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Introduction

The notion of a left-symmetric algebra appeared for the first
time in the work of Koszul [1] and Vinberg [2] concerning bounded
homogeneous domains and convex homogeneous cones, respectively.
Over the field of real numbers, left-symmetric algebras are of
special interest because of their role in the differential geometry of
affine manifolds (i.e. smooth manifolds with flat torsion-free affine
connections), and in the representation theory of Lie groups [3,4]. In
fact, for a given simply connected Lie group G with Lie algebra G, the
left-invariant affine structures on G are in one-to-one correspondence
with the left-symmetric structures on G compatible with the Lie
structure [5].

On the other hand, it is well known that there is a one-to-one
correspondence between left-invariant affine structures on a Lie group
G and locally simply transitive affine actions of G on an n-dimensional
real vector space V [5]. The classification of left-invariant affine
structures on a given Lie group G is then reduced to the classification
of compatible left-symmetric products on the Lie algebra G of G. It has
been proved [6] that a simply connected Lie group G which acts simply
transitively on R” by affine transformations is necessarily solvable. Since
a few years, there has been a growing interest in the study of simply
transitive affine actions of Lie groups on R". This interest is mostly due
to the example of Benoist [7], who constructed a simply connected
nilpotent Lie group not admitting any locally simply transitive affine
action on R". This example provided a negative answer to the following
question of Milnor [3]. Does any simply connected solvable Lie group
admit a simply transitive affine action on R" 2

From another point of view, there is also the question of classifying
all simply transitive affine actions of a given solvable Lie group G
admitting such an action. This question, even in the abelian case
G = R, seems to be very hard. When G is nilpotent, the classification
has been completely achieved up to dimension four [8,9].

Recently, a method based on the theory of extensions of left-
symmetric algebras has been proposed [10] to classify complete left-
invariant affine real structures on a given solvable Lie group of low
dimension. Since the classification in the case of solvable unimodular
Lie groups of dimension three was obtained [8], we will use that method
to carry out in this paper the classification of complete left-invariant
affine structures on three-dimensional solvable non-unimodular Lie
groups.

The paper is organized as follows. In section 2, we will briefly recall
some necessary definitions and basic results on left-symmetric algebras

and their extensions. In section 3, using the classification of the three-
dimensional complex simple left-symmetric algebras given [11] and a
result [12], we shall first show that any complete real left-symmetric
algebra A, of dimension 3 whose Lie algebra is solvable and non-
unimodular is not simple. Therefore, we can get A, as an extension of
complete left-symmetric algebras. By using the Lie group exponential
maps, we shall deduce the classification of all complete left-invariant
affine structures on solvable non-unimodular Lie groups of dimension
3 in terms of simply transitive actions of subgroups of the affine group
Aff (R*) = GL(R3)>< R® (see Theorem 13).

Throughout this paper, all considered vector spaces, Lie algebras,
and left-symmetric algebras are supposed to be over the field R. We
shall also suppose that all considered Lie groups are simply connected.

Left-symmetric Algebras and their Extensions

Let A be a finite-dimensional vector space over R. A left-symmetric
product on A is a bilinear product that we denote by x - y satisfying

(x-y)z=(y-x)z=x-(y-z)-y-(x-2), (1)

for all [x.»]=x-y-»-x_. In this case, A together with a left-symmetric
product is called left-symmetric algebra.

Now if A is a left-symmetric algebra, then the commutator
[x.y]=x-y-y-x )

defines a structure of Lie algebra on A, called the associated Lie
algebra. On the other hand, if G is a Lie algebra with a left-symmetric
product satisfying (2), then we say that this left-symmetric structure is
compatible with the Lie structure on G.

Let G be a simply connected Lie group with a left-invariant affine
connection V . Define a product « on the Lie algebra G of G by

x-y=V.y,

for all x, ye G . Then, the flat and torsion-free conditions on V
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correspond to conditions (1) and (2), respectively.

Conversely, If G is a simply connected Lie group with Lie algebra
G and x « y denotes a left-symmetric product on G compatible with
the Lie bracket, then the left-invariant connection givenby V y=x-y
defines a left-invariant affine structure V on G. We deduce that if G
is a simply connected Lie group with Lie algebra G, then the study of
left-invariant affine structures on G is equivalent to the study of left-
symmetric structures on G compatible with the Lie structure.

Let A be a left-symmetric algebra whose associated Lie algebra is G,
and let L_and R _denote the left and right multiplications, respectively
ie. L y=x-yand R y=x - y. The identity in (1) is now equivalent to the
formula

[LX,L}_] =1L, forallx,yeA,

or, in other words, the linear map L: G>End (A) is a representation
of Lie algebras.

If a left-symmetric algebra A has no proper two-sided ideal and it is
not the zero algebra of dimension 1, then A is called simple. A is called
semi simple, if it is a direct sum of simple left-symmetric algebras.

We say that A is complete if R is a nilpotent operator for all
x € A. It turns out that, for a given simply connected Lie group G
with Lie algebra G, the complete left-invariant affine structures on G
are in one-to-one correspondence with the complete left-symmetric
structures on G compatible with the Lie structure. It is also known that
an n-dimensional simply connected Lie group admits a complete left-
invariant affine structure if and only if it acts simply transitively on
R"by affine transformations [9]. A simply connected Lie group which
is acting simply transitively on R” by affine transformations must be
solvable according to [6]. It is well known that not every solvable (even
nilpotent) Lie group can admit an affine structure [7].

We say that A is Novikov algebra if it satisfies the identity

(x-y)~z=(x-z)-y, for all x,yeA. (3)

In terms of left and right multiplications, (3) is equivalent to the
formula

[RX,RJ =0, forall x,yeA.

The left-symmetric algebra A is called derivation algebra if it
satisfies the identity

(x-y)-z=(zy), for allxyzeA

or, equivalently, all left and right multiplications L  and R are
derivations of g.

