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BEREZIN–TOEPLITZ QUANTIZATION OF THE MODULI SPACE
OF FLAT SU(N) CONNECTIONS

MARTIN SCHLICHENMAIER

Communicated by Theodore Voronov
Abstract. The moduli space of flat SU(n) connections on Riemann surfaces
is of fundamental importance in TQFT. There is an associated representation of
the mapping class group on the space of covariantly constant sections of the Ver-
linde bundle with respect to the AdPW-H connection. J. Andersen showed that this
representation is asymptotically faithful. In his proof the Berezin-Toeplitz quanti-
zation of compact Kähler manifolds is used. In this contribution the background
and some ideas of Andersen’s proof is sketched.

1. Introduction

This is a write-up of a talk presented at the XXVth Białowieża Workshop on
Geometric Methods in Physics.

First, we recall the basics of the Berezin-Toeplitz quantization (operator and for-
mal deformation quantization). Then we discuss the moduli space of flat SU(n)
connections on a fixed Riemann surface in its different guises. Finally, we present
recent results obtained by Andersen [3] showing the asymptotic faithfulness of
the representations of the mapping class group (MCG, Teichmüller group) on the
covariantly constant sections of the projectivized Verlinde bundle. In his approach
he uses the Toeplitz operators and results on their correct semiclassical behavior
as they will be presented in the first part.

As far as the Berezin-Toeplitz quantization is concerned the results were obtained
by the author partly in joint works with Meinrenken, and Bordemann respectively
with Karabegov [4], [10], [11], [12], [9].

Quite a number of mathematician (and physicists) were involved in the study of
the moduli space of connections and the mapping class group. Instead giving ref-
erences here, let me refer to the recent overviews by Jeffrey [6] and Masbaum [7].

The beautiful results on the asymptotic faithfulness presented are entirely due to
Andersen [1]. For similar results in the U(1) case, obtained by him, see [2].
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2. Berezin-Toeplitz Quantization of Compact Kähler Manifolds

2.1. Kähler Manifolds

Let (M,ω) be a Kähler manifold, this says M is a complex manifold, and ω a
Kähler form, i.e., a closed (1, 1)-form on M which is positive.

The following manifolds are Kähler manifolds

1. The flat complex space C
n with the Kähler form ω = i

n∑
i=1

dzi ∧ dz̄i.

2. The complex projective line P
1(C), respectively the Riemann sphere with

the form ω = i
(1+zz̄)2 dz ∧ dz̄, and more generally P

n(C) with the Fubini-
Study form.

3. Every Riemann surface carries a Kähler form, and hence is a Kähler mani-
fold.

4. Every (complex) torus of arbitrary dimension with the standard Kähler form
on C

n introduced above.

5. Every (quasi-)projective manifold, i.e., every non-empty open subset of a
projective variety without singularities, with the restriction of the Fubini-
Study Kähler form of the embedding projective space.

6. Very often moduli spaces in the algebraic or analytic context carry a natural
Kähler structure coming from their construction.

2.2. Quantizable Kähler Manifolds

Definition 1. (Quantization condition) A Kähler manifold (M,ω) is called quan-
tizable, if there exists an associated quantum line bundle (L, h,∇), i.e., a holo-
morphic line bundle L over M , with hermitian metric h on L, and compatible
connection ∇, fulfilling

curvL,∇ = −i ω.

By the compatibility requirements the connection will be uniquely fixed by the
holomorphic structure and the metric on L.

Note that not all Kähler manifolds are quantizable. For example only those com-
plex tori are quantizable which have enough theta functions, i.e., those which can



Berezin–Toeplitz quantization of the moduli space of flat SU(n) connections 35

be embedded holomorphically into projective space. They are called abelian vari-
eties.

For the rest of this write-up we assume that M is a compact Kähler manifold. We
fix a quantum line bundle L and consider its tensor powers Lm := L⊗m, with
metric h(m), and take Γ∞(M,Lm) the space of smooth global sections, and
Γhol(M,Lm) = H0(M,Lm) the subspace of global holomorphic sections.

