$\varphi:S^2=\mathbb{R}^2\cup\infty\longrightarrow S^2$$

which has a topological invariant, called the *degree* of the map φ

$$\deg \varphi = \int_{S^2} \varphi^* \operatorname{vol}$$
 .

Here, vol is the normalized volume form on S^2 . It is useful to introduce here complex coordinates in order to have better formulas. We denote by $z = x_1 + ix_2$ the complex coordinate on \mathbb{R}^2 and by w the complex coordinate in the image $S^2 \setminus \{\infty\}$, given by the stereographic projection.

Then the energy of the map $\varphi = w(z)$ in these coordinates will be given by the following formula

$$E(\varphi) = 2 \int_{\mathbb{C}} \frac{|\partial_z w|^2 + |\partial_{\bar{z}}|^2}{(1+|w|^2)^2} |\mathrm{d}z \wedge \mathrm{d}\bar{z}|$$
(3)

while the degree of φ is computed, according to

$$\deg \varphi = \frac{1}{2\pi} \int_{\mathbb{C}} \frac{|\partial_z w|^2 - |\partial_{\bar{z}}|^2}{(1+|w|^2)^2} \left| \mathrm{d}z \wedge \mathrm{d}\bar{z} \right| \,. \tag{4}$$

Comparing the last two formulas, we obtain an estimate of the energy from below

$$E(\varphi) \ge 4\pi |\deg \varphi| . \tag{5}$$

It follows that the minimum of the energy $E(\varphi)$ for a fixed $k = \deg \varphi$ is attained on holomorphic functions $w = \varphi(z)$ for $k \ge 0$, and on antiholomorphic functions $w = \varphi(z)$ for $k \le 0$. Fixing the asymptotic value φ_0 by the SO(3)-invariance (we set $\varphi_0 = 1$), one can write down the minima of $E(\varphi)$ for $k \ge 0$ in the form

$$w = \varphi(z) = \prod_{j=1}^k \frac{z - a_j}{z - b_j}$$

where a_j, b_j are arbitrary complex numbers. In particular, the space of minima for a fixed k is parameterized by 4k + 2 real parameters.

If we compare the harmonic map equation with the Yang–Mills duality equations on \mathbb{R}^4 , then the holomorphic (respectively, anti-holomorphic) maps $\varphi : \mathbb{R}^2 \cup \infty \rightarrow S^2$ will correspond to the instanton (respectively, anti-instanton) solutions of the duality equations. We shall see later that this correspondence can be established on a more deep level.

It may be shown that in the case of SO(3)-model the energy functional $E(\varphi)$ has no critical points, except for the described local minima. In other words, there are no other harmonic maps $\varphi : \mathbb{R}^2 \cup \infty \to S^2$, apart from the holomorphic and anti-holomorphic ones. We note that the holomorphic and anti-holomorphic maps yield the local minima of the energy $E(\varphi)$ also for smooth maps between general complex manifolds.

Namely, suppose that our Riemannian manifold (M, g) is provided with a complex (or almost complex) structure ^{M}J , compatible with the Riemannian metric g, and, likewise, the target manifold (N, h) has a complex (or almost complex) structure ^{N}J , compatible with the Riemannian metric h.

Definition 2. A smooth map $\varphi : M \to N$ is called (pseudo)holomorphic if and only if the tangent map $\varphi_* : TM \to TN$ commutes with the (almost) complex structures on M and N, i.e.,

$$\varphi_* \circ {}^M J = {}^N J \circ \varphi_*$$

and it is called anti-(pseudo)holomorphic if and only if φ_* anti-commutes with the (almost) complex structures on M and N.

The complexified tangent bundle $T^{\mathbb{C}}M=TM\otimes\mathbb{C}$ can be decomposed into the direct sum

$$T^{\mathbb{C}}M = T^{1,0}M \oplus T^{0,1}M$$

of subbundles with fibres, given by the $(\pm i)$ -eigenspaces of the almost complex structure operator ^{M}J . If we extend the tangent map φ_{*} complex linearly to the

complexified tangent bundles, then we obtain a map $\varphi_* : T^{\mathbb{C}}M \to T^{\mathbb{C}}N$, which, in accordance with the above decomposition, splits into the sum of four operators

$$\partial' \varphi \colon T^{1,0} M \to T^{1,0} N, \qquad \partial'' \varphi \colon T^{0,1} M \to T^{1,0} N$$
(6)

$$\partial'\bar{\varphi} = \overline{\partial''\varphi} \colon T^{1,0}M \to T^{0,1}N, \qquad \partial''\bar{\varphi} = \overline{\partial'\varphi} \colon T^{0,1}M \to T^{0,1}N \ . \tag{7}$$

The introduced operators may be considered as sections of the bundle $(T^*M)^{\mathbb{C}} \otimes \varphi^{-1}(T^{\mathbb{C}}N)$. In these notations a map φ is pseudoholomorphic (respectively antipseudoholomorphic) if and only if $\partial'' \varphi = 0$ (respectively $\partial' \varphi = 0$).

Generalizing the phenomena, observed for the SO(3)-model, it may be proved (cf. [9]) that for the (almost) Kähler manifolds the holomorphic and anti-holomorphic maps $\varphi : M \to N$ always realize the local minima of the energy functional $E(\varphi)$ but, in general, there exist other critical points of $E(\varphi)$, i.e., non-minimal harmonic maps.

We restrict now to the case, when M is a compact Riemann surface. Denote by ∇ the connection on the bundle $\varphi^{-1}(T^{\mathbb{C}}N)$ over M, induced by the Levi–Civita connection ${}^{N}\nabla$ on the Riemannian manifold N. If z is a local complex coordinate on M, we set

$$\delta arphi = arphi_*(\partial/\partial z) \ , \qquad \delta arphi = arphi_*(\partial/\partial ar z)$$

where $\delta \varphi$ and $\bar{\delta} \varphi$ are considered as sections of the bundle $\varphi^{-1}(T^{\mathbb{C}}N)$. (More generally, we denote by $\delta = \nabla_{\partial/\partial z}$, $\bar{\delta} = \nabla_{\partial/\partial \bar{z}}$ the components of the connection ∇ .) The differential $d\varphi$ is represented in the form

$$\mathrm{d}\varphi = \mathrm{d}z \otimes \delta\varphi + \mathrm{d}\bar{z} \otimes \bar{\delta}\varphi$$

and the harmonic map equation (2) may be written in the form

$$\bar{\delta}\delta\varphi = \left(\nabla_{\partial/\partial\bar{z}}\varphi_*\right)\left(\frac{\partial}{\partial z}\right) = 0 \tag{8}$$

or, equivalently, as

$$\delta\bar{\delta}\varphi = \left(\nabla_{\partial/\partial z}\varphi_*\right)\left(\frac{\partial}{\partial\bar{z}}\right) = 0$$

