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Abstract
In this paper, we shall use a method based on the theory of extensions of left-symmetric algebras to classify 

complete left-invariant affine real structures on solvable non-unimodular three-dimensional Lie groups.

Keywords: Extensions of left-symmetric algebras; Left-invariant 
affine connections; Novikov algebras

Introduction 
The notion of a left-symmetric algebra appeared for the first 

time in the work of Koszul [1] and Vinberg [2] concerning bounded 
homogeneous domains and convex homogeneous cones, respectively. 
Over the field of real numbers, left-symmetric algebras are of 
special interest because of their role in the differential geometry of 
affine manifolds (i.e. smooth manifolds with flat torsion-free affine 
connections), and in the representation theory of Lie groups [3,4]. In 
fact, for a given simply connected Lie group G with Lie algebra , the 
left-invariant affine structures on  are in one-to-one correspondence 
with the left-symmetric structures on G compatible with the Lie 
structure [5].

On the other hand, it is well known that there is a one-to-one 
correspondence between left-invariant affine structures on a Lie group 
G and locally simply transitive affine actions of G on an n-dimensional 
real vector space V [5]. The classification of left-invariant affine 
structures on a given Lie group G is then reduced to the classification 
of compatible left-symmetric products on the Lie algebra  of G. It has 
been proved [6] that a simply connected Lie group G which acts simply 
transitively on n by affine transformations is necessarily solvable. Since 
a few years, there has been a growing interest in the study of simply 
transitive affine actions of Lie groups on n. This interest is mostly due 
to the example of Benoist [7], who constructed a simply connected 
nilpotent Lie group not admitting any locally simply transitive affine 
action on n. This example provided a negative answer to the following 
question of Milnor [3]. Does any simply connected solvable Lie group 
admit a simply transitive affine action on 

n
?

From another point of view, there is also the question of classifying 
all simply transitive affine actions of a given solvable Lie group G 
admitting such an action. This question, even in the abelian case

= kG , seems to be very hard. When G is nilpotent, the classification 
has been completely achieved up to dimension four [8,9]. 

Recently, a method based on the theory of extensions of left-
symmetric algebras has been proposed [10] to classify complete left-
invariant affine real structures on a given solvable Lie group of low 
dimension. Since the classification in the case of solvable unimodular 
Lie groups of dimension three was obtained [8], we will use that method 
to carry out in this paper the classification of complete left-invariant 
affine structures on three-dimensional solvable non-unimodular Lie 
groups.

The paper is organized as follows.  In section 2, we will briefly recall 
some necessary definitions and basic results on left-symmetric algebras 

and their extensions. In section 3, using the classification of the three-
dimensional complex simple left-symmetric algebras given [11] and a 
result [12], we  shall first show that any complete real left-symmetric 
algebra A3 of dimension 3 whose Lie algebra is solvable and non-
unimodular is not simple. Therefore, we can get A3 as an extension of 
complete left-symmetric algebras. By using the Lie group exponential 
maps, we shall deduce the classification of all complete left-invariant 
affine structures on solvable non-unimodular Lie groups of dimension 
3 in terms of simply transitive actions of subgroups of the affine group 

( )3 3 3( ) = ×  Aff GL (see Theorem 13).

Throughout this paper, all considered vector spaces, Lie algebras, 
and left-symmetric algebras are supposed to be over the field . We 
shall also suppose that all considered Lie groups are simply connected.

Left-symmetric Algebras and their Extensions
Let A be a finite-dimensional vector space over .  A left-symmetric 

product on A is a bilinear product that we denote by x y⋅ satisfying

( ) ( ) ( ) ( ),⋅ ⋅ − ⋅ ⋅ = ⋅ ⋅ − ⋅ ⋅x y z y x z x y z y x z 	                                    (1)

for all [ ], = ⋅ − ⋅x y x y y x .  In this case, A together with a left-symmetric 
product is called left-symmetric algebra.

Now if A is a left-symmetric algebra, then the commutator

[ ], = ⋅ − ⋅x y x y y x 				                  (2)

defines a structure of Lie algebra on A, called the associated Lie 
algebra. On the other hand, if  is a Lie algebra with a left-symmetric 
product satisfying (2), then we say that this left-symmetric structure is 
compatible with the Lie structure on .