Due to the compactness of M , the latter is finite-dimensional. On these spaces a
scalar product is defined via

〈ϕ,ψ〉 :=

∫
M

h(m)(ϕ,ψ)Ω, Ω :=
1

n!
ω ∧ ω ∧ · · · ∧ ω︸ ︷︷ ︸

n

.

Let L2(M,L) be the L2-completion and denote the projector to the closed sub-
space of holomorphic sections by

Π(m) : L2(M,Lm) −→ Γhol(M,Lm).

2.3. Berezin-Toeplitz Operator Quantization

Fix f ∈ C∞(M), and let s ∈ Γhol(M,Lm) then the map

s 	→ T
(m)
f (s) := Π(m)(f · s)

defines the Toeplitz operator of level m

T
(m)
f

: Γhol(M,Lm) → Γhol(M,Lm).

The Berezin-Toeplitz (BT) operator quantization is the map

f 	→
(
T

(m)
f

)
m∈N0

.

The reason to call it a quantization is, that it has the correct semi-classical behavior
as expressed in the following theorem.

Theorem 2. (Bordemann, Meinrenken, and Schlichenmaier (BMS) [4])

lim
m→∞

||T
(m)
f || = |f |∞ (1)

||mi [T
(m)
f , T (m)

g ] − T
(m)
{f,g}

|| = O(1/m) (2)

||T
(m)
f

T (m)
g − T

(m)
f ·g

|| = O(1/m). (3)
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In (2) the Poisson bracket for C∞(M) is defined (using the Kähler form ω) by

{f, g} := ω(Xf ,Xg), ω(Xf , .) = df(.)

where Xf is the Hamiltonian vector field associated to f ∈ C∞(M).

The proofs of (2) and (3) are based on the symbol calculus of the generalized
Toeplitz operators developed by Boutet de Monvel and Guillemin [5].

2.4. Deformation Quantization

Theorem 3. ([4], [9–12]). There exists a unique differential star product with the
BT star product,

f �BT g =
∞∑

k=0

νkCk(f, g) (4)

such that

T
(m)
f T (m)

g ∼

∞∑
k=0

(
1

m

)k

T
(m)
Ck(f,g), m → ∞. (5)

This star product is of “separation of variables” type, and has classifying Deligne-
Fedosov class 1

i (
1
ν
[ω]− ε

2), and corresponds to the Karabegov form −1
ν

ω + ωcan.

As usual the series in (4) has to be considered as a formal power series A star prod-
uct is a differential star product if the Ck(. , .) are bidifferential operators in their
function arguments. Such a differential star product is of “separation of variables
type” if the first function argument is only differentiated in holomorphic direc-
tions and the second argument only in anti-holomorphic directions (respectively
the opposite directions depending on the convention chosen). This notion is due to
Karabegov [8], and corresponds to the fact that the star product respects the com-
plex structure. Such star products are classified by their formal Karabegov form.
Above ν is used as formal variable for the forms and the formal forms are formal
power series in ν if we ignore 1/ν which comes with the fixed ω. In particular,
for the BT star product no higher formal powers of ν occur in its classifying form.
The Deligne-Fedosov class is a formal H2

deRahm(M) class which classifies the star
product up to equivalence. The form ωcan is the curvature form of the canonical
(holomorphic) line bundle with fibre metric coming from the Liouville form.

Note also that the asymptotic formula (5) is a short-hand notation for a very pre-
cise and strong asymptotic behaviour of the norms of the involved operators. See
the cited references for the precise statement.
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3. The Moduli Space of Flat SU(n) Connections

3.1. Its Symplectic Structure

Let X be an oriented compact surface, and p ∈ X a fixed point. We fix for the
center of SU(n) a generator and then identify the center with Z/nZ. Let AF,ξ be
the set of flat SU(n) connections over X \ {p} with holonomy d ∈ Z/nZ around
p. We denote by G the group SU(n)

The group of maps X → G from the surface X to the group G with point-wise
multiplication in G, is the gauge group G. It acts on the connection via gauge
transformations

Ag := g−1dg + g−1Ag. (6)

The moduli space of connections is the quotient of the set of connections modulo
these gauge transformations

M := AF,ξ/G ∼= Homd(π1(X \ {p}), G)/G. (7)

The latter equivalence is the fact that this moduli space can be identified with the
space of those group homomorphisms of the fundamental group π1(X \ {p}) for
which the basic loop around p is mapped to d mod n in the center of G, where
the homomorphism are identified modulo conjugation in G.