Recall that a Lie algebra G is an extension of the Lie algebra G by
the Lie algebra A if there exists a short exact sequence of Lie algebras

0aA$gL”>g»o.
In other words, A is an ideal of C; such that C; /A=G.

For (x, @) and (y, b) in § = G ® 4 , the extended Lie bracket is given
by

[(v.a).(»0)] =[x ] [a.b] +(x)b-g(y)a+ (), @)

where ¢:G — Der(A4) is alinear map and w:GxG — 4 is an alternating
bilinear map such that

[¢(x),¢(y)] = ¢([x,y]) +ad,,

and
of(x.31.2) -0 [1.2]) + 0. [1.2]) = 9(x)0(1.2) + 6 (1) (2.2) + () (.9).
Note here that if A is abelian, then w is a 2-cocycle [13,14].

Now we shall briefly discuss the problem of extension of a
left-symmetric algebra by another left-symmetric algebra. To our
knowledge, the notion of extensions of left-symmetric algebras has
been considered for the first time in [9], to which we refer the reader
for more details [15].

Suppose that a vector space extension of a left-symmetric algebra A
by another left-symmetric algebra E is given. We want to define a left-
symmetric structure on A in terms of the left-symmetric structures
given on A and E. In other words, we want to define a left-symmetric
product on 4 for which E becomes a two-sided ideal in 4 such that
A4/E = 4; or equivalently,

0>E—>A4—> 40
Becomes a short exact sequence of left-symmetric algebras.

Theorem 1:There exists a left-symmetric structure on A extending
a left-symmetric algebra A by a left-symmetric algebra E if and only
if there exist two linear maps A,p: A— End(E) and a bilinear map
g:Ax A— E suctthat forall x.¥,2€ A A and a,b € E , the following
conditions are satisfied [9].

1 A(a-b)=A(a)-b+a-A,(b)-p,(a)-b,
p.([ab])=a-p.(B)=b- p.(a),

3 [ﬂx’ﬂy] - ﬂlx,y] = Lg(x,y)-g(y,X) >
4 [/I,wp_v] + pyopx T Pry = Rg(x,y)

[\S]

5 g(xr2)-g(nr2)+ 4 (2(02) -4 ((x.2)-g([x].2)

—p.(g(x.y)-g(.x))=0.

If the conditions of the above theorem are fulfilled, then the
extended left-symmetric product on 4 = A x E is given by

(x,a)-(y,b):(x-y,a-b-#it (b)+pv(a)+g(x,y)). (5)

It is remarkable that if the left-symmetric product of E is trivial,
then the conditions of the above theorem simplify to the following
three conditions:

(i) [ix,ﬁy] =4, i.e. A isarepresentation of Lie algebras,
(i) [4o0, |= 2., = £,%p.
(iii) 8 (x.72) g (y.x-2) + 2. (g (.2)) = 4, (g (x.2)) - g ([x. ] 2)

. (2(x.9)- g () =0.

In this case, E becomes an A-bimodule and the extended product
given in (5) simplifies too. Recall that if K is a left-symmetric algebra
and Vis a vector space, then we say that Vis a K -bimodule if there exist
two linear maps 1,p: K — End (V) which satisfy the conditions (i) and
(ii) stated above.

Let K be a left-symmetric algebra, and suppose that a K -bimodule V
is known. We denote by L? (K, V) the space of all p-linear maps from K
to V, and we define two co-boundary operators &, : L' (K,V )= L’ (K,V)
and 6,: L' (K,V)— L’(K,V) as follows:

For alinear map h e L' (K, V') we set
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Sh(x.y)=p, (h(x)+ A4 (h(2))=h(x-»), (6)
and for a bilinear map g € I’ (K.V) we set

sg(xr2)=g(ny-2)-g(nr-2) + 4 (2(0.2)) -4, (2(v.2)) g ([x3).2) . (e (x0) -2 () (7)
where A and P are linear maps 2,p:K — End (V).

It is straightforward to check that 6,06 =0.Therefore, if we
set 72 (K.V)=kerd, and B, ,(K,V) Im ,we can define a notion
of second co-homology for the actions 4 and £ by simply setting
H; (K.V)=Z; (K.V)/B; ,(K,V).As in the case of Lie algebras, we can
prove the following [9].

Proposition 2: For given linear mapsi,p:K — End(V) , the
equivalent classes of extensions

0>V —>4->K—>0

of Kby V are in one-to - one correspondence with the elements of the
second co-homology group Hf_p (K,V).

A left-symmetric algebras extension

0o E—A->A4-0

is called central if and only if i(E)< C (;1) where
C(/]):{xegl:x-yzy-x:O}

is the center of 4. In particular, the extension is central whenever
E is a trivial A-bimodule (i.e. 2 = p =0 ). We say that the extension is
exact if and only if i(£)=C(4). It is easy to verify [9] that the extension
is exact if and only if I 0, where

I[g]:{xeA:x-yz)wx:O and g(x,y) = g(y,x)=0forall yeA}

We observe that I  is depends only on the co-homology class of g,

thatis I ” is well defined. In case E is a trivial A - bimodule, we denote the
central extension corresponding to the class [g]€ H* (A,E)by(A,[g]).

Let (;1,[g]) and (121,[g']) be two central extensions of A by E,
e Aut(E)=GL(E) and 7 € Aut(A), where Aut (E) and Aut (A) are the
groups of left-symmetric automorphisms of E and K, respectively. It is
clear that if, heL'(4,E), then the linear mapping y:4 — 4' defined
by

v(x.a)=(n(x).u(a)+h(x))

is an isomorphism provided

g'(7(x).1(y))= (g (x.»))+8h(x,y) forall (x,y) e Ax 4, ie., n'[g]=p[g]-

This allows us to define an action of the group G=Aut (E) x Aut (A)
on H? (A, E) by setting

() [8]= ' [g]

or equivalently, (47)-&(x.)=u(2(n(x).7(»))) forall x,y e 4.
Denoting the set of all exact central extensions of A by E by

H; (A,E) :{[g]e H*(4,E): 1, :0}

and the orbit of [g] by G, it turns out that the following result is
valid [9].