If N is a Kähler manifold, then, according to (6)

$$\delta \varphi = \partial' \varphi + \overline{\partial'' \varphi} \,, \qquad \bar{\delta} \varphi = \partial'' \varphi + \overline{\partial' \varphi}$$

and the harmonic map equation for φ takes the form

$$\bar{\delta}\partial'\varphi = 0 \tag{9}$$

or equivalently

$$\delta \partial'' \varphi = 0 \; .$$

According to the Koszul–Malgrange theorem (cf. [11]), any complex vector bundle E over a Riemann surface M with a connection ∇ has a unique complex structure J, such that $E \to M$ is a holomorphic vector bundle with respect to J, for which the $\bar{\partial}_J$ -operator coincides with the (0, 1)-component $\nabla^{0,1}$ of the connection ∇ . This complex structure J is called the *KM-structure*.

In its terms, the first of the harmonicity conditions (8) means that $\delta \varphi$ is a holomorphic section of the bundle $\varphi^{-1}(T^{\mathbb{C}}N)$ with respect to the KM-structure on $\varphi^{-1}(T^{\mathbb{C}}N)$, induced by the connection ${}^{N}\nabla$. In the same way, the first of conditions (9) means that $\partial' \varphi$ is a holomorphic section of the bundle $\varphi^{-1}(T^{1,0}N)$.

3. Flag Manifolds and Flag Bundles

To define the flag manifolds in \mathbb{C}^d , we fix a decomposition of d into the sum of natural numbers $d = r_1 + \cdots + r_n$ and denote $\mathbf{r} := (r_1, \ldots, r_n)$.

Definition 3. A flag manifold $\mathcal{F}_{\mathbf{r}}(\mathbb{C}^d)$ of type \mathbf{r} in \mathbb{C}^d consists of collections $\mathcal{E} = (E_1, \ldots, E_n)$ of mutually orthogonal linear subspaces E_i of dimension r_i in \mathbb{C}^d such that $\mathbb{C}^d = E_1 \oplus \cdots \oplus E_n$.

By this definition, a flag is a collection of mutually orthogonal subspaces, rather than a nested sequence of linear subspaces, associated with the standard image of a flag. However, one can easily produce a standard flag (V_1, \ldots, V_n) in \mathbb{C}^d with $V_1 \subset \cdots \subset V_n = \mathbb{C}^d$ from our collection $\mathcal{E} = (E_1, \ldots, E_n)$, setting $V_i := E_1 \oplus \cdots \oplus E_i$.

In particular, for $\mathbf{r} = (r, d - r)$ the flag manifold

$$\mathcal{F}_{(r,d-r)}(\mathbb{C}^d) = \{ \mathcal{E} = (E, E^{\perp}) ; \dim E = r \} = G_r(\mathbb{C}^d)$$

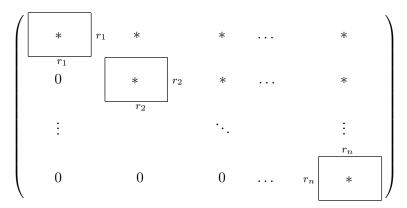
coincides with the Grassmann manifold of *r*-dimensional subspaces in \mathbb{C}^d . We have the following homogeneous representation of the flag manifold

$$\mathcal{F}_{\mathbf{r}}(\mathbb{C}^d) = \mathrm{U}(d) / \mathrm{U}(r_1) \times \cdots \times \mathrm{U}(r_n)$$

There is also another, complex homogeneous representation for this manifold

$$\mathcal{F}_{\mathbf{r}}(\mathbb{C}^d) = \operatorname{GL}(d,\mathbb{C})/\mathcal{P}_{\mathbf{r}}$$

where $\mathcal{P}_{\mathbf{r}}$ is the parabolic subgroup of blockwise upper-triangular matrices of the form



with blocks of dimensions $r_i \times r_i$ in the boxes.

These representations imply that $\mathcal{F}_{\mathbf{r}}(\mathbb{C}^d)$ has a natural complex structure, which we denote by J^1 . Moreover, $\mathcal{F}_{\mathbf{r}}(\mathbb{C}^d)$, provided with this complex structure, is a compact Kähler manifold.

In the particular case $\mathbf{r} = (r, N - r)$ we obtain well known homogeneous representations for the Grassmann manifold

$$G_r(\mathbb{C}^d) = \mathrm{U}(d)/\mathrm{U}(r) \times \mathrm{U}(d-r) = \mathrm{GL}(d,\mathbb{C})/P_{(r,d-r)}$$
.

We construct now a series of homogeneous flag bundles over the Grassmann manifold $G_r(\mathbb{C}^c)$, which play an important role in the sequel. Let $\mathcal{F} = \mathcal{F}_r(\mathbb{C}^N)$ be the flag manifold of type $\mathbf{r} = (r_1, \ldots, r_n)$ in \mathbb{C}^d with the homogeneous representation

$$\mathcal{F} = \mathcal{F}_{\mathbf{r}}(\mathbb{C}^N) = \mathrm{U}(d)/\mathrm{U}(r_1) \times \cdots \times \mathrm{U}(r_n)$$
.

On the Lie algebra level this representation corresponds to the decomposition of the complexified Lie algebra $\mathfrak{u}^{\mathbb{C}}(d)$ into the direct orthogonal sum

$$\mathfrak{u}^{\mathbb{C}}(d) \cong \mathfrak{gl}(d,\mathbb{C}) \cong \overline{\mathbb{C}^d} \otimes \mathbb{C}^d \cong \left(\bar{E}_1 \oplus \cdots \oplus \bar{E}_n\right) \otimes \left(E_1 \oplus \cdots \oplus E_n\right)$$
$$\cong \left[\mathfrak{u}^{\mathbb{C}}(r_1) \oplus \cdots \oplus \mathfrak{u}^{\mathbb{C}}(r_n)\right] \oplus \left[\bigoplus_{i < j} \left(\bar{E}_i E_j \oplus \bar{E}_j E_i\right)\right].$$
(10)

In the latter formula we have omitted the symbol of the tensor product in the expression $\overline{E}_i E_j$ and its conjugate in order to make the formulas more visible. The same rule will be applied in the sequel.

