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Abstract
We consider aspects of the relationship between nilpotent orbits in a semisimple real Lie algebra g and those in 

its complexification g. In particular, we prove that two distinct real nilpotent orbits lying in the same complex orbit are 
incomparable in the closure order. Secondly, we characterize those g having non-empty intersections with all nilpotent 
orbits in g. Finally, for g quasi-split, we characterize those complex nilpotent orbits containing real ones.

Keywords: Nilpotent orbit; Quasi-split Lie algebra; Kostant-
Sekiguchi correspondence

1. Introduction
1.1 Background and statement of results

Real and complex nilpotent orbits have received considerable 
attention in the literature. The former have been studied in a variety 
of contexts, including differential geometry, symplectic geometry, 
and Hodge theory [1]. Also, there has been some interest in concrete 
descriptions of the poset structure on real nilpotent orbits in specific 
cases [2,3]. By contrast, complex nilpotent orbits are studied in algebraic 
geometry [4,5,6] and representation theory — in particular, Springer 
Theory [7].

Attention has also been given to the interplay between real and 
complex nilpotent orbits, with the Kostant-Sekiguchi Correspondence 
being perhaps the most famous instance [8]. Accordingly, the present 
article provides additional points of comparison between real and 
complex nilpotent orbits. Specifically, let g be a finite-dimensional 
semisimple real Lie algebra with complexification g. Each real 
nilpotent orbit  ⊆ g lies in a unique complex nilpotent orbit  ⊆ g, 
the complexification of . The following is our main result.  

Theorem 1: The process of nilpotent orbit complexification has the 
following properties.

 (i) Every complex nilpotent orbit is realizable as the complexification 
of a real nilpotent orbit if and only if g is quasi-split and has no simple 
summand of the form so (2n+1, 2n −1).

(ii) If g is quasi-split, then a complex nilpotent orbit Q ⊆ g is 
realizable as the complexification of a real nilpotent orbit if and only if 
Q is invariant under conjugation with respect to the real form g ⊆ g.

(iii) If 1,2 ⊆ g are real nilpotent orbits satisfying (1)=(2), 
then either 1=2 or these two orbits are incomparable in the closure order.

1.2 Structure of the article

We begin with an overview of nilpotent orbits in semisimple real 
and complex Lie algebras. In recognition of Theorem 1 (iii), and of the 
role played by the unique maximal complex nilpotent orbit Qreg(g) 
throughout the article, Section 2.2 reviews the closure orders on the sets 
of real and complex nilpotent orbits. In Section 2.3, we recall some of 
the details underlying the use of decorated partitions to index nilpotent 
orbits.

Section 3 is devoted to the proof of Theorem 1. In Section 3.1, we 
represent nilpotent orbit complexification as a poset map  ϕ

g
 between 

the collections of real and complex nilpotent orbits. Next, we show this 

map to have a convenient description in terms of decorated partitions. 
Section 3.2 then directly addresses the proof of Theorem 1 (i), formulated 
as a characterization of when ϕ

g
 is surjective. Using Proposition 2, we 

reduce this exercise to one of characterizing surjectivity for g simple. 
Together with the observation that surjectivity implies g is quasi-split 
and is implied by g being split, Proposition 2 allows us to complete the 
proof of Theorem 1 (i).

We proceed to Section 3.3, which provides the proof of Theorem 
1 (ii). The essential ingredient is Kottwitz’s work [9]. We also include 
Proposition 3, which gives an interesting sufficient condition for a 
complex nilpotent orbit to be in the image of ϕ

g
.

In Section 3.4, we give a proof of Theorem 1 (iii). Our proof makes 
extensive use of the Kostant-Sekiguchi Correspondence, the relevant 
parts of which are mentioned.

2. Nilpotent Orbit Generalities
2.1 Nilpotent orbits

 We begin by fixing some of the objects that will persist throughout 
this article. Let g be a finite-dimensional semisimple real Lie algebra 
with adjoint group G. Also, let g:=g⊗ be the complexification of g, 
whose adjoint group is the complexification G. One has the adjoint 
representations

Ad:G→GL(g) and Ad:G→ GL(g)

of G and G, respectively. Differentiation then gives the adjoint 
representations of g and g, namely

 ad:g→gl(g) and ad:g→gl(g).