Proposition 3: Let [g] and [g'] be two classes in H”. (4,E). Then,
the central extensions (A[g]) and (4.,[g']) are isomorphic if and only
if G.= G[g']. In other words, the classification of the exact central
extensions of A by E is, up to left-symmetric isomorphism the orbit space

of H.(A,E) under the natural action of G=Aut (E) x Aut(A).
We close this section by the following important result [15].

Proposition 4: Let 0 — [ — A% —J — 0 be an exact sequence of left-
symmetric algebras such that A is complete then I and ] are complete

Proof: Let A be a complete left-symmetric algebra. Then R_is
nilpotent for all X € 4, . Since ] is an ideal of A, then R is nilpotent for
allx eI, that is I is complete. On the other hand, Since sz 4/1, we

can define forxe 4, R |,:J —>J, by R.|,(¥)=Ry+Ifor all yeA4,
v =y+1. Since for all y,,¥, €4 such that ¥+ I=y, + I there exists
z €1 so that y,=y+ z,and

R (y,+]) =R y,+1

= R (yt+z)+l

Ry+R z+1

R y+I
= R (y+1I)

then, R_|, is well defined. We also have, for all x, y € 4, , that
R;)7=(y+l)<(x+1)

=y-x+1

=Ry+I

=Ry

Thus, to prove that ] is complete, it is enough to prove that R |,
is nilpotent for all X € A . Since R is nilpotent, then va = () for some
k e N . This implies that

RE(y)+1=1=0

forall ¥ € 4 Hence, R (¥)=0forall 3 e/, thatis R, 1, is nilpotent
forall x € 4, and hence J is complete.

Complete Left-Symmetric Structures on Solvable Non-
Unimodular Lie Algebras of Dimension 3
Recall that a lie algebra G is unimodular if and only if tr(ad )=0 for

all xeG. The classification of solvable non unimodular Lie algebras of
dimension 3 can be found [16].

Lemma 5: Let g be solvable non-unimodular Lie algebra of dimension
3. Then there is a basis {e, e, e} of G so  that

[el,ez] =ae, + fe,

[e.e;]=7e, +(2—a)e,

If we exclude the case where D is the identity matrix then the

determinant detD=a(2-a)- py provides a complete isomorphism
invariant for this Lie algebra.

According to this result, we can, by simple computations, find that
there are five possibilities for D:

o) 26 ) 2 )

00 0
s whereO<‘y‘<10rD;
0 u S

D

I

I

l_gJ where ¢ >0

This implies that any solvable non-unimodular Lie algebra of
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dimension 3 is isomorphic to one and only one of the following Lie
algebras
gs,l : [el,ez] =e,
g_u : [el,ez] = ez,[el,e3] =e
G, [e.e]=e, +e.[e.e]=e,
L lene | =e.lene ] = ey, 0<|u| <1

g;fs :[el,ez]zez +§eg,[el,63]=—§ez +e,0>0

Now let Gbe real solvable non-unimodular Lie algebra of dimension
3. Let A be a complete left- symmetric algebra whose associated Lie
algebra isG.

We shall first recall the following result from [12].

Lemma 6: Only the complex sim le left-symmetric algebras and
even-dimensional complex semisim le left- symmetric algebras may have
simple real forms, where a real form of a complex left-symmetric algebra
Adis sub algebra A, of A% such that A; = A.Here A" is A regarded as a
real left-symmetric algebra.

Now, we can prove the following

Proposition 7: A, is not simple. In other words, any complete
left-symmetric structure on a solvable non- unimodular Lie algebra of
dimension 3 is not simple.

Proof: Assume to the contrary that A, is simple. Then, Lemma 6
shows that complexification 4; of A , is simple as the dimension of 4;”
is odd. We can now apply Corollary 4.2 in [11] to deduce that 45 is
isomorphic to the complex left-symmetric algebra A " having a basis
{el, e, e3} such that the only non-trivial products are

e-e =e,

e e =—¢,

e, e, =e-e =¢.

Thus, the complex lie algebra G, associated to A=A s

unimodular and hence G must be unimodular. This contradiction
shows that A, is not simple

Before returning to the left-symmetric algebra A, we need to state
the following facts without proofs.

Lemma 8: Let A be a left-symmetric algebra with associated Lie
algebra G and R a two -sided ideal in A. Then the lie algebra R associated
to Risanidealin G

Lemma 9: Let G be solvable non-unimodular Lie algebra of
dimension 3 and let T be a proper ideal of G. Then T is isomorphic to

R RZ, aﬂ(R)z(el,e2 :[el,ez]:ez>.

By Proposition 7, A, is not simple and hence it has a proper two-
sided ideal I, so we get a short exact sequence of left-symmetric algebras

0>1>4,>J >0 (8)
If 7 is the Lie sub algebra associated to I then, by Lemma 8, 7 is

an ideal in G. From Lemma 9 it follows that there are three cases to be
considered according to weather Z is isomorphic toR, R?, or off (R).

Casel: 7 ~R.

In this case, the short exact sequence (8) becomes

0->Ry—>4—>1,-0

where I is a complete left-symmetric algebra of dimension 2 and R
is R with the trivial product. At the Lie algebra level, we have a short
exact sequence of Lie algebras of the form

0>R—> & —>H,—0 9
where H, denotes the associated Lie algebra of I, and G is an extension
of H,byR.

Since H, is of dimension 2, then H, is either isomorphic to R?or
off (R).