Let Ms be the moduli space of irreducible flat connections (this corresponds to
irreducible representations). It is a manifold, carries a natural symplectic structure
ω, and an associated hermitian line bundle L which is a quantum line bundle with
respect to the symplectic structure. It is constructed from the WZW cocycle of
the Chern-Simons action. See the appendix for more details and [6] for references
and further information.

3.2. Its Complex Structure

We choose a complex structure σ on X. This structure will induce complex struc-
tures on all introduced objects.

1. X =⇒ Xσ is now a (compact) Riemann surface

2. (Ms, ω) =⇒ (Mσ
s , ωσ) is now a Kähler manifold

3. L =⇒ Lσ becomes a hermitian holomorphic line bundle, in fact, it is a
quantum line bundle with respect to ωσ.
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Hence, Mσ
s is a quantizable Kähler manifold with quantum line bundle Lσ. But

what is the geometry of Mσ
s ? Is it compact? To study these questions we discuss

another description of the moduli space.

4. Holomorphic Rank n Bundles Over Smooth Projective Curves

4.1. The Moduli Space

Recall that the compact Riemann surface Xσ can be identified with a smooth pro-
jective curve C over C. In the following we consider holomorphic vector bundles
over C . First we define for every rank n holomorphic vector bundle E, its determi-
nant line bundle as detE :=

∧n E, and its degree as deg(E) := deg(detE). The
question is: Does there exist a moduli space of isomorphy classes of such bundles?
The answer is: In generally not! We need to restrict our considerations to the sub-
set of isomorphy classes of (Mumford) stable bundles, respectively S-equivalence
classes of semi-stable bundles. A bundle E is stable (respectively semi-stable) iff
for every non-trivial subbundle F of E one has deg(F )/rk (F ) < deg(E)/rk (E)
(respectively ≤). For the S-equivalence relation two semi-stable (but not stable)
bundles are identified if certain associated graded objects are isomorphic.

Let T be a line bundle and n ∈ N. We use the following notations for the moduli
spaces of bundles

Us(n, d), rk (E) = n, deg(E) = d, E stable

Us(n, T ), rk (E) = n, det(E) = T, E stable

U(n, d), rk (E) = n, deg(E) = d, E semi-stable

U(n, T ), rk (E) = n, det(E) = T, E semi-stable.

In the following let [p] be the line bundle corresponding to the divisor p, i.e., the
line bundle which has a non-trivial section with exactly a zero of order one at p
and which is non-vanishing elsewhere. Furthermore let d[p] be its d-tensor power.
In particular, deg d[p] = d.

We have the following properties:

1. M := U(n, d[p]) is always projective algebraic (hence compact).

2. Ms := Us(n, d[p]) is Zariski open and smooth in M , hence a smooth man-
ifold.

3. If gcd(n, d) = 1 then M = Ms, and hence Ms is a compact Kähler mani-
fold.
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4. The singularities of M are rather mild.

5. For the Picard group Pic of isomorphy classes of line bundles we have
Pic(Ms) = Pic(M) = Z · [L], where L is a special positive (respectively
ample) line bundle

6. If we restrict L to Ms then L ∼= Lσ introduced above. Furthermore,
Γhol(Ms, L

m
|

) = Γhol(M,Lm).

7. If g = 2 and n = 2 then M is always smooth.

The fundamental result is

Mσ
s
∼= Us(n, d[p]) = Ms

as complex manifold and as Kähler manifolds, and

Lσ ∼= L

as holomorphic line bundles.