Recall that an element  ξ∈g (resp. ξ∈g) is called nilpotent 
if ad(ξ):g→g (resp. ad(ξ):g→g) is a nilpotent vector space 
endomorphism. The nilpotent cone  (g) (resp. (g)) is then the 
subvariety of nilpotent elements of g (resp. g). A real (resp. complex) 
nilpotent orbit is an orbit of a nilpotent element in g (resp. g) under the 
adjoint representation of G (resp. G). Since the adjoint representation 
occurs by means of Lie algebra automorphisms, a real (resp. complex) 
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nilpotent orbit is equivalently defined to be a G -orbit (resp. G-orbit) 
in  (g) (resp. (g)). By virtue of being an orbit of a smooth G -action, 
each real nilpotent orbit is an immersed submanifold of g. However, as 
G is a complex linear algebraic group, a complex nilpotent orbit is a 
smooth locally closed complex subvariety of g.

2.2 The closure orders

The sets  (g)/G and  (g)/G of real and complex nilpotent 
orbits are finite and carry the so-called closure order. In both cases, this 
is a partial order defined by

1 ≤2 if and only if 1 2.⊆                       (1)

In the real case, one takes closures in the classical topology on 
g. For the complex case, note that a complex nilpotent orbit Q is a 
constructible subset of g, so that its Zariski and classical closures agree. 
Accordingly, Q  shall denote this common closure.

Example 1: Suppose that g=sln(), whose adjoint group is 
G=PSLn(). The nilpotent elements of sln() are precisely the 
nilpotent n × n matrices, so that the nilpotent PSLn() -orbits are 
exactly the (GLn()-) conjugacy classes of nilpotent matrices. The latter 
are indexed by the partitions of n via Jordan canonical forms. Given a 
partition λ=(λ1,λ2,…,λk) of n, let Qλ be the PSLn()-orbit of the nilpotent 
matrix with Jordan blocks of sizes λ1,λ2,…,λk, read from top-to-bottom. 
It is a classical result of Gerstenhaber [10] that Qλ≤Qµ if and only if  λ≤μ 
in the dominance order [11].

The poset  (g)/G has a unique maximal element Qreg(g), called 
the regular nilpotent orbit. It is the collection of all elements of g which 
are simultaneously regular and nilpotent. In the framework of Example 
1, Qreg (sln()) corresponds to the partition(n).

2.3 Partitions of nilpotent orbits

Generalizing Example 1, it is often natural to associate a partition 
to each real and complex nilpotent orbit. One sometimes endows these 
partitions with certain decorations and then uses decorated partitions 
to enumerate nilpotent orbits. It will be advantageous for us to recall 
the construction of the underlying (undecorated) partitions. Our 
exposition will be largely based on Chapters 5 and 9 of [12].

Suppose that g comes equipped with a faithful representation g 
⊆ gl(V)=End(V), where V is a finite-dimensional vector space over 
= or . The choice of V determines an assignment of partitions to 
nilpotent orbits in both g and g. To this end, fix a real nilpotent orbit 
 ⊆ (g) and choose a point ξ∈ . We may include ξ as the nilpositive 
element of an sl2() –triple (ξ,h,n), so that

[ξ,n]=h,[h,ξ]=2ξ,[h,n]=− 2n 

Regarding V as an sl2()-module, one has a decomposition into 
irreducibles,

=1
= ,

k

j
j

V Vλ⊕
where 

j
Vλ  denotes the irreducible λj -dimensional representation of 

sl2() over . Let us require that λ1 ≥ λ2 ≥ … ≥ λk, so that (λ1,λ2,…,λk) is 
a partition of dim(V). Accordingly, we define the partition of  to be

λ():=(λ1,λ2,…,λk).

It can be established that λ() depends only on .