The above decomposition of the Lie algebra $\mathfrak{u}^{\mathbb{C}}(d)$ implies that the complexified tangent space $T_o^{\mathbb{C}}\mathcal{F}$ at the origin $o \in \mathcal{F}$ coincides with

$$T_o^{\mathbb{C}}\mathcal{F} = \bigoplus_{i < j} D_{ij}^{\mathbb{C}} := \bigoplus_{i < j} \left(\bar{E}_i E_j \oplus \bar{E}_j E_i \right) \,.$$

Every component D_{ij} may be provided with two different complex structures: for one of them its (1,0)-subspace coincides with $\overline{E}_i E_j$, for another with $\overline{E}_j E_i$. By the Borel–Hirzebruch theorem [2], any U(d)-invariant almost complex structure J on \mathcal{F} is determined by the choice of one of these two complex structures on every D_{ij} . The almost complex structure J^1 , for which

$$T_o^{1,0}\mathcal{F} = \bigoplus_{i < j} \bar{E}_i E_j$$

is called canonical.

Fix an ordered subset $\sigma \subset \{1, \ldots, n\}$. Denote by σ^c the complement of σ in $\{1, \ldots, n\}$ and set $r := \sum_{i \in \sigma} r_i$. We can associate with any of such subsets σ a homogeneous bundle

$$\pi_{\sigma} \colon \mathcal{F}_{\mathbf{r}}(\mathbb{C}^{N}) = \frac{U(d)}{U(r_{1}) \times \ldots \times U(r_{n})} \longrightarrow \frac{U(d)}{U(r) \times U(d-r)} = G_{r}(\mathbb{C}^{d})$$
(11)

by assigning: $(E_1, \ldots, E_n) \longmapsto E = \bigoplus_{i \in \sigma} E_i$.

The complexified tangent bundle $T^{\mathbb{C}}\mathcal{F}_{\mathbf{r}}(\mathbb{C}^N)$ is decomposed into the direct sum of vertical and horizontal subbundles. Namely, the vertical subspace at the origin coincides with $\bigoplus_{i,j} D_{ij}^{\mathbb{C}}$, where i < j and either $i, j \in \sigma$, or $i, j \in \sigma^c$. Respectively, the horizontal subspace at the origin is equal to $\bigoplus_{i,j} D_{ij}^{\mathbb{C}}$, where i < j and either

$$i \in \sigma, j \in \sigma^c$$
, or $i \in \sigma^c, j \in \sigma$.

We introduce, along with the canonical complex structure J^1 , a new U(d)-invariant almost complex structure J^2 on $\mathcal{F}_{\mathbf{r}}(\mathbb{C}^N)$, by setting it equal to $J^2 = J^1$ on horizontal tangent vectors and $J^2 = -J^1$ on vertical tangent vectors. Note that the constructed homogeneous bundle π_{σ} is not, generally speaking, holomorphic with respect to both almost complex structures. Moreover, the almost complex structure J^2 is never integrable. However, it turns out that precisely this complex structure is related to harmonic maps.

4. Twistor Construction of Harmonic Maps into the Grassmannian $G_r(\mathbb{C}^d)$

Recall a general definition of the twistor bundle.

Definition 4. Let N be a Riemannian manifold and Z is an almost complex manifold. A smooth bundle $\pi : Z \to N$ is called the twistor bundle, if for any pseudoholomorphic map $\psi : M \to Z$ of any Riemann surface M into the manifold Z its projection $\varphi = \pi \circ \psi : M \to N$ is a harmonic map.

Using the twistor bundle $\pi : Z \to N$, one can effectively construct harmonic maps $M \to N$ by projecting pseudoholomorphic maps $M \to Z$ to N. A general theory of twistor bundles is presented in [7], here we restrict to the case of Grassmann manifolds. We'll show that the homogeneous flag bundles π_{σ} , constructed in the previous Section, are, in fact, twistor bundles in the sense of the above definition.

Let M be a Riemann surface. Denote by $M \times \mathbb{C}^d$ the trivial bundle $M \times \mathbb{C}^d \to M$, provided with the standard Hermitian metric on \mathbb{C}^d . Any subbundle $E \subset M \times \mathbb{C}^d$ of rank r defines a map $\varphi_E : M \longrightarrow G_r(\mathbb{C}^d)$ by setting: $\varphi_E(p) :=$ the fibre E_p at $p \in M$. Conversely, any map $\varphi : M \to G_r(\mathbb{C}^d)$ defines a subbundle $E \subset M \times \mathbb{C}^d$ of rank r.

Consider a smooth map of a Riemann surface M into the Grassmannian $G_r(\mathbb{C}^d)$. Denote by π and π^{\perp} the orthogonal projections of $M \times \mathbb{C}^d$ onto the subbundle E and its orthogonal complement E^{\perp} . The bundle E is provided with the complex KM-structure, which is determined in a local chart on M with a local coordinate z by the $\bar{\partial}$ -operator

$$\partial_E'' = \pi \circ rac{\partial}{\partial z} \circ \pi$$
 .

The inverse image $\varphi_E^{-1}(T^{\mathbb{C}}G_r(\mathbb{C}^d))$ of the complexified tangent bundle of the Grassmannian under the map φ_E admits a decomposition

$$\varphi_E^{-1}(T^{\mathbb{C}}G_r(\mathbb{C}^d)) \cong \bar{E}E^{\perp} \oplus \overline{E^{\perp}}E$$

In terms of this decomposition the differential of φ_E has local components

$$A'_E := \pi^{\perp} \circ \frac{\partial}{\partial z} \circ \pi , \qquad A''_E := \pi^{\perp} \circ \frac{\partial}{\partial \bar{z}} \circ \pi$$

(In the sequel we sometimes omit the symbol \circ to simplify the formulas.) In particular, a bundle $E \subset M \times \mathbb{C}^d$ is holomorphic $\iff A''_E = 0$, and in this case

the complex KM-structure on E coincides with the complex structure, induced from $M\times \mathbb{C}^d.$ Then

$$0 = \pi^{\perp} \left[\frac{\partial}{\partial z} (\pi + \pi^{\perp}) \frac{\partial}{\partial \bar{z}} - \frac{\partial}{\partial \bar{z}} (\pi + \pi^{\perp}) \frac{\partial}{\partial z} \right] \pi$$

= $A'_E \partial''_E + \partial'_{E^{\perp}} A''_E - A''_E \partial'_E - \partial''_{E^{\perp}} A'_E = A'_E \partial''_E - \partial''_{E^{\perp}} A'_E .$ (12)

Otherwise speaking, the bundle $A'_E \in \text{Hom}(E, E^{\perp})$ is holomorphic with respect to the KM-structures on E and E^{\perp} .