Let G be a simply connected Lie group with a left-invariant affine 
connection∇ . Define a product • on the Lie algebra  of G by

⋅ = ∇xx y y ,

for all ,   ∈x y  . Then, the flat and torsion-free conditions on ∇
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correspond to conditions (1) and (2), respectively.

Conversely, If G is a simply connected Lie group with Lie algebra 
 and x • y denotes a left-symmetric product on  compatible with 
the Lie bracket, then the left-invariant connection given by ∇ = ⋅x y x y
defines a left-invariant affine structure ∇ on . We deduce that if G 
is a simply connected Lie group with Lie algebra , then the study of 
left-invariant affine structures on G is equivalent to the study of left-
symmetric structures on G compatible with the Lie structure.

Let A be a left-symmetric algebra whose associated Lie algebra is , 
and let Lx and Rx denote the left and right multiplications, respectively 
i.e. Lxy=x ⋅ y and Rxy=x ⋅ y. The identity in (1) is now equivalent to the 
formula 

[ ],, ,  = x y x yL L L 	for all x,y∈A,

or, in other words, the linear map   L: →End (A) is a representation 
of Lie algebras.

If a left-symmetric algebra A has no proper two-sided ideal and it is 
not the zero algebra of dimension 1, then A is called simple. A is called 
semi simple, if it is a direct sum of simple left-symmetric algebras.

We say that A is complete if Rx is a nilpotent operator for all
Ax∈ . It turns out that, for a given simply connected Lie group G 

with Lie algebra , the complete left-invariant affine structures on G 
are in one-to-one correspondence with the complete left-symmetric 
structures on  compatible with the Lie structure. It is also known that 
an n-dimensional simply connected Lie group admits a complete left-
invariant affine structure if and only if it acts simply transitively on 


n by affine transformations [9]. A simply connected Lie group which 
is acting simply transitively on n by affine transformations must be 
solvable according to [6]. It is well known that not every solvable (even 
nilpotent) Lie group can admit an affine structure [7].

We say that A is Novikov algebra if it satisfies the identity

( ) ( ) ,⋅ ⋅ = ⋅ ⋅x y z x z y 	 for all x,y∈A. 		                 (3)

 In terms of left and right multiplications, (3) is equivalent to the 
formula

, 0,  = x yR R for all x,y∈A.

The left-symmetric algebra A is called derivation algebra if it 
satisfies the identity

 ( x ⋅ y) ⋅z=(z⋅y),   for  all x,y,z∈A

or, equivalently, all left and right multiplications Lx and Rx are 
derivations of g.

Recall that a Lie algebra  is an extension of the Lie algebra  by 
the Lie algebra A if there exists a short exact sequence of Lie algebras

0 0.
π

→ → → →

i
  

In other words, A is an ideal of   such that / ≅ A  .

For (x, a) and (y, b) in ≅ ⊕ A  , the extended Lie bracket is given 
by

( ) ( ) [ ] [ ] ( ) ( ) ( )( ), , , , , , , ,φ φ ω  = + − + x a y b x y a b x b y a x y           (4)

where : ( )φ → Der A  is a linear map and : × →w A   is an alternating 
bilinear map such that

( ) ( ) [ ]( ) ( ),, , ,ωφ φ φ= +   x yx y x y ad

and

[ ]( ) [ ]( ) [ ]( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , , , , .ω ω ω φ ω φ ω φ ω− + = + +x y z x y z y x z x y z y z x z x y

Note here that if A is abelian, then ω is a 2-cocycle [13,14].

Now we shall briefly discuss the problem of extension of a 
left-symmetric algebra by another left-symmetric algebra. To our 
knowledge, the notion of extensions of left-symmetric algebras has 
been considered for the first time in [9], to which we refer the reader 
for more details [15].

Suppose that a vector space extension of a left-symmetric algebra A 
by another left-symmetric algebra E is given.   We want to define a left-
symmetric structure on A  in terms of the left-symmetric structures 
given on A and E. In other words, we want to define a left-symmetric 
product on A  for which E becomes a two-sided ideal in A  such that 

/ E ≅A A ; or equivalently,

0 0→ → → →E A A

Becomes a short exact sequence of left-symmetric algebras.