The faithful representation V of g canonically gives a faithful 
representation V  of g. Indeed, if V is over , then one has an inclusion 
g ⊆ gl(V) (so =V V ). If V is over , then the inclusion g ⊆ gl(V) 

complexifies to give a faithful representation g ⊆ gl(V) (ie. =V V

 ). 
In either case, one proceeds in analogy with the real nilpotent case, 
using the faithful representation to yield a partition λ(Q) of a complex 
nilpotent orbit Q ⊆ (g). The only notable difference with the real case 
is that sl2() is replaced with sl2().

Example 2: One can use the framework developed above to index 
the nilpotent orbits in sl2() using the partitions of n. This coincides 
with the indexing given in Example 1.

Example 3: The nilpotent orbits in sl2() are indexed by the 
partitions of n, after one replaces certain partitions with decorated 
counterparts. Indeed, if λ is a partition of n having only even parts, we 
replace λ with the decorated partitions λ+ and λ−. Otherwise, we leave 
λ undecorated.

Example 4: Suppose that n ≥ 3 and consider g=su(p,q) with 1≤q≤p 
and p+q=n. This Lie algebra is a real form of sln(). Now, let us regard a 
partition of n as a Young diagram with n boxes. Furthermore, recall that 
a signed Young diagram is a Young diagram whose boxes are marked 
with + or −, such that the signs alternate across each row [12]. We 
restrict our attention to the signed Young diagrams of signature (p,q), 
namely those for which + and − appear with respective multiplicities p 
and q. It turns out that the nilpotent orbits in su(p,q) are indexed by the 
signed Young diagrams of signature (p,q). 

Example 5: Suppose that g=so2n() with n ≥ 4. Taking our faithful 
representation to be 2n, nilpotent orbits in so2n() are assigned 
partitions of 2n. The partitions realized in this way are those in which 
each even part appears with even multiplicity. One extends these 
partitions to an indexing set by replacing each λ having only even parts 
with the decorated partitions λ+ and λ−.

Example 6: Suppose that n ≥ 3 and consider g=so(p,q) with 
1≤q≤p and p+q=n. Note that so(p,q) is a real form of g=son(). As 
with Example 4, we will identify partitions of n with Young diagrams 
having n boxes. We begin with the signed Young diagrams of signature 
(p,q) such that each even-length row appears with even multiplicity 
and has its leftmost box marked with +. To obtain an indexing set for 
the nilpotent orbits in so(p,q), we decorate two classes of these signed 
Young diagrams Y. Accordingly, if Y has only even-length rows, then 
remove Y and add the four decorated diagrams Y+,+,Y+,−,Y−,+ and Y−,−. 
Secondly, suppose that Y has at least one odd-length row, and that each 
such row has an even number of boxes marked +, or that each such row 
has an even number of boxes marked −. In this case, we remove Y and 
add the decorated diagrams Y+ and Y. 

3. Nilpotent Orbit Complexification
3.1 The complexification map

There is a natural way in which a real nilpotent orbit determines a 
complex one. Indeed, the inclusion (g) ⊆ (g) gives rise to a map.

ϕ
g
:(g)/G→(g)/G

 .

Concretely,  is just the unique complex nilpotent orbit containing 
, and we shall call it the complexification of . Let us then call ϕ

g
 the 

complexification map for g.

It will be prudent to note that the process of nilpotent orbit 
complexification is well-behaved with respect to taking partitions. 
More explicitly, we have the following proposition.
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Proposition 1: Suppose that g is endowed with a faithful 
representation g ⊆ gl(V). If  is a real nilpotent orbit, then λ()=λ().

Proof: Choose a point ξ∈ and include it in an sl2()-triple (ξ,h,η) 
as in Section 2.3. Note that (ξ,h,η) is then additionally an sl2()-triple 
in g. Hence, we will prove that the faithful representation V  of g 
decomposes into irreducible sl2()-representations according to the 
partition λ().

Let us write λ()=(λ1,…,λk), so that

=1
=

k

jj
V Vλ⊕                       (2)

is the decomposition of V into irreducible sl2()-representations. If V 
is over , then =V V  and (2) is a decomposition of V  into irreducible 
sl2()-representations. If V is over , then =V V

  and

=1
= ( )

k

jj
V Vλ⊕ 

is the decomposition of V  into irreducible representations of sl2(). In 
each of these two cases, we have λ()=λ().