In general, we call a bundle $E \subset M \times \mathbb{C}^d$ harmonic if

$$A'_E \circ \partial''_E = \partial''_{E^\perp} \circ A'_E$$
.

The harmonicity of E is equivalent to the harmonicity of the map $\varphi_E : M \to G_r(\mathbb{C}^d)$ (cf. [6]). Note also that a bundle E is harmonic \iff its orthogonal complement E^{\perp} is harmonic.

In a more general way, consider an arbitrary collection $\mathcal{E} = (E_1, \ldots, E_n)$ of mutually orthogonal subbundles E_i in $M \times \mathbb{C}^d$ of rank r_i with $r_1 + \ldots + r_n = d$, which generates a decomposition of $M \times \mathbb{C}^d$ into the direct orthogonal sum

$$M \times \mathbb{C}^d = \bigoplus_{i=1}^n E_i$$
.

We call such a collection of subbundles $\mathcal{E} = (E_1, \ldots, E_n)$ the moving flag on M. It determines, in the same way as before, a map $\psi_{\mathcal{E}} : M \to \mathcal{F}_{r_1 \ldots r_n} = \mathcal{F}$ by assigning to a point $p \in M$ the flag, defined by the subspaces $(E_{1,p}, \ldots, E_{n,p})$. Conversely, any smooth map $\psi \colon M \to \mathcal{F}$ determines a moving flag $\mathcal{E} = (E_1, \ldots, E_n)$, where $E_i = \psi^{-1}T_i$ is the pull-back of a natural tautological bundle $T_i \to \mathcal{F}_r$: the fibre of T_i at $\mathcal{E} \in \mathcal{F}$ coincides, by definition, with the subspace E_i for $1 \leq i \leq n$. As in the Grassmann case, the differential $\psi_{\mathcal{E}}$ is determined locally by the components

$$A'_{ij} = \pi_i \circ \frac{\partial}{\partial z} \circ \pi_j , \qquad A''_{ij} = \pi_i \circ \frac{\partial}{\partial \bar{z}} \circ \pi_j$$

where $\pi_i \colon M \times \mathbb{C}^d \to E_i$ is the orthogonal projection.

Theorem 5. (Burstall–Salamon [5]) The homogeneous flag bundle

$$\pi_{\sigma}: (\mathcal{F}_{\mathbf{r}}(\mathbb{C}^d), J^2) \longrightarrow G_r(\mathbb{C}^d)$$

defined by (11) (cf. Section 3), is a twistor bundle, i.e., for any J^2 -holomorphic map $\psi: M \to \mathcal{F}_{\mathbf{r}}(\mathbb{C}^d)$ its projection $\varphi = \pi_\sigma \circ \psi: M \to G_r(\mathbb{C}^d)$ is harmonic.

To prove the Theorem, it is sufficient to show that for any moving flag $\mathcal{E} = (E_1, \ldots, E_n)$, corresponding to a J^2 -holomorphic map $\psi_{\mathcal{E}} : M \to \mathcal{F}$, the bundle $E := \bigoplus_{i \in \sigma} E_i$ is harmonic. The holomorphicity of the map $\psi_{\mathcal{E}}$ means that

$$A'_{ij} = 0 = A''_{ji}, \quad \text{if} \quad \begin{cases} i > j & \text{and} \quad i, j \in \sigma \text{ or } i, j \in \sigma^c \\ i < j & \text{and} \quad i \in \sigma, j \in \sigma^c \text{ or } i \in \sigma^c, j \in \sigma \end{cases}$$

If k < l and $k \in \sigma$, $l \in \sigma^c$ then, as in the Grassmann case, we will have

$$0 = \pi_l \sum_{i} \left[\frac{\partial}{\partial \bar{z}} \pi_i \frac{\partial}{\partial z} - \frac{\partial}{\partial z} \pi_i \frac{\partial}{\partial \bar{z}} \right] \pi_k = \sum_{i} (A_{li}'' A_{ik}' - A_{li}' A_{ik}'')$$
$$= \sum_{i \in \sigma^c} A_{li}'' A_{ik}' - \sum_{i \in \sigma} A_{li}' A_{ik}'' = \left(\sum_{i \in \sigma^c} A_{li}'' \right) \left(\sum_{i \in \sigma^c} A_{ik}' \right)$$
$$- \left(\sum_{i \in \sigma} A_{li}' \right) \left(\sum_{i \in \sigma} A_{ik}'' \right) = \pi_l \left(\partial_{E^{\perp}}'' \circ A_E' - A_E' \circ \partial_E'' \right) \pi_k .$$
(13)

Analogous relations are satisfied for k > l, which implies that $A'_E \circ \partial''_E = \partial''_{E^{\perp}} \circ A'_E$, i.e., the bundle E is harmonic.

In the case when M is the Riemann sphere \mathbb{CP}^1 , it's possible to prove a converse of Theorem 5, which is based on the Harder–Narasimhan filtration theorem for holomorphic vector bundles over \mathbb{CP}^1 .

Suppose that E is a holomorphic vector bundle of rank r over \mathbb{CP}^1 , identified with a subbundle of the trivial bundle $\mathbb{CP}^1 \times \mathbb{C}^d \to \mathbb{CP}^1$. Then the Harder–Narasimhan theorem ([10]) asserts that there exists a filtration of E by holomorphic subbundles

$$0 = \mathcal{B}_0 \subset \mathcal{B}_1 \subset \ldots \subset \mathcal{B}_k = E$$

having quotients of the form

$$\mathcal{B}_i/\mathcal{B}_{i-1} \cong \underbrace{L^{\beta_i} \oplus \ldots \oplus L^{\beta_i}}_{b_i \text{ times}}$$

where L^{β_i} is the β_i -th power of the standard Hopf line bundle L over \mathbb{CP}^1 and $\beta_1 > \cdots > \beta_k$. The subbundle \mathcal{B}_i can be defined as the smallest holomorphic subbundle of E, containing the images of all meromorphic sections of E with divisors of degree, greater or equal to β_i . Using the Hermitian metric on \mathbb{C}^d , we can identify the quotient $\mathcal{B}_i/\mathcal{B}_{i-1}$ with the orthogonal complement \mathcal{B}_i of \mathcal{B}_{i-1} in \mathcal{B}_i .