~ T2
Assume first that M, =R~ Then, the short exact sequence (9)
becomes

05>R->G>R> -0

Let {e,, e,} be a basis for R%. On R x R, the extended Lie bracket
given by (4) takes the simplified form

[(x.a),(3.0)]=(0.4(x)b-8(r)a+o(x,y)). (10)
forall a,beR, x,yeR>.
Setting e; :(el.,O), i=1,2 and e; =(0,1) we get

[é],éz]:a)(el,ez)é3
& [él’é3] = ¢(el)é3
[épéz] = ¢(ez)és

Sinced is solvable and non-unimodular, we can, without loss of
generality, assume that ¢(€z) =0 Thatis

0 w(e,e
(0 elee)
0 qﬁ(el)
Notice that ¢(€1 ) should be non- zero, since otherwise G becomes
unimodular. In other words,

o)

Now, we shall determine all the complete left-symmetric structures
on R? These are described by the following lemma that we state without
proof.

Lemma 10: Up to left-symmetric isomorphism, there are two
complete left-symmetric structures on R* given, in a basis {e, e,} of R,
by either

(i) ¢-¢e; =0 ij=1,2
(i) e, e, =¢,.

From now on, A, will denote the vector space R? endowed with
one of the complete left-symmetric structures described in Lemma 10.

The extended left-symmetric product on 4, xR, given by (5) turns
out to take the simplified form

(x,a)-(y,b)=(x~y,b/lx+apy+g(x,y)), (11)

forall x,y € A4, and a,b €R.Indeed, p..4 cEnd(R)=Rfor all x € 4, . So,
we can identify Or and 4, with real numbers that we denote by #xand
A, , respectively.
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Notehere that 4, =¢(x)+p, , forall x e R* whereas ¢: R’ — End (R) =R
in (10).

The conditions in Theorem 1 can be simplified to the following
conditions

Pleyy =Py°Ps (12)

g(x,y2)- gy, x2)+ A4.(g(y,2) - 4,(g(»,2)

13
—p.(g(x,y)—g(y,x) =0 (13)

By using (10) and (11), we deduce from

[(x.0).(08)] = (x:0)- (7.5) ~(3:8)-(x.a). (11

that

o(x,y)=g(x.y)-g(y,x) -

Since w(e,e,)=0, then gle, e,)=g(e, e). Since ¢(e,)=0, then
4, =P.,, . Also, since g(¢)=0, then A, — P, #0. By applying identity

(12) to ¢ ¢, i=1,2, we deduce thatp=0. Hence 4, =0and 4, #0,
sayﬂe]=a,aeR*_

In this case, the formula (6) and (7) become

Sh(x,y) =4, (h(y))=h(x-»)

And

8 g(x.2)=g(vy-2)=g(rx2)+ A (2(1.2)) - 4 (2(x2))
where he L (4,,R)and g € L(4,,R),

According to Lemma 10, there are two cases to be considered.

10.1. 4, =<el,e2 e e, =0, =1,2>.

In this case, using the first formula above for S, we get

5h: hll hlz
! 0 0)

Where b, =ah(e) and h, = ah(ez) . Similarly, using the second

formula above for &, , we verify easily that if g is a cocycle (i.e. 5,2 =0)
and g, = g(e,,ej) , then

g:gll 0
0 0

that is g, =g, =g, =0. In this case, the class [¢]< H ,(4,.R) of a cocycle
g may be represented, in the basis above, by a matrix of the simplified
form

a

We can now determine the extended complete left-symmetric
structures on A . By setting & = (€,0),i=1,2and &, = (0,1) and using

formula (11) we obtain that the non- zero relations in A are

&, =sé,
é & =aé;,
with a=4, #0

- s
By setting e = iél , e, =& and € =e¢,,and ! =— we see that the
a o

new basis {el, e, e3} of Ajsatisﬁes

e.e, =e,
e.e, =te,
and all other products are zero. We can easily see that this product
is isomorphic to
g.e, =e,
Weset Ny, = (el,ez,e3 e e, = e2> .
10.2. 4,=(e.e,:e,-¢,=¢,).

We obtain, as above, that Ais isomorphic to one of the following
complete left-symmetric algebras

(i) N, =<el,ez,e3 le e, =660 =el> ,

(ii) N; 4 :<el,ez,e3 le e, =ey,e e :—e,> .

Assume now that ®, =aff (R). Then the extended Lie bracket on
aff (R) X R given by (4) takes the form

[(x.a).(3:8) =[x 7). (x)b =4 (y)a+ &(x.7)),

forall a beR, x,yaff (R).

Let {e,, e,} be a basis of aff (R) satisfying [61,62] = e, . By setting
¢ =(e,0),i=1,2 and e =(0,1)

we get

[él,éz] =e+0(e,6)e

e, [é],é3] = qﬁ(el)é3

[6,,2,]=¢(e,)e,

Since G is solvable and non-unimodular, then as above, we can
assume that ¢(€2) =0 That is,

D:[O a)(e,,ez)]

0 ¢(e,)

Notice that¢(e,)+1#0, since otherwise g becomes unimodular.

Now, we have the following cases.

10
1. If det D =0, then Dz[o |

This means that @ is identically zero, i.e. G is a central extension of

aff (R) by R.

jthat is, ¢(e,)=0and 60(6‘,,62):0,

1 0)(1 1 1 0 .
2,IfdetD¢O,D;[0 1],(0 1] or(o #j,w1th0<‘#‘<1,

It is not hard to prove the following

Lemma 11: Up to left-symmetric isomorphisms, there is a unique
complete left-symmetric structure on aff (R) which is given, relative to a

basis e, e, of aff (R) [e],ez]zez, by e-e =e,.

We will denote by N, the vector space aff (R) endowed with the
complete left-symmetric product given in Lemma 11.