Proposition 1 allows us to describe ϕ
g
 in more combinatorial terms. 

To this end, fix a faithful representation g ⊆ gl(V). As in Examples 2-6, 
we obtain index sets I(g) and I(g) of decorated partitions for the real 
and complex nilpotent orbits, respectively. We may therefore regard ϕ

g
 

as a map

ϕ
g
: I(g) → I(g).

Now, let P(g) be the set of all partitions of the form λ(Q), with Q ⊆ 
g a complex nilpotent orbit. One has the map

I(g) → P(g),

sending a decorated partition to its underlying partition. Proposition 1 
is then the statement that the composite map

( ) ( ) ( )I I P
ϕ

→ →gg g g 

sends an index in I(g) to its underlying partition. Let us denote this 
composite map by  ψ

g
:I(g)→P(g).

We will later give a characterization of those semisimple real Lie 
algebras g for which ϕ

g
 is surjective. To help motivate this, we investigate 

the matter of surjectivity in some concrete examples.

Example 7: Recall the parametrizations of nilpotent orbits in 
g=sl2() and g=sl2() outlined in Examples 3 and 2, respectively. 
We see that I(g)=P(g) and ϕ

g
= ψ

g
. The surjectivity of ϕ

g
 then follows 

immediately from that of ψ
g
.

Example 8: Let the nilpotent orbits in g=su(n,n) be parametrized 
as in Example 4. We then have g=sl2n(), whose nilpotent orbits are 
indexed by the partitions of 2n. Given such a partition λ, let Y denote 
the corresponding Young diagram. Since Y has an even number of 
boxes, it has an even number, 2k, of odd-length rows. Label the leftmost 
box in  k of these rows with +, and label the leftmost box in each of 
the remaining k rows with −. Now, complete this labelling to obtain 
a signed Young diagram Y , noting that Y  then has signature (n,n). 
Hence, Y  corresponds to a nilpotent orbit in su(n,n) and ( ) =Yψ λ

g . 
It follows that ψ

g
 is surjective. Since I(g)=P(g) and ϕ

g
= ψ

g
, we have 

shown ϕ
g
 to be surjective. A similar argument establishes surjectivity 

when g=su(n+1,n).

Example 9: Let us consider g=so(2n+2,2n), with nilpotent orbits 
indexed as in Example 6. Noting Example 5, a partition λ of 4n+2 
represents a nilpotent orbit in g=so4n+2() if and only if each even part 

of λ occurs with even multiplicity. Since 4n+2 is even and not divisible 
by 4, it follows that any such λ has exactly 2k odd parts for some k ≥ 1 . 
Let Y be the Young diagram corresponding to λ, and label the leftmost 
box in k−1 of the odd-length rows with +. Next, label the leftmost box 
in each of k−1 different odd-length rows with −. Finally, use + to label 
the leftmost box in each of the two remaining odd-length rows. Let Y  
be any completion of our labelling to a signed Young diagram, such that 
the leftmost box in each even-length row is marked with +. Note that Y  
has signature (2n+2,2n). It follows that Y  represents a nilpotent orbit 
in so(2n+2,2n) and ( ) =Yψ λ

g . Furthermore, I(g)=P(g) and ϕ
g
= ψ

g
, 

so that ϕ
g
 is surjective. 

Example 10: Suppose that g=so(2n+2,2n−1), whose nilpotent 
orbits are parametrized in Example 6. Let the nilpotent orbits in 
g=so4n() be indexed as in Example 5. There exist partitions of 4n 
having only even parts, with each part appearing an even number of 
times. Let λ be one such partition, which by Example 6 represents a 
nilpotent orbit in so4n(). Note that every signed Young diagram with 
underlying partition λ must have signature (2n,2n). In particular, λ 
cannot be realized as the image under ψ

g
 of a signed Young diagram 

indexing a nilpotent orbit in so(2n+2,2n−1). It follows that ψ
g
 and ϕ

g 

are not surjective.