We can construct an analogous filtration for the orthogonal complement E^{\perp} of E in $\mathbb{CP}^1 \times \mathbb{C}^d \to \mathbb{CP}^1$

$$0 = \mathcal{C}_0 \subset \mathcal{C}_1 \subset \ldots \subset \mathcal{C}_l = E^{\perp}$$

with quotients of the form

$$\mathcal{C}_i/\mathcal{C}_{i-1} \cong \underbrace{L^{\gamma_i} \oplus \ldots \oplus L^{\gamma_i}}_{c_i \text{ times}}$$

and $\gamma_1 > \cdots > \gamma_l$. We identify again the quotient C_i/C_{i-1} with the orthogonal complement C_i of C_{i-1} in C_i .

We collect now the subbundles $B_1, \ldots, B_k, C_1, \ldots, C_l$ into a single collection of n = k + l subbundles, denoted by E_1, \ldots, E_n , so that each of E_i is isomorphic to the direct sum of c_i copies of L^{δ_i} and $\delta_1 \leq \cdots \leq \delta_n$. (If for some j we have $\delta_j = \delta_{j+1}$, we arrange the associated subbundles E_j, E_{j+1} in such a way that E_j corresponds to some B_p and E_{j+1} to some C_q .) We introduce a subset $\sigma \subset \{1, 2, \ldots, n\}$, uniquely defined by the equalities

$$E = \bigoplus_{i \in \sigma} E_i , \qquad E^{\perp} = \bigoplus_{i \in \sigma^c} E_i .$$

We are ready to prove now the converse of Theorem 5.

Theorem 6. (Burstall [3]) Any harmonic map $\varphi : \mathbb{CP}^1 \to G_r(\mathbb{C}^d)$ can be obtained as the projection of a \mathcal{J}^2 -holomorphic map $\psi : \mathbb{CP}^1 \to \mathcal{F}_r(\mathbb{C}^d)$ with respect to some twistor bundle $\pi_\sigma : \mathcal{F}_r(\mathbb{C}^d) \to G_r(\mathbb{C}^d)$.

To prove the Theorem, we associate, as above, with a harmonic map $\varphi : \mathbb{CP}^1 \to G_r(\mathbb{C}^d)$ a harmonic subbundle E of rank r in the trivial bundle $\mathbb{CP}^1 \times \mathbb{C}^d \to \mathbb{CP}^1$. Using the Harder–Narasimhan filtration theorem, we construct, as above, a moving flag $\mathcal{E} := (E_1, \ldots, E_n)$ and fix a subset $\sigma \subset \{1, 2, \ldots, n\}$ such that

$$E = \bigoplus_{i \in \sigma} E_i , \qquad E^{\perp} = \bigoplus_{i \in \sigma^c} E_i .$$

Denote by $\psi_{\mathcal{E}}: M \to \mathcal{F}$ the map, associated with the moving flag \mathcal{E} . We have to prove that this map is J^2 -holomorphic. In other words, we should prove that

$$A'_{ij} = 0 = A''_{ji}, \quad ext{if} \quad \begin{cases} i > j & ext{and} & i, j \in \sigma \text{ or } i, j \in \sigma^c \\ i < j & ext{and} & i \in \sigma, j \in \sigma^c \text{ or } i \in \sigma^c, j \in \sigma \end{cases}.$$

Suppose first that i > j and $i, j \in \sigma$. Then $\delta_i > \delta_j$ and the subbundle E_i is contained in some holomorphic subbundle \mathcal{B}_p of E, orthogonal to E_j . It follows that $A''_{ji} = 0$, which implies also that $A'_{ij} = 0$. The case $i, j \in \sigma^c$ is treated in a similar way.

Suppose next that i < j and $i \in \sigma^c, j \in \sigma$. Then $E_j = B_p$ for some $B_p \subset \mathcal{B}_p$. Since E is harmonic, it follows that the differential $dz \otimes A'_E$ is holomorphic (cf. (8), (9) in Section 2). Here, A'_E is considered as a section of the holomorphic bundle $\text{Hom}(E, E^{\perp})$. Since the image $A'_E(\mathcal{B}_p)$ is spanned by meromorphic sections of E^{\perp} with divisors of degree, greater than $\delta_j + 1$, we have

$$A'_E(E_j) \subset \bigoplus_{q \in \sigma^c, q > j} E_q$$
.

Hence, $A'_{ij} = 0$ for i < j, implying also that $A''_{ji} = 0$. The case $i \in \sigma, j \in \sigma^c$ is treated in a similar way, using the fact that the subbundle E^{\perp} is harmonic along with E.

By the above Theorem 6 the problem of description of harmonic spheres in the Grassmann manifold $G_r(\mathbb{C}^d)$ reduces to the problem of description of J^2 -holomorphic spheres in flag manifolds $\mathcal{F}_r(\mathbb{C}^d)$. The latter problem was solved by Wood in [17] (cf. also [5]). The Wood's method can be roughly described as follows. Consider a moving flag $\mathcal{E} = (E_1, \ldots, E_n)$, corresponding to a smooth map $\psi : M \to \mathcal{F}_r(\mathbb{C}^d)$. If the original map ψ was J^1 -holomorphic, i.e., holomorphic with respect to the canonical complex structure on $\mathcal{F}_r(\mathbb{C}^d)$, then the subbundles E_1, \ldots, E_n will be holomorphic with respect to the pulled-back complex structure $J_{\psi} := \psi^*(J^1)$ on M. Suppose that we know already how to construct J^1 -holomorphic maps $\psi : M \to \mathcal{F}_r(\mathbb{C}^d)$. Then one can convert J^1 -holomorphic maps $\psi : M \to \mathcal{F}_r(\mathbb{C}^d)$ into J^2 -holomorphic maps by replacing some of the holomorphic subbundles E_i by anti-holomorphic subbundles \overline{E}_i (and vice versa for the orthogonal complements E_i^{\perp} of E_i).

5. Harmonic Maps into the Hilbert–Schmidt Grassmannian

We switch now to the case of infinite-dimensional Grassmann σ -models and try to extend to this case the methods, developed for finite-dimensional Grassmanians in the previous sections.

We start from the definition of the Hilbert–Schmidt Grassmannian $\operatorname{Gr}_{HS}(H)$ of a complex (separable) Hilbert space H. We take for a model of this Hilbert space the space $L^2_0(S^1, \mathbb{C})$ of square integrable complex-valued functions on the circle S^1 with the zero average over S^1 .