On the other hand, the extended left-symmetric product on N, x
R, is given by

(x.a)-(3.b) = (x-y.b2(x) +ap(y) +g(x.y)), (15)

forall a,be R, X,y € (R)
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The conditions in Theorem 1 can be simplified to the following
conditions

Aoy =0 (16)
Plesy = P,°Ps 17
g(xyz)- (yax 2)+ 4 (g(r.2)) -4, (g(x.2)) - g([x)].2)

-p.(g(x »:x))=0

By using (10) and (1 1), we deduce from

[(x.a).(3.0)]=(x.0)-(3.6) = (y.0)-(x-0),

that

o(x,y)=g(x,y) - g(y,x)

From condition (16), we get ﬂez =0. Applying the identity (17)
above toe, -, ,i=1, 2, we deduce that p = 0 and hence 4, = #(e).

1 0
Assume first that D = (0 OJ , that is, @(e;,e,)=0and#(e)=0,

then A = p = 0. Thus, the extension is central.

We know that the classification of the exact central extension
of N,by R is, up to left-symmetric isomorphism, the orbit space of
H’(N,,R,) under the natural action of G =Aut(R,)xAut(N,)
(Proposition3). So, we must compute H., (N,,R,). Since R, is a
trivial N, -bimodule, then

5lh(x,y) = —h(x~y),

52g(x,y,z) = g(x,y-z)—g(y,x-z)—

g([x.7].2),

where e £ (N,,R)and & € £ (N,.R)  This implies that, with respect
to the basis ¢,e, of N,, 0,h is of the form

51h=(0 huj
0 0

where i, =—h(e,).

Observe that if g is a 2-cocycle (i.e. 0,€ =0), then

_ g 0
0 0
g(e,e;) . Hence, [g]e H

matrix with respect to {€;,€, } by

where g = *(N,,R) can be represented as a

t 0 feR
= . e
€70 o

We determine, in this case, the extended left-symmetric structure

on A By setting e, = (ei , O) ,i=1,2

and & = (0, 1) , and using formula (15), we find

-8 =18, ¢&-8=6,

and all other products are zero, ¢ ¢ R . We denoteG endowed with
this structure by Vs, .

Recall that the extension

0>R,>4—>N,—>0

is exact (i.e. i(R,)=C(4,)) ifand only if I, ={0} .

Let x=ae +be,el,. Then computing all the products

x-e=e-x=0,we deduce that x=0, that
is the extension is exact.

Let N;,, N, be two left-symmetric algebras as above. We
know that N, is isomorphic to N;, if and only if there exists

(@,7) € Aut(R,)x Aut(N,) =R’ x Aut(N,) such that for all X,y € N,,
we have
g (xy)=ag(n(x).n(y))- (18)
Now, we have to calculate Aut(N,). Let 7 € Aut(N,) so that,
with respect to the basis €;,€, of N,withe, -e, =e,,

_(a b
= c d
Since 77(e))=1(e -e,)=1(e) 71(e,), then b=0 and d=ad. Also
0=17(e, -¢)=n(e) n(e) which implies that a= 0 or c= 0. Sincedetn # 0,
then d # 0 and hence a=1 and ¢=0. This means that
_ 1 0
70 a
with d # 0. We shall now apply formula (18). For this we recall first

that in the basis €, €, , the classes gand &' corresponding to N;, and

N. 3, have, respectively, the forms
t 0 . t" 0
g:[o OJ and g *[0 Oj
From g'(e;,e)) = ag(n(e).n(e)), we get

t'=at

Hence N;,and Nj, are isomorphic if and only if ¢'=at, for
some o e R".

Notice that if t= 0, we obtain the complete left-symmetric algebra
N3,0 described above. Iff # 0, we obtain, by setting e = é'i ,i=1,2,and

e, =1, , the complete left-symmetric algebra

N3’] :<el,e2,e3 le e =e,e e :ez>

1 0
Assume now that D= [0 1 J , that is, o(e.e,)=0and ¢(e)=1
Then A (e )=¢(e ) =1. We deduce, in this case, that, in the basis e>e, of

N, the [g]e #] ,(N,.R) of a cocycle g may berepresented by a matrix
of the simplified form

(0 ¢
£ o
We determine, in this case, the extended complete left-symmetric

structure on A, By setting & =(&,0),i=1, 2 and &, =(0,1)and using
formula (15), we obtain

e e, =e, +te,
e, ¢ =te,
e e =e

We denote this left-symmetric algebra by B, . Notice that if t=0,
we obtain the complete left-symmetric algebra B , with the non- zero
relations
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L 0> N, >4 >R, >0 (19)
€6 =6, 24 0
e -e —e where N, is the complete left-symmetric algebra whose associated
1763 = 65

If t#0; we obtain, by setting e, =¢,, i=1,2 and e, = té,; the
complete left-symmetric algebra B, with the non-zero relations

e-e,=e +e
66 =6
e-e=e
11
Assume now that DE{O 1j‘[ha‘[ is, w(e,e,)=1 and ¢(e)=1.

Hence A(¢)=¢(¢)=1. Usingthe same method as above, it follows that
the class [¢]€#],(N,.R) of a co-cycle g takes the reduced form

(0 i
£ -1 0

We determine, in this case, the extended complete left-symmetric
structures on A,. By setting & =(¢,0) ,i=1, 2 and & =(0,1) and using
formula (15), we obtain

€ -6, =¢, +te

é-e=(t-1)g

¢ e =¢

We denote such a left-symmetric algebra by C, . Notice that

if t=1, we obtain the complete left- symmetric algebra C,, with the
non-zero relations

€ e, :€z+€3,
e e =e;,

and if 7 #1, we obtain the complete left-symmetric algebra C, with
the non-zero relations

e e =e,t+te
e -e :(t—l)e3

€€ =6
where different values of t give non-isomorphic complete left-
symmetric algebras.
10 . .
Assume finally thatD;(O j, with 0<|u|<1, that is w(e,e,)=0
7]

and ¢(e)=u. Hencel(e)=¢(e)=x. It follows that the class
[g]e H] ,(N,,R) of a co-cycle g is identically zero.