3.2 Surjectivity

 We now address the matter of classifying those semisimple real Lie 
algebras g for which ϕ

g
 is surjective. To proceed, we will require some 

additional machinery. Let p ⊆ g be the (−1)-eigenspace of a Cartan 
involution, and let a be a maximal abelian subspace of p. Also, let h be 
a Cartan subalgebra of g containing a, and choose a fundamental Weyl 
chamber C ⊆ h. Given a complex nilpotent orbit Q ⊆ g, there exists 
an sl2()-triple (ξ,h,η) in g with the property that ξ∈Q and h∈C. The 
element h∈C is uniquely determined by this property, and is called the 
characteristic of Q. 

Theorem 1 of [13] then states that Qg ≠∅ if and only if h∈a. If g is 
split, then a=h, and the following lemma is immediate.

Lemma 1: If g is split, then ϕ
g
 is surjective.

Let us now consider necessary conditions for surjectivity. To this 
end, recall that g is called quasi-split if there exists a subalgebra b 
⊆ g such that b is a Borel subalgebra of g. However, the following 
characterization of being quasi-split will be more suitable for our 
purposes.

Lemma 2: The Lie algebra g is quasi-split if and only if Qreg(g) 
is in the image of ϕ

g
. In particular, g being quasi-split is a necessary 

condition for ϕ
g
 to be surjective.

Proof: Proposition 5.1 of [14], states that g is quasi-split if and only 
if g contains a regular nilpotent element of g. Since Qreg(g) consists 
of all such elements, this is equivalent to having Qreg(g)∩g ≠∅ hold. 
This latter condition holds precisely when Qreg(g) is in the image of ϕ

g
.

Lemmas 1 and 2 establish that ϕ
g
 being surjective is a weaker 

condition than having g be split, but stronger than having g be quasi-
split. Furthermore, since su(n,n) is not a split real form of sl2n(), 
Example 8 establishes that surjectivity is strictly weaker than g being 
split. Yet, as so(2n+2,2n−1) is a quasi-split real form of so4n(), Example 
10 demonstrates that surjectivity is strictly stronger than having g be 
quasi-split. To obtain a more precise measure of the strength of the 
surjectivity condition, we will require the following proposition.

Proposition 2: Suppose that g decomposes as a Lie algebra into

http://dx.doi.org/10.4172/1736-4337.S2-012
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=1
= ,

k

j
j
⊕g g

Where g1,...,gk are simple real Lie algebras. Let G1,…,Gk denote the 
respective adjoint groups.

 (i) The map  ϕ
g
: (g)/G→(g)/G is surjective if and only each 

orbit complexification map : ( ) / (( ) ) / ( )j j j jj
G Gϕ →g g g     is 

surjective.

 (ii) The Lie algebra g is quasi-split if and only if each summand gj 
is quasi-split.

Proof: For each j∈{1,…,k}, let πj:g→gj be the projection map. Note 
that ξ ∈g is nilpotent if and only if πj(ξ) is nilpotent in gj for each j. It 
follows that

=1

: ( ) ( )
k

j
j

π → ∏g g 

=1( ( ))k
j jξ π ξ

defines an isomorphism of real varieties. Note that 
=1

= k
jj

G G∏ , with the 
former group acting on (g) and the latter group acting on the product 
of nilpotent cones.

One then sees that π is G-equivariant, so that it descends to a 
bijection

=1

: ( ) / ( ) / .
k

j j
j

G Gπ → ∏g g 

Analogous considerations give a second bijection

=1

: ( ) / (( ) ) / ( ) .
k

j j
j

G Gπ → ∏g g     

Furthermore, we have the commutative diagram

1

1

1

( ) / ( ) /

( ) / (( ) ) / ( )

j

k
j jj

k

j

k
j jj

G G

G G

π

π

ϕ ϕ

=

=

=

→

↓ ↓

→

∏
∏

∏


   

 

 

g
g

g g

g g

                             (3)

Hence, ϕ
g is surjective if and only if =1

k

j j
ϕ∏ g  is so, proving (i).