Suppose that *H* has a *polarization*, i.e., a decomposition

$$H = H_+ \oplus H_- \tag{14}$$

into the direct orthogonal sum of infinite-dimensional closed subspaces. In the case of $H = L_0^2(S^1, \mathbb{C})$ one can take for such subspaces

$$H_{\pm} = \{ \gamma \in H \, ; \, \gamma(z) = \sum_{\pm k > 0} \gamma_k z^k \} \, .$$

Any bounded linear operator $A \in L(H)$ with respect to the polarization (14) can be written in the block form

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a : H_+ \to H_+ , & b : H_- \to H_+ \\ c : H_+ \to H_- , & d : H_- \to H_- \end{pmatrix}$$

Denote by GL(H) the group of linear bounded operators on H, having a bounded inverse, and introduce the *Hilbert–Schmidt group* $GL_{HS}(H)$, consisting of operators $A \in GL(H)$, for which the "off-diagonal" terms b and c are Hilbert–Schmidt operators (briefly: HS-operators). In other words, the group $GL_{HS}(H)$ consists of operators $A \in GL(H)$, for which the "off-diagonal" terms b and c are "small" with respect to the "diagonal" terms a and d. We denote also by $U_{HS}(H)$ the intersection of $GL_{HS}(H)$ with the group U(H) of unitary operators in H.

As in the finite-dimensional situation, there is a Grassmann manifold $\operatorname{Gr}_{HS}(H)$, called the Hilbert–Schmidt Grassmannian, related to the group $\operatorname{GL}_{HS}(H)$.

Definition 7. The Hilbert–Schmidt Grassmannian $\operatorname{Gr}_{HS}(H)$ is the set of all closed subspaces $W \subset H$ such that the orthogonal projection $pr_+ : W \to H_+$ is a Fredholm operator, and the orthogonal projection $pr_- : W \to H_-$ is a Hilbert– Schmidt operator. Equivalently a subspace $W \in \operatorname{Gr}_{HS}(H)$ if and only if it coincides with the image of a linear operator $w : H_+ \to H$ such that $w_+ := pr_+ \circ w$ is a Fredholm operator, and $w_- := pr_- \circ w$ is a Hilbert–Schmidt operator.

In other words, the Hilbert–Schmidt Grassmannian $\operatorname{Gr}_{HS}(H)$ consists of the subspaces $W \subset H$, which differ "little" from the subspace H_+ in the sense that the projection $\operatorname{pr}_+ : W \to H_+$ is "close" to an isomorphism and the projection $\operatorname{pr}_- : W \to H_-$ is "small".

We have the following homogeneous space representation of $Gr_{HS}(H)$

$$\operatorname{Gr}_{\mathrm{HS}}(H) = \operatorname{U}_{\mathrm{HS}}(H) / \operatorname{U}(H_{+}) \times \operatorname{U}(H_{-})$$
.

Since $U_{HS}(H)$ acts transitively on the Grassmannian $Gr_{HS}(H)$, we can construct an $U_{HS}(H)$ -invariant Kähler metric on $Gr_{HS}(H)$ from an inner product on the tangent space T_{H_+} $Gr_{HS}(H)$ at the origin $H_+ \in Gr_{HS}(H)$, invariant under the action of the isotropy subgroup $U(H_+) \times U(H_-)$. The tangent space T_{H_+} $Gr_{HS}(H)$ coincides with the space of Hilbert–Schmidt operators $HS(H_+, H_-)$, and the invariant inner product on it is given by the formula

$$(A, B) \longmapsto \operatorname{Re}\left\{\operatorname{tr}(AB^{\dagger})\right\}, \qquad A, B \in \operatorname{HS}(H_{+}, H_{-}).$$

Note that the imaginary part of the complex inner product $tr(AB^{\dagger})$ determines a non-degenerate invariant two-form on $T_{H_{+}}$ Gr_{HS}(H), which extends to an U_{HS}(H)-invariant symplectic structure on the manifold Gr_{HS}(H). Hence, we have a Kähler structure on Gr_{HS}(H), which makes it a Kähler Hilbert manifold.

The evident difficulty, encountered when trying to extend the techniques, developed for the finite-dimensional Grassmanians, to the case of $\operatorname{Gr}_{\operatorname{HS}}(H)$, is that the subspaces $W \in \operatorname{Gr}_{\operatorname{HS}}(H)$ are infinite-dimensional. In this sense, they all have the same infinite "dimension", which does not allow to compare them. However, there is a substitution of the notion of dimension, which is more helpful for the study of such subspaces, namely, we can compare them by their "virtual dimension".

In more detail, the manifold $\operatorname{Gr}_{\operatorname{HS}}(H)$ has a countable number of connected components, numerated by the index of the Fredholm operator w_+ for a subspace $W \in \operatorname{Gr}_{\operatorname{HS}}(H)$, coinciding with the image of a linear operator $w : H_+ \to H$. We say that a subspace W has the *virtual dimension* d, if the index of w_+ is equal to d. Denote by $\operatorname{G}_d(H)$ the component of $\operatorname{Gr}_{\operatorname{HS}}(H)$, consisting of subspaces W of virtual dimension d. Then we have the following decomposition of $\operatorname{Gr}_{\operatorname{HS}}(H)$ into the disjoint union of its connected components $\operatorname{G}_d(H)$

$$\operatorname{Gr}_{\mathrm{HS}}(H) = \bigcup_{d} \operatorname{G}_{d}(H) .$$
 (15)

Due to this decomposition, the study of harmonic maps of Riemann surfaces into $\operatorname{Gr}_{\operatorname{HS}}(H)$ is reduced to the study of harmonic maps into the Grassmannians $\operatorname{G}_d(H)$ of virtual dimension d, which may be carried on along the same lines, as in the case of the Grassmann manifold $G_r(\mathbb{C}^d)$.

As in the latter case, for any decomposition $d = r_1 + \cdots + r_n$ of d into the sum of integers we define the corresponding virtual flag manifold $\mathcal{F} = \mathcal{F}_{\mathbf{r}}(H)$ of type $\mathbf{r} = (r_1, \ldots, r_n)$, consisting of collections $\mathcal{W} = (W_1, \ldots, W_n)$ of mutually orthogonal subspaces $W_i \subset H$ of virtual dimension r_i . Next, for any ordered subset $\sigma \subset \{1, \ldots, n\}$ we set $r := \sum_{i \in \sigma} r_i$ and construct a homogeneous flag

bundle

$$\pi \colon \mathcal{F}_{\mathbf{r}}(H) \longrightarrow \mathrm{G}_r(H)$$

by assigning

$$(W_1,\ldots,W_n)\longmapsto W=\bigoplus W_i$$
.