We determine, in this case, the extended complete left-symmetric
structures on A . By setting & = (€,0), i=1, 2 and & =(0,1)and using
formula (15), we obtain

€ -6, =6,

&&= e,

where 0 <[] <1. Weset

Dy, (u)={e,e,,e.0, ¢, =¢,,¢ -, = uey)
where0<‘,u‘<1.

Case 2: Izaﬂ(R) .

In this case, the short exact sequence (8) becomes

Lie algebra is aff (R) and R | is the trivial left-symmetric algebra over
R.

Let 0: R, —> 4, be a section and set 0(1)=x. € 4; and define two
linear maps 4.p € End(N,) by putting A(y)=x.-y and p(y)=y-x..By
setting e=x, -x., we see thate e N, . Let g:R,xR, = N, be the bilinear
map defined byg(a.b)=c(a)-o(b)-c(a-b) . Since the complete left-
symmetric structure on R is trivial, then g(a,b) =abe , or equivalently
g(L1)=e. Also we can show that 5,¢=0,ie. geZ; (R,.N,).

In this case, the extended left-symmetric product on R, ® N,
given by (5) takes the simplified form

(a,x)-(b,y)=(O,x-y+al(y)+bp(x)+abe),
forall a,beR and x,yeN, .

The conditions in Theorem 1 can be simplified to the following
conditions

Alx-p)=2(x)-y+x-2(y)=p(x)-y (20)
p([xy])=xp(3)-y p(x) (1)
[2.p]+p" =R, (22)

Let ¢:R — Der(aff (R)), be a derivation of aff (R). Set

s0-(5 5

relative to a basis €., of aff (R) satisfying [el,ez] =e,. From the
identity ¢(1)e, = [¢(l)e,,e2]+[el,¢(l)e2] , we deduce that a=c=0, hence

o))

Let

p= [0‘1 B j
a, B
relative to a basis €,€, of aff (R) satisfying [e] ,ez] = e, . Applying

formula (21) to e, we get =0 Since ¢(1) =1 - p, we deduce that,
relative to the basis ¢, e, , we have

P a, 0
Na,+b B +d

Applying formula (20) to all products of the form e, e, i=1, 2, we
geta, +b =0 Moreover, by applying formula (22) to e, and e,, we get
a,=5,=0. Thus

0 0 0 0
= A=
P [—b 0] and ( 0 dJ
Now, sincee € N, , then e=te, +se, for some f,5 € R. Formula
(22) when applied to e, gives

—bde, = se,

for which we get that e=x.-x. =te, —bde,, teR. Hence we get a
left-symmetric product on A, Now, let us write down the structure of
A using a basis. From above we have

e-e,=e, e-X.=-be,-
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x.e, = de,, X, - X, =te, —bde,, t e R

Since x,€4;, and x(x,)=1, then x,€4,\N,. Indeed if
X, € N, then the exactness of the short sequence (19) implies that
X, € i( Nz) =kerz, a contradiction. This implies that, relative to a
basis {el ,ez,e3} of A, x, is of the form x, = e, + fe, + ye,, where
a, B,y € R with ¥ # 0 . In this case, we can, without loss of generality,
assume that  =1. Thus, €; =X, —ae, — fBe, . Since €, - X. =—be, we get
that

e e = —(b+ﬂ)e2 ,

also since X.-e, =de, we get that
e-e,=(d—a)e,

since X. - X. =te, —bde, , we deduce that
e,-e;=te,+(ab+af—bd - pd)e,

a,p a,f3so that
e, = X, —de, —be, . Hence the left-symmetric product on A, is given,

Since are arbitrary, we can choose

relative the basis {¢,,e,,e,} , by the non- zero relations

e-e =e,

e, e =te,

Notice that if t=0, we obtain the complete left-symmetric algebra
Ny, - If ¢t # 0, we obtain, by setting ¢, = é;i=1,2and & = \/1793 ; that
A ,is isomorphic to one of the left-symmetric algebras N, or N, , given
above

Case 3: 7 = R>.

In this case, the short exact sequence (8) becomes

0>4,—>4,->R; >0

where A, is a complete left-symmetric algebra whose lie algebra is *
and R is the trivial left-symmetric algebra over R.

Atthelie algebra level, we have a short exact sequence of lie algebras
of the form

0>R*>G>R—-0

Let ¢:R - Der(Rz) = End(Rz) , be a derivation of R2 Relative to a
basis €,€, of R? set

s-(5 &)

In this case, the extended Lie bracket on R x R? given by (4), takes
the simplified form

[(a,x),(b,y)] = (0,¢(a)y - ¢(b)x + a)(a,b))
for all x,y€R’and a,bcR . By setting & =(1,0) and &,,=(0,¢,),
i=1, 2 we obtain

[€,, e,]=ag, +be,

[6,, &,]=cg, +dg,

[€,,€,]1=0

By Lemma 5, we obtain that, relative to the basis ¢, e, ,

o2 2]

witha+d #0. Note that, in this case, ® may not be zero, that is, the
extensions of R by R%re not necessarily semi direct products of R by

According to Lemma 5, there are five cases to be considered
o o} (o 1o 1) (6 2rle )
D= , , , or >
0 0o 1)lo 1) o u <1
Where ¢ >0and 0<|u|<1.

0(1) =X, €4,
by putting

Leto:R, > 4,be a section and set
and define A,p € End(4,)
ﬂ()’):xo 'Y and p(y):y~xa_ By settinge=x.-x., we see
that e€ 4,. Let g:R,xR, —> 4, be the bilinear map defined by
g(a,b)=c(a)-o(b)-o(a-b). Since the complete left-symmetric
structure on R is trivial, then g(a,b) =abe, or equivalently
g(L1)=e. Also we can show that ,g =0, i.e. g eZ; ,(Ry.4,) .

two linear maps

The extended left-symmetric product on R, @ 4, given by (5) is
then takes the simplified form

(a,x)-(b,y)=(O,x~y+a/l(y)+bp(x)+abe) (23)

forall x,ye 4,and a,peR.