By Lemma 2, proving (ii) will be equivalent to proving that Qreg(g) 
is in the image of ϕ

g
 if and only if Qreg((gj)) is in the image of 

j
ϕg  for 

all j. Using the diagram (3), this will follow from our proving that the 
image of Qreg(g) under π   is the k-tuple of the regular nilpotent orbits 
in the (gj), namely that

reg reg =1( ( )) = ( (( ) )) .k
j jπ Q Qg g  

                 (4)

To see this, note that reg=1
(( ) )k

jj
Q∏ g   is the 

=1
= ( )k

jj
G G∏  -orbit 

of maximal dimension in =1
(( ) )k

jj∏ g  . This orbit is therefore the 
image of Qreg(g) under the G-equivariant variety isomorphism 

=1
( ) (( ) )k

jj
≅ ∏g g   , implying that (4) holds.

In light of Proposition 2, we address ourselves to classifying 
the simple real Lie algebras g with surjective orbit complexification 
maps ϕ

g
. Noting Lemma 2, we may assume g to be quasi-split. Since 

g being split is a sufficient condition for surjectivity, we are further 
reduced to finding those quasi-split simple g which are non-split but 
have surjective ϕ

g
. It follows that g belongs to one of the four families 

su(n,n), su(n+1,n), so(2n+2,2n), and so(2n+1,2n−1), or that g=EII, 
the non-split, quasi-split real form of E6 [15]. Our examples establish 

that ϕ
g
 is surjective for g=su(n,n), g=su(n+1,n), and g=so(2n+2,2n), 

while Example 10 demonstrates that surjectivity does not hold for 
g=so(2n+1,2n−1). Also, a brief examination of the computations in 
[3] reveals that ϕ

g
 is surjective for g=EII. We then have the following 

characterization of the surjectivity condition.

Theorem 2: If g is a semisimple real Lie algebra, then ϕ
g
 is surjective 

if and only if g is quasi-split and has no simple summand of the form 
so(2n+1,2n−1).

Proof: If ϕ
g
 is surjective, then Lemma 2 implies that g is quasi-

split. Also, Proposition 2 implies that each simple summand of g has 
a surjective orbit complexification map, and the above discussion then 
establishes that g has no simple summand of the form so(2n+1,2n−1). 
Conversely, assume that g is quasi-split and has no simple summand of 
the form so(2n+1,2n−1). By Proposition 2 (ii), each simple summand 
of g is quasi-split. Furthermore, the above discussion implies that 
the only quasi-split simple real Lie algebras with non-surjective orbit 
complexification maps are those of the form so(2n+1,2n−1). Hence, 
each simple summand of g has a surjective orbit complexification map, 
and Proposition 2 (i) implies that ϕ

g
 is surjective.

3.3 The Image of φ
g

Having investigated the surjectivity of ϕ
g
, let us consider the more 

subtle matter of characterizing its image. Accordingly, let σ
g
:g→g 

denote complex conjugation with respect to the real form g ⊆ g. The 
following lemma will be useful.

Lemma 3: If Q ⊆ g is a complex nilpotent orbit, then so is σ
g
(Q).

Proof: Note that σ
g
 integrates to a real Lie group automorphism

τ:(G)SC→(G)SC,

where (G)SC is the connected, simply-connected Lie group with Lie 
algebra g. If g∈ (G)SC and ξ∈g, then

 σ
g
(Ad(g)(ξ )=Ad(τ(g))(σ

g
(ξ)).

Hence, σ
g
 sends the (G)SC -orbit of ξ to the (G)SC -orbit of σ

g
(ξ). To 

complete the proof, we need only observe that (G)SC -orbits coincide 
with G-orbits in g, and that σ

g
(ξ) is nilpotent whenever ξ is nilpotent.

We may now use σ
g
 to explicitly describe the image of ϕ

g
 when g is 

quasi-split.

Theorem 3: If Q is a complex nilpotent orbit, the condition 
σ

g
(Q)=Q is necessary for Q to be in the image of ϕ

g
. If g is quasi-split, 

then this condition is also sufficient.