We introduce the almost complex structures J^1 and J^2 on the flag manifold $\mathcal{F}_{\mathbf{r}}(H)$, as in the finite-dimensional situation. We have the following assertion, analogous to the finite-dimensional case.

Theorem 8. The homogeneous bundle $\pi : (\mathcal{F}_{\mathbf{r}}(H), J^2) \to G_r(H)$ is a twistor bundle, i.e., for any J^2 -holomorphic map $\psi : M \to \mathcal{F}_{\mathbf{r}}(H)$ its projection $\varphi = \pi \circ \psi : M \to G_r(H)$ is a harmonic map.

The proof of this Theorem is similar to the proof of Theorem 5. Due to Theorem 8, one can produce harmonic maps $M \to G_r(H)$ by projecting J^2 -holomorphic maps $M \to \mathcal{F}_r(H)$ to $G_r(H)$.

There is also an analogue of Theorem 6, valid for harmonic maps $\varphi : \mathbb{CP}^1 \to G_r(H)$.

Theorem 9. Any harmonic map $\varphi : \mathbb{CP}^1 \to G_r(H)$ can be obtained as the projection of a J^2 -holomorphic map $\psi : \mathbb{CP}^1 \to \mathcal{F}_r(H)$ with respect to some twistor bundle $\pi_\sigma : \mathcal{F}_r(H) \to G_r(H)$.

Theorem 9 can be proved in the same way, as Theorem 6, if one uses, instead of the Birkhoff–Grothendieck classification theorem for holomorphic vector bundles over \mathbb{CP}^1 (implying the Harder–Narasimhan filtration theorem) its infinitedimensional analogue. This analogue, namely, the classification theorem for holomorphic vector bundles over \mathbb{CP}^1 with the structure group, consisting of invertible operators of the form I + compact, is proved in [15, 16].

6. Harmonic Maps into Loop Spaces

We can apply the above results to the study of harmonic maps into the loop spaces ΩG of compact Lie groups G by embedding these loop spaces into the Hilbert–Schmidt Grassmannian. At the end of this Section we explain, why this case is particularly interesting for us.

Denote by $LG = C^{\infty}(S^1, G)$ the loop group of G, i.e., the space of C^{∞} -smooth maps $S^1 \to G$, where S^1 is identified with the unit circle in \mathbb{C} . It is a Lie–Frechet

group with respect to the pointwise multiplication (cf. [14]), modelled on the *loop* algebra $L\mathfrak{g} = C^{\infty}(S^1, \mathfrak{g})$, where \mathfrak{g} is the Lie algebra of the group G. The *loop* space ΩG of the group G (or the basic loop space) is the homogeneous space of the group LG of the form

$$\Omega G = LG/G \tag{16}$$

where the group G in the denominator is identified with the subgroup of constant maps $S^1 \to g_0 \in G$. Note that the loop space ΩG may be identified with the space of based maps in LG, sending $1 \in S^1$ to the unit e of the group G, and so inherits a Frechet manifold structure from the loop group LG.

The loop group LG acts on ΩG by left translations. Denote by o the origin in ΩG , represented by the class of constant maps: o = [G]. The tangent space of ΩG at the origin o is identified with the space $\Omega \mathfrak{g} = L\mathfrak{g}/\mathfrak{g}$. We represent vectors of the tangent space $T_o(\Omega G)$ by their Fourier series: an arbitrary vector ξ of the complexified tangent space $T_o^{\mathbb{C}}(\Omega G) = T_o(\Omega G) \otimes \mathbb{C}$ has a Fourier decomposition of the form

$$\xi = \sum_{k \neq 0} \xi_k \mathrm{e}^{\mathrm{i}k\theta}$$

where the coefficients ξ_k belong to the complexified Lie algebra $\mathfrak{g}^{\mathbb{C}}$. A vector $\xi \in T_o(\Omega G) \iff \xi_{-k} = \overline{\xi}_k$.

The loop space ΩG has a natural symplectic structure, invariant under the action of the loop group LG on ΩG . Due to the invariance, it's sufficient to define its restriction to $T_o(\Omega G) = \Omega \mathfrak{g}$. For that we fix an invariant inner product $\langle \cdot, \cdot \rangle$ on the Lie algebra \mathfrak{g} and consider a two-form ω on $L\mathfrak{g}$ of the form

$$\omega(\xi,\eta) = rac{1}{2\pi} \int_0^{2\pi} \langle \xi(heta),\eta'(heta)
angle \,\mathrm{d} heta, \qquad \xi,\eta\in L\mathfrak{g} \;.$$

This formula defines a left-invariant closed two-form on LG, subject to the condition: $\omega(\xi, \eta) = 0$ if and only if at least one of the maps ξ, η is constant. Hence it can be pushed down to a left-invariant two-form on $\Omega \mathfrak{g}$, which is non-degenerate and closed, and so generates a symplectic structure on ΩG .

An invariant complex structure on ΩG is provided by the "complex" representation of $\Omega G = LG/G$ as a homogeneous space of the complex Lie–Frechet group $LG^{\mathbb{C}} = C^{\infty}(S^1, G^{\mathbb{C}})$, where $G^{\mathbb{C}}$ is the complexification of the Lie group G. This representation has the form (cf. [12] and also [14])

$$\Omega G = LG^{\mathbb{C}}/L^+G^{\mathbb{C}} \tag{17}$$

where $L^+G^{\mathbb{C}} = \operatorname{Hol}(\Delta, G^{\mathbb{C}})$ is a subgroup of $LG^{\mathbb{C}}$, consisting of the maps $S^1 \to G^{\mathbb{C}}$, which can be extended smoothly to holomorphic maps of the disc $\Delta := \{|z| < 1\} \to G^{\mathbb{C}}$.