The conditions in Theorem 1 can be simplified to the following
conditions

A(x-p)=A(x)-y+x-2(y)-p(x)-y (24)
x-p(y)-y-p(x)=0 (25)
[2.p]+p* =R, (26)

According to Lemma 10, we have the following cases of A,

1. 4, :<el,e2 ‘e -e; :0,1’,_;':1,2).

1 0
Assume first that D ;[ J

00
and let

(e B
piaz 5

relative to the basis €,e, of 4,. Since ¢(1)=2-p, we deduce that,
relative to the basis ¢,¢, , we have

. [a] +1 ﬂ]}
a  p
Applying formula (26) to e,, we obtain S =5, =0. The same

formula when applied to e, yields, =@, =0. It follows that £ is
identically zero and

{3 9

We can easily show that the condition (26) above is satisfied for
alle=x.-x. =se +te,, s t€R. Hence we get a left-symmetric
producton A,.

Now, let us write down the structure of A, using a basis. From
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above we have
X.-€ =€, XX =5e +le,.
We can easily prove that x, € 4, \ 4, . This implies that, relative
to a basis {61 ,62,63} of A, x,is of the form X, = ae, + e, + ye;, where

a, B,y € R with y =0 . In this case, we can, without loss of generality,
assume that 7 =1. Thus, €; = X, —ae, — fBe, . Since X "€ = € we get
that

e e =¢

also since X.-X. = se +1e, we deduce that

e e =(s—0{)e1 +te, -

Since @,/ are arbitrary, we can choose «,f so thate; =x.—se .
Hence the left-symmetric product on A, is given, relative to the basis
{e,e,,e;} of A, by the non- zero relations

e e =e

e, e =te,

Notice that if t= 0, we find the complete left-symmetric algebra
N, If t#0, we get, by settingé =e;,é, =¢, and ¢, =te, that A is

3,0
isomorphic to the complete left-symmetric algebra N, .

1 0
Assume then that D = (0 ) ] and let

a, B,
relative to the basis €,¢, of A, . Since #(1)=21-p, we deduce that,
relative to the basis ¢,,¢, , we have

l:[alﬂ B, J
a, p+1

By applying formula (26) to e, and e,, we get

_Oa
P=lo of

1 «a
A= ,aeR
0 1

and e=x.-x. =a’e +ae,.

Similarly, we find that, relative to the basis {el,ez,e3} of A, with
e, = x. +a’e, — e, , the left- symmetric product on A, is given by the
non- zero relations

G6=¢

e,-e,=ae +e,

e,-e,=ae,.

Notice that ifaz =0, we get, by setting & =e,,é =¢ and & =€,
the complete left-symmetric algebra B;,. If 1 #0 we get, by setting
€ =e,;¢, = ¢, & = ae ;that A,is isomorphic to the complete left-
symmetric algebras B, .

Assume now that D = ,and let

0
R B
& a B

relative to the basis ¢,e, of A, Since D=21-p, we deduce that,

relative to the basis ¢,e, , we have

l_[a,ﬂ ,B,+1]
a, pB+1

By applying formula (26) to e,and e,, we get

0 « 1 a+l
p= ,A= ,aeR
[O 0) [0 1 ]

ande=x.-x. =ae +ae,,

Similarly, we find that, relative to a basis {e,,e,,¢,} of A, with
e, = x, + 2a’e, — ae,, the left-symmetric product on A, is given by the
non-zero relations

e e =¢

e,-e,=(a+1)e +e,

e,-e;=qe,.

Notice that if =0, we get, by settingé, =e¢,,¢, =¢,and & =e¢,
the complete left-symmetric algebra C,,. If a =0, we get, by setting
a=t-1with ¢ =1, the complete left-symmetric algebra C, where

different values of ¢ give non-isomorphic complete left-symmetric
algebras.

1 0
Assume then that D = [0 i j , where 0<|u|<1,and let

p= [0‘1 ﬁl]
a, B
relative to the basis €.¢, of A,. Since #(1)=2-p, we deduce that,
relative to the basis ¢,e, , we have

1 [al +1 B j
a, B+p
By applying formula (26) to e and e, we obtain that £ isidentically
zZero,

A=
0 u

ande=x.-x. =¢ + ue, .

Similarly, we find that, relative to a basis {61,92,63} of A, with
e, = X. —e —e,, the left-symmetric product on A_is given by the
non- zero relations

e-e =¢

e e, = lie,.

By settinge, =e,,é, =¢ and e, =e,, we get the complete left-

symmetric algebra D;, (1) where 0 < ul<l1

;(j ,where ¢ >0, and let

1
Assume finally that D = ( ‘

a, B
relative to the basis €e of A, Since ¢(1) =A1—p, we deduce that,
relative to the basis e, e, above, we have

_ a+l B-¢
B oa,+¢ B +1
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By applying formula (26) to ¢ and ¢, , we obtain that £ is identically
zero,

1 —
A= ¢
< 1
and e=x.-x, =20¢ +(§2 —l)e2 .
Similarly, we find that, relative to a basis {61,62,63} of A, with
e, =x. — (e +e,, the left-symmetric product on A, is given by the
non- zero relations
ee=¢+le
e-e,=—Ce t+e,

Set & =e,,6, =¢ and &, =¢,. Then, the non- zero relations above
become

é-¢ =¢6+7¢

6 -6 =—(¢é +eé,

We set

E,, =<el,€2,€3 te e, =e,+0e e e =—.§’ez+ez,§>0>.
2. 4, =<el,e2 e, e =el>..