A few names of people involved in showing these claims are Narasimhan, Se-
shadri, Weil, Mumford, Drezet, Ramadas, . . .

4.2. The Verlinde Bundle

The Verlinde spaces are the vector spaces H0(M,Lm) =Γhol(M,Lm) and the
dimension formula (as function of m) is called the Verlinde formula.

These Verlinde spaces are the quantum spaces, and the Berezin-Toeplitz operators

T
(m)
f : H0(M,Lm) → H0(M,Lm)

are the quantum operators. We can apply Theorem 2 (BMS) and use the natural
deformation quantization �BT of Theorem 3. This works without modification if
M = Ms, respectively if M is smooth (e.g., if gcd(n, d) = 1). Otherwise the
singularities need a special treatment, see Andersen [3].

We have to go one step further. If we consider the following diagram of associated
objects we see that the first line does not depend on the complex structure σ, but
the second does.

X −−−−→ (Ms,L
m) −−−−→ Γ∞(Ms,L

m)⏐⏐!choose σ

⏐⏐! ⏐⏐!Πσ,(m)

Xσ −−−−→ (Mσ
s = Ms, (L

σ)m = Lm) −−−−→ Γhol(Ms, L
m)
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If we vary our σ over the Teichmüller space T , (i.e., the space of all complex
structures on X) the first line will give trivial families of objects, the second line
nontrivial families of objects over T .

In particular, over T there is the trivial (infinite dimensional) bundle with fibre
Γ∞(Ms,L

m) which contains the subbundle Vm with fibre Γhol(Ms, L
m). The

bundle Vm is called the Verlinde bundle over T .

Fixing f ∈ C∞(Ms) its Toeplitz operator depends on the complex structure.
Hence, (

T
(m)
f,σ

)
σ∈T

is a family of operators on the Verlinde bundle. In other words T
(m)
f, .

is a section
of End(Vm).

5. The Mapping Class Group (MCG) Action

Over Teichmüller space T we have the bundles Vm and End(Vm). We will discuss
the following points:

1. There exists a naturally defined projectively flat connection ∇ on Vm, the
Axelrod, della Pietra, Witten – Hitchin connection.

2. The MCG operates on the covariantly constant sections of P(Vm).

3. Andersen [1] showed that this action of the MCG is asymptotically faithful
(i.e., given an element γ of the MCG, there is an m such that γ operates
non-trivially).

Recall that the mapping class group(MCG) is defined as

Γ := MCG := Diff+(X)/Diff0(X)

here X is the surface of genus g, Diff+(X) the group of orientation preserving
diffeomorphisms and Diff0(X) the subgroup of diffeomorphisms which are isotop
to the identity.

First note that Γ operates on our geometric objects as follows

1. By definition Γ operates on the surface X

2. It operates on the Teichmüller space. In fact the moduli space Mg of
isomorphism classes of compact genus g Riemann surfaces (respectively
smooth projective curves of genus g) is the quotient T /Γ
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3. It operates on Homd(π1(X \ {p}), G)/G

4. And hence it operates on Mσ
s

∼= Ms, the moduli spaces of irreducible
connections, respectively stable bundles.

5.1. Andersen’s Result

Let ∇ be the Axelrod-della Pietra-Witten – Hitchin (AdPW-H) connection on
Vm which is projectively flat. It induces a flat connection ∇end on End(Vm).
We denote by P(Wm), the space of covariantly constant sections of P(Vm) with
respect to ∇. Then the MCG operates also on P(Wm)

ρm : Γ → Aut(P(Wm)).

Theorem 4. (Andersen, [1]) For g ≥ 3 the map ρm is asymptotically faithful.
More precisely,

∞⋂
m=1

ker(ρm) =

⎧⎪⎨⎪⎩
1, g > 2, or g = 2, n > 2, or

g = 2, n = 2, d odd

{1,H}, g = 2, n = 2, d even

(8)

where H is the hyperelliptic involution, interchanging the branches of the g = 2
hyperelliptic curve.