The invariant complex structure J^1 on ΩG , induced by the complex representation (17), has a simple meaning in terms of Fourier series. Namely, the restriction of J^1 to the complexified tangent space $T_o^{\mathbb{C}}(\Omega G) = \Omega \mathfrak{g}^{\mathbb{C}}$ at the origin is given by the following formula:

$$\xi = \sum_{k \neq 0} \xi_k \mathrm{e}^{\mathrm{i}k\theta} \quad \longmapsto \quad J^1 \xi = -\mathrm{i} \sum_{k>0} \xi_k \mathrm{e}^{\mathrm{i}k\theta} + \mathrm{i} \sum_{k<0} \xi_k \mathrm{e}^{\mathrm{i}k\theta}.$$

The introduced symplectic and complex structures on ΩG are compatible in the sense that $\omega(J^1\xi, J^1\eta) = \omega(\xi, \eta)$ for all $\xi, \eta \in T_o(\Omega G)$ and the symmetric form

$$g^1(\xi,\eta) := \omega(\xi, J^1\eta) \quad \text{on} \quad T_o(\Omega G) \times T_o(\Omega G)$$

is positive definite. So this form extends to an invariant Riemannian metric g^1 on ΩG (due to the invariance of ω and J^1). In other words, the loop space ΩG is a *Kähler Frechet manifold*, provided with the Kähler metric g^1 .

We shall study harmonic maps from Riemann surfaces M to the loop spaces ΩG , by embedding isometrically ΩG into the Hilbert–Schmidt Grassmannian $\operatorname{Gr}_{\mathrm{HS}}(H)$.

Assume that G is a matrix group, i.e., G is represented as a subgroup of U(n) for some n. Then we have an isometric embedding

$$LG \longrightarrow U_{HS}(H)$$

given by the map

$$\gamma \in LG = C^{\infty}(S^1, G) \longmapsto M_{\gamma} \in U_{HS}(H)$$

where the multiplication operator M_{γ} is defined by:

$$f \in H = L^2_0(S^1, \mathbb{C}^n) \longmapsto (M_\gamma f)(z) := \gamma(z)f(z) \text{ for } z \in S^1.$$

It is easy to check that $M_{\gamma} \in U_{HS}(H)$ if γ is smooth ([12]).

The constructed embedding of the loop group LG into $U_{HS}(H)$ induces an isometric embedding

$$\Omega G \longrightarrow \operatorname{Gr}_{\operatorname{HS}}(H)$$
.

So we can consider harmonic maps $M \to \Omega G$ as taking values in $\operatorname{Gr}_{HS}(H)$, thus reducing their study to the study of harmonic maps $M \to \operatorname{Gr}_{HS}(H)$, considered above.

The motivation for the study of harmonic maps $M \to \Omega G$ comes from a result of Atiyah [1], relating G-instantons on \mathbb{R}^4 with holomorphic maps $\mathbb{CP}^1 \to \Omega G$, i.e., holomorphic spheres in ΩG . More precisely, it is proved in [1] that there is the following one to one correspondence

$$\left\{ \begin{array}{l} \text{moduli space of } G\text{-}\\ \text{instantons on } \mathbb{R}^4 \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{l} \text{based holomorphic maps}\\ f: \mathbb{CP}^1 \to \Omega G \end{array} \right\}$$

where a holomorphic map $f : \mathbb{CP}^1 \to \Omega G$ is called *based* if it sends the infinity $\infty \in \mathbb{CP}^1$ to the origin $o \in \Omega G$.

Motivated by this result, we can conjecture that there is also a one to one correspondence

$$\begin{cases} \text{based harmonic maps} \\ h : \mathbb{CP}^1 \to \Omega G \end{cases} \longleftrightarrow \begin{cases} \text{moduli space of solutions of} \\ \text{Yang-Mills } G \text{-equations on } \mathbb{R}^4 \end{cases} \}.$$

Acknowledgements

While preparing this paper, the author was partly supported by the RFBR grants 05-01-00498, 06-02-04012, by the program of Support of Scientific Schools (grant NSH-6705.2006.1), and by the Scientific Program of RAS "Nonlinear Dynamics".

Bibliography

References

- [1] Atiyah M., *Instantons in Two and Four Dimensions*, Comm. Math. Phys. **93** (1984) 437–451.
- [2] Borel A. and Hirzebruch F., *Characteristic Classes and Homogeneous Spaces I*, Amer. J. Math. **80** (1958) 458–538.
- [3] Burstall F., A Twistor Description of Harmonic Maps of a 2-Sphere into a Grassmannian, Math. Ann. 274 (1986) 61–74.
- [4] Borchers H. and Garber W., Local Theory of Solutions for the $O(2k + 1) \sigma$ -Model, Comm. Math. Phys. **72** (1980) 77–102.
- [5] Burstall F. and Salamon S., *Tournaments, Flags and Harmonic Maps*, Math. Ann. **277** (1987) 249–265.

- [6] Burstall F. and Wood J., *The Construction of Harmonic Maps into Complex Grassmannians*, J. Diff. Geom. **23** (1986) 255–297.
- [7] Davidov J. and Sergeev A., *Twistor Spaces and Harmonic Maps*, Russian Math. Surveys 48 (1993) 1–91.
- [8] Din A. and Zakrzewski W., *Classical Solutions in Grassmannian* σ -Models, Lett. Math. Phys. **5** (1981) 553–561.
- [9] Eells J. and Sampson J., *Harmonic Maps of Riemannian Manifolds*, Amer. J. Math. 86 (1964) 109–160.
- [10] Harder G. and Narasimhan M., On the Cohomology Groups of Moduli Spaces of Vector Bundles over Curves, Math. Ann. **212** (1975) 215–248.
- [11] Koszul J. and Malgrange B., *Sur certaines structures fibrées complexes*, Arch. Math. **9** (1958) 102–109.
- [12] Pressley A. and Segal G., *Loop Groups*, Clarendon Press, Oxford, 1986.
- [13] Perelomov A., Chiral Models: Geometrical Aspects, Phys. Rep. 146 (1987) 135–213.
- [14] Sergeev A., Kähler Geometry of Loop Spaces, Moscow Centre for Continuous Math. Education, Moscow, 2001.
- [15] Sergeev A., Factorization of Hölder-continuous Operator-functions (in Russian), Uspekhi Matem. Nauk (Russian Math. Surveys) 27 (1972) 253.
- [16] Sergeev A., Factorization of Hølder-continuous Operator-functions (in Russian) Vestnik MGU (Moscow Univ. Vestnik). Ser. I: Mathematics and Mechanics 28 (1973) 58–65.
- [17] Wood J., The Explicit Construction and Parametrization of All Harmonic Maps From the Two-Sphere to a Complex Grassmannian, J. reine angew. math. 386 (1988) 1–31.

Armen Sergeev Steklov Math. Institute Gubkina 8, Moscow 119991 RUSSIA *E-mail address*: sergeev@mi.ras.ru