Let

aZ 182
relative to the basis ¢, of 4,. By applying formula (25) to ¢ and e,,
we get that @, =0

Assume first that D =~ [:) gj Then, as ¢(1) =A—p, we deduce

that, relative to the basis e, e,we have

. {a, +1 B j
0 5
Byapplyingformula (26) toe and e,, wegetthat o, = 8, =0 . Moreover,

by applying formula (24) to all products of the forme, - ¢ 7, j = 1,2 , we get
that 1=0, a contradiction. Thus D cannot be of this form. Similarly, we can

h be of the f I 0)(1 1 1 < 50
prove that D cannot be of the forms o 1o 1/ sl ¢ >0.

where ¢ >0,

1
Assume thatD;[ 0], where0<‘,u‘ <1, Then, as¢(1):ﬂ—p,
we deduce that 0 u

1o [a, +1 B ]
0 p+u
Byapplying formula (26) to¢ ande,, wegetthat o, = 5, = 0. Moreover,
by applying f(irmula (24) toall products of the form ¢, -e,,i,j =1,2, we
get that 4= 5 Thus
1

Ooz/I @ R
= S A= , A€
=0 o 0%

1
and e=x.-x. =te, +Eaez,teR .

Similarly, we find that, relative to a basis {e,e,,e,} of A with
e =x +(oz2 —t)e1 —ae,, the left-symmetric product on A, is given by
the non-zero relations

e, e =e¢,

e -e=¢e,

e, e =—e

3 2 2
2

Set é =e,, &, =¢ and &, =e,. Then the non- zero relations above
become

e, e, =e,
€ -6 =6,
€ -e=—e,
We set

1
D3,2 =1€,6,,63:6,°6,=¢,6 €, =6,,¢ "€ =Ees .
Conclusion
We can now state the main result of this paper

Theorem 12: Let A, be a three dimensional complete left-symmetric
algebra whose associated Lie algebra G is solvable and non-unimodular.
Then A, is isomorphic to one of the following left-symmetric algebras
(Table 1).

Name Non-zero product Lie algebra Remarks
N,D,S
N3,0 €6 =6 g}l .
N,D,S
N3,1 €€ =6,6-°6 =6 g},l
S
N, €6 =666 =¢ G
S
N3,3 €€, =6),66="¢ g},l
N,D,S
By, €°6,=6),6 6 =6 93_2
D
B;, e e, =e, te, G,
6,76 =6;,6 6 =6
N,D,S
C},l € e =ete, g33
€6 =6
C. e-e =e +te, e-e=e g b
3 176, =6 3> €76 =65, 3,3
e, e = (t—l)e‘3,,t #1
_ N,D,S
D;, (/1) €€ =6, 3{’4
e ey = e, 0<|ul<1
D;, e = e = > N
’ €6, =666 —Eeza g}zA
e, e, =¢
_ . N,D,S
E}J(g) e-e, =e t+ge, Gis

e-e,=—Ce, +e, >0
Table 1: Left-symmetric algebras.

Here, the letter N that the left-symmetric algebra A, is Novikov,
the letter D means that A, is derivation and the letter S means that
A satisfying [x,y]-z=0forall x,y,z € 4;.

Remark 1: We note that left-symmetric algebras satisfying the
identity (x-y)-z=(y-x)-z for all x,y,z e A(or equivalently, the
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identity [x,y] 2=0 forall X,y,2 € Aare of special interest because
they correspond to locally simply transitive a¢ ne actions of Lie groups G
on a vector space E such that the commutator subgroup [G,G] is acting
by translations. These left-symmetric algebras have been considered and
studied in [7].

We note that the mapping X —(L,,X) is a Lie algebra
representation of G in aff (R*) = £nd (R*) DR’

By using the exponential maps, Theorem 12 can now be stated,
in terms of simply transitive actions of subgroups of the affine group

AfFR)= GL(R3)R3 , as follows
To state it, define the continuous functions f, g, h, kand @ by

e -1 20 76)[_?_1, x#0
r@={x 0 e ,

1 x=0 — x=0

2
cosx—1 «x sinx —x
had #0

h(x): N +2, xiO, k(x): X X i

0 x=0 0 x=0

nx"
xX)=) ——
=200

Theorem 13: Suppose that the Lie group G of the non-unimodular
Lie algebra G of dimension 3 acts simply transitively by affine
transformations on R®. Then, as a subgroup of Aff (R?), G is conjugate to
one of the following sub groups:

1 0 a
G,,=1/0 ¢ 0| bf(a)|, abceRr
0 0 1)c
1 0 0)la
G,, =10 ¢ 0 bf (a) |, a,b,ceR
a 0 1 1,
c+—a
SRS
1 0 C a+5¢
G,,=1|0 ¢ 0| bf(a) | abceR
00 1)c
1 2
1 0 - afgc
Gy, =9|0 € 0 J bf(a) |, a.b,ceR
00 1 )e
1 0 0\la
5, =10 € 0 |[bf(a)], abceR
0 0 &) cf(a)
1 0 0 \)la
5, 7|0 e 0 | bf(a) , a,b,ceR
bf(a) ae’ e (ab +c)f(a)

1 0 0 ) a
o, = 0 ¢ 0 bf(a) ,a,b,ceR
0 ae" e cf(a)+b¢(a)
1 0 0)la
c, 0 e’ 0 ||bf(a) ,ab,ceR, t#1

(t—l)bf(a) tae* €' (tab-%—c—b)f(a)+b

1 0 O a
o =10 ¢ 0 |[6f(a) |, abceR,0<|ul<]
00 & )[cf(ua)
I bf(a) 0 |[a+b’g(a)
GDz.zz 0 ¢ 0 bf(a) ,a,b,CER
lf' [ a
2 =
00 e cf(2j
1 0 0
0 e“cosda —e‘sinla
0 e“sinda e“cosda
G =

b(f(a)+k(sa))+c(h(Sa)-<Ep(a)) |, ab,ceR,E >0
b(¢p(a)=h(ga))+e(f(a)+k(Sa))
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