This says that in the generic case, given a non-trivial element of the mapping class
group there exists a level m such that the element operates non-trivially. This is
the best to be hoped for. In the MCG the Dehn twists φ are elements of infinite
order and it is known that the elements ρm(φ) have only finite order. Hence ρm

can never be faithful for finite m.

5.2. Importance

The assignment
X −→ V (X) = H0(Ms, L

m)

corresponds to a Topological Quantum Field Theory (TQFT). It should be inde-
pendent of the complex structure chosen. The projectively flat connection gives
locally a natural identification between the quantum vector spaces correspond-
ing to different complex structure. Globally the choice reduces to on action of
the mapping class group Γ – (which is also a topological invariant). Hence, this
action gives invariants of the TQFT in question.
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5.3. The Relation to Berezin-Toeplitz Quantization

Note in the following that f ∈ C∞(Ms), i.e., f is a smooth function on the moduli
space of connections, respectively of bundles.

Proposition 5. (Andersen [1]) For σ0, σ1 ∈ T , denote by P end
σ0,σ1

the parallel
transport from σ0 to σ1 in End(Vm), then

||P end
σ0,σ1

T
(m)
f,σ0

− T
(m)
f,σ1

|| = O(1/m). (9)

To show this Andersen uses Theorem 2 (BMS), the deformation quantization of
Theorem 3 and carries out further hard and ingenious work. This proposition
implies that the Toeplitz operator are asymptotically covariantly constant.

Proposition 6. (Andersen [1]) Let φ ∈ Γ, such that φ ∈ kerρm, then

T
(m)
f,σ

= P end
φ(σ),σT

(m)
f◦φ,φ(σ). (10)

Theorem 7. (Andersen [1]) Let φ ∈ Γ, such that φ ∈
⋂

m∈N
kerρm, then φ

induces the identity on Ms.

Proof: By Proposition 6 and the linearity in the function argument of the Toeplitz
operators we have

T
(m)
f−f◦φ,σ = T

(m)
f,σ − T

(m)
f◦φ,σ = P end

φ(σ),σT
(m)
f◦φ,φ(σ) − T

(m)
f◦φ,σ.

We take the norm of this expression and use Proposition 5 to conclude

||T
(m)
f−f◦φ,σ|| = O(1/m)

or,

lim
m→∞

||T
(m)
f−f◦φ,σ

|| = 0.

This implies |f − f ◦ φ|∞ = 0 by Theorem 2, Part a, for all f , hence φ = id
considered as element acting on the moduli space.

Now Theorem 4 follows from known results which elements of the mapping class
group act trivially on the moduli space of connections.
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6. Appendix: Symplectic Form on M

Here we consider only the case without holonomy. Let AF be the affine space of
all flat SU(n) connections, and g = su(n). The tangent vectors at A ∈ AF can
be given as α, β ∈ Ω1(X) ⊗ g. On this space

ΩA(α, β) =
i

2π

∫
X

Tr(α ∧ β)

is a skew-symmetric form which is invariant under the gauge group and hence de-
scends to M = AF /G. If we restrict the situation to the irreducible connections,
then the quotient Ms = As

F /G is a manifold and Ω descends to a symplectic form
on Ms

To define the bundle one uses the Chern-Simons (CS) action. Let N be a three-
manifold with boundary ∂N = X. For a connection Ã on N

CS(Ã) :=
1

4π

∫
N

Tr(Ã ∧ dÃ +
2

3
Ã ∧ Ã ∧ Ã).

For a connection on X we take any extension Ã to N . Also for a gauge transfor-
mation g ∈ G we take any extension g̃ : N → G. Then

θ(A, g) := exp(i(CS(Ãg̃) − CS(Ã))

is a U(1)-valued well-defined cocycle (the WZW cocycle). It is used to construct
the bundle L over Ms as quotient

L := (As
F × C)/ ∼ → As

F /G = Ms

where (A, z) ∼ (Ag, θ(A, g)z).

The one form η(α) = 1
4π

∫
X

Tr(A ∧ α) on AF induces a unitary connection on
L, whose curvature is essentially equal to the symplectic form.
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