Proof: Assume that Q belongs to the image of ϕ
g
, so that there exists 

ξ∈Q ∩g. Note that σ
g
(Q) is then the complex nilpotent orbit containing 

σ
g
(ξ)=ξ, meaning that σ

g
(Q)=Q. Conversely, assume that g is quasi-split 

and that σ
g
(Q)=Q. The latter means precisely that Q is defined over   

with respect to the real structure on g induced by the inclusion g ⊆ g. 
Theorem 4.2 of [9] then implies that Q∩g≠∅.

Using Theorem 3, we will give an interesting sufficient condition for 
a complex nilpotent orbit to be in the image of ϕ

g
 when g is quasi-split. 

In order to proceed, however, we will need a better understanding of 
the way in which σ

g
 permutes complex nilpotent orbits. To this end, we 

have the following lemma.

Lemma 4: Suppose that g comes with the faithful representation 
g ⊆ gl(V), where V is over . If Q is a complex nilpotent orbit, then  
λ(σ

g
(Q))=λ(Q).
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Proof: Choose an sl2()-triple (ξ,h,η) in g with ξ∈Q. Since σ
g
 

preserves Lie brackets, it follows that (σ
g
(ξ),σ

g
(h),σ

g
(η)) is also an 

sl2()-triple. The exercise is then to show that our two sl2()-triples 
give isomorphic representations of sl2() on =V V

 . For this, it will 
suffice to prove that h and σ

g
(h) act on V with the same eigenvalues, 

and that their respective eigenspaces for a given eigenvalue are equi-
dimensional. To this end, let σV:V→V be complex conjugation with 
respect to V ⊆ V. Note that

σ
g
(h).(σV(x))=σV(h.x)

for all x∈V, where . is used to denote the action of g on V. Hence, if x 
is an eigenvector of h with eigenvalue λ∈, then σV(x) is an eigenvector 
of σ

g
(h) with eigenvalue λ. We conclude that h and σ

g
(h) have the same 

eigenvalues. Furthermore, their respective eigenspaces for a fixed 
eigenvalue are related by σV, and so are equi-dimensional.

We now have the following

Proposition 3: Let g be a quasi-split semisimple real Lie algebra 
endowed with a faithful representation g ⊆ gl(V), where V is over . If 
Q is the unique complex nilpotent orbit with partition λ(Q), then Q is 
in the image of ϕ

g
.

Proof: By Lemma 4, σ
g
(Q) is a complex nilpotent orbit with 

partition λ(Q), and our hypothesis on Q gives σ
g
(Q)=Q. Theorem 3 

then implies that Q is in the image of ϕ
g
.

A few remarks are in order.

Remark 1: One can use Proposition 3 to investigate whether ϕ
g
 

is surjective without appealing to the partition-type description of ϕ
g
 

discussed in Section 3.1. For instance, suppose that g=so(2n+2,2n), a 
quasi-split real form of g=so4n+2(). We refer the reader to Example 5 
for the precise assignment of partitions to nilpotent orbits in so4n+2(). 
In particular, note that a complex nilpotent orbit is the unique one with 
its partition if and only if the partition does not have all even parts. 
Furthermore, as discussed in Example 9, there do not exist partitions 
of 4n+2 having only even parts such that each part appears with even 
multiplicity. Hence, each complex nilpotent orbit is specified by its 
partition, so Proposition 3 implies that ϕ

g
 is surjective.

Remark 2: The converse of Proposition 3 does not hold. Indeed, 
suppose that g=so(2n,2n), the split real form of g=so4n(). Recalling 
Example 5, every partition of 4n with only even parts, each appearing 
with even multiplicity, is the partition of two distinct complex nilpotent 
orbits. Yet, Lemma 1 implies that ϕ

g
 is surjective, so that these orbits are 

in the image of ϕ
g
.

3.4 Fibres

In this section, we investigate the fibres of the orbit complexification 
map ϕ

g
:(g)/G→(g)/G. In order to proceed, it will be necessary to 

recall some aspects of the Kostant-Sekiguchi Correspondence. To this 
end, fix a Cartan involution  θ:g→g. Letting k and p denote the 1 and 
(−1)-eigenspaces of θ, respectively, we obtain the internal direct sum 
decomposition

g=k ⊕p.

This gives a second decomposition

g=k⊕p,

where k and p are the complexifications of k and p, respectively. Let 
K ⊆ G and K ⊆ G be the connected closed subgroups with respective 
Lie algebras k and k. The Kostant-Sekiguchi Correspondence is one 

between the nilpotent orbits in g and the K-orbits in the (K-invariant) 
subvariety p∩(g) of g.

Theorem 4: (The Kostant-Sekiguchi Correspondence) There is a 
bijective correspondence
(g)/G→(p∩(g))/K

 Ú 

with the following properties. 

(i) It is an isomorphism of posets, where (p∩(g))/K is endowed 
with the closure order (??).

(ii) If   is a real nilpotent orbit, then  and Ú are K-equivariantly 
diffeomorphic.

The first property was established by Barbasch and Sepanski in 
[16], while the second was proved by Vergne in [17]. Each paper makes 
extensive use of Kronheimer’s desciption of nilpotent orbits from [18].

We now prove two preliminary results, the first of which is a direct 
consequence of the Kostant-Sekiguchi Correspondence.

Lemma 5: If  is a real nilpotent orbit, then  is the unique G-orbit 
of maximal dimension in  .

Proof: Suppose that ′≠ is another G -orbit lying in  . By 
Property (i) in Theorem 4, it follows that (′)Ú is an orbit in ( )∨  
different from Ú. However, Ú is an orbit of the complex algebraic 
group K under an algebraic action, and therefore is the unique orbit 
of maximal dimension in its closure. Hence, dim((′)Ú) <dim(Ú). 
Property (ii) of Theorem 4 implies that the Kostant-Sekiguchi 
Correspondence preserves real dimensions, so that dim(′) <dim().

We will also require some understanding of the relationship 
between the G-centralizer of ξ∈g and the G-centralizer of ξ, viewed 
as an element of g. Denoting these centralizers by Gξ and (G)ξ 
respectively, we have the following lemma.

Lemma 6: If ξ∈g, then Gξ is a real form of (G)ξ.

Proof: We are claiming that the Lie algebra of (G)ξ is the complexification 
of the Lie algebra of Gξ. The former is (g)ξ={η∈g:[η,ξ]=0}, while the Lie 
algebra of Gξ is gξ={η∈g:[η,ξ]=0}. If η=η1+iη2∈g with η1,η2∈g, then 
[η,ξ]=[η1, ξ]+i[η2, ξ]. So, η∈(g)ξ if and only if η1,η2∈gξ. This is equivalent to 
the condition that η∈(gξ) ⊆ g, so that (g)ξ=(gξ).

We may now prove the main result of this section.

Theorem 5: If 1 and 2 are real nilpotent orbits with the property 
that (1)=(2) , then either 1=2 or 1 and 2 are incomparable in 
the closure order. In other words, each fibre of ϕ

g
 consists of pairwise 

incomparable nilpotent orbits.

Proof: Assume that 1 and 2 are comparable. Without the loss 
of generality, 1 2⊆  . We will prove that 1=2, which by Lemma 
5 will amount to showing that the dimensions of 1 and 2 agree. 
To this end, choose points ξ1∈1 and ξ2∈2. Since (1)=(2), 
we have 

1 2
(( ) ) = (( ) )dim dimG Gξ ξ   . Using Lemma 6, this becomes 

1 2
( ) = ( )dim dimG Gξ ξ  . Hence, the (real) dimensions of 1 and 2 

coincide.

Proof: If is surjective, and then Lemma 2 implies that is quasi-split. 
Also, Proposition 2 implies that each simple summand of has a surjective 
orbit complexification map, and the above discussion then establishes 
that has no simple summand of the form. Conversely, assume that is 
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quasi-split and has no simple summand of the form. By Proposition 
2 (ii), each simple summand of is quasi-split. Furthermore, the above 
discussion implies that the only quasi-split simple real Lie algebras 
with non-surjective orbit complexification maps are those of the form. 
Hence, each simple summand of has a surjective orbit complexification 
map, and Proposition 2 (i) implies that is surjective.
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