Theorem 1:There  exists a left-symmetric structure on A  extending 
a left-symmetric algebra A by  a left-symmetric algebra E  if  and  only  
if  there  exist two linear maps E d ): (E, nλ ρ →A and a bilinear  map

: × →g A A E   suct that for all , , ∈x y z A A and , ∈a b E , the following 
conditions are satisfied [9].

1  ( ) ( ) ( ) ( ) ,λ λ λ ρ⋅ = ⋅ + ⋅ − ⋅x x x xa b a b a b a b

2  [ ]( ), ( ) ( ),ρ ρ ρ= ⋅ − ⋅x x xa b a b b a

3  [ , ] ( , ) ( , )[ , ] ,λ λ λ −− =x y x y g x y g y xL

4  ( , )[ , ]λ ρ ρ ρ ρ ⋅+ ° − =x y y x x y g x yR

5  ( ) ( ) ( )( ) ( )( ) [ ]( ), , , , , ,λ λ⋅ − ⋅ + − −x yg x y z g y x z g y z g x z g x y z

( ) ( )( ), , 0.ρ− − =z g x y g y x

If the conditions of the above theorem are fulfilled, then the 
extended left-symmetric product on A A E≅ × is given by

( ) ( ) ( ) ( ) ( )( ), , , , .λ ρ⋅ = ⋅ ⋅ + + +x yx a y b x y a b b a g x y 	              (5)

It is remarkable that if the left-symmetric product of E is trivial, 
then the conditions of the above theorem simplify to the following 
three conditions:

(i) [ ], %, ,λ λ λ  = x y x y i.e. λ  is a representation of Lie algebras,

(ii) , .λ ρ ρ ρ ρ⋅  = − ° x y x y y x 	

(iii) ( ) ( ) ( )( ) ( )( ) [ ]( ), , , , , ,λ λ⋅ − ⋅ + − −x yg x y z g y x z g y z g x z g x y z

( ) ( )( ), , 0.ρ− − =z g x y g y x

In this case, E becomes an A-bimodule and the extended product 
given in (5) simplifies too. Recall that if K is a left-symmetric algebra 
and V is a vector space, then we say that V is a K -bimodule if there exist 
two linear maps ( ), :λ ρ →K End V  which satisfy the conditions (i) and 
(ii) stated above.

Let K be a left-symmetric algebra, and suppose that a K -bimodule V 
is known. We denote by Lp (K, V) the space of all p-linear maps from K 
to V, and we define two co-boundary operators ( ) ( )1 2

1 : , ,δ →L K V L K V
and ( ) ( )2 3

2 : , ,δ →L K V L K V as follows:

For a linear map ( )1 ,∈h L K V we set
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( ) ( )( ) ( )( ) ( )1 , ,δ ρ λ= + − ⋅y xh x y h x h y h x y 		                 (6)

and for a bilinear map ( )2 ,∈g L K V we set

( ) ( ) ( ) ( )( ) ( )( ) [ ]( ) ( ) ( )( )2 , , , , , , , , , ,δ λ λ ρ= ⋅ − ⋅ + − − − −x y zg x y z g x y z g y x z g y z g x z g x y z g x y g y x     (7)

where λ and ρ are linear maps ( ), : .λ ρ →K End V

It is straightforward to check that 2 1o 0.δ δ = Therefore, if we 
set ( )2

, 2, kerλ ρ δ=Z K V and ( ), 1, ,λ ρB K V Im we can define a notion 
of second co-homology for the actions λ  and ρ  by simply setting 

( ) ( ) ( )2 2 2
, , ,, , / , .λ ρ λ ρ λ ρ=H K V Z K V B K V As in the case of Lie algebras, we can 

prove the following [9].

Proposition 2: For given linear maps ( ), :λ ρ →K End V , the 
equivalent classes of extensions

0 0→ → → →V A K

of K by V are in one-to - one correspondence with the elements of the  
second co-homology group ( )2

, , .λ ρH K V

A left-symmetric algebras extension

0 0
π

→ → → →

i
E A A

is called central if and only if ( ) ( )⊆ i E C A  where

( ) { }: 0= ∈ ⋅ = ⋅ = C A x A x y y x

is the center of A . In particular, the extension is central whenever 
E is a trivial A-bimodule (i.e. 0λ ρ= = ). We say that the extension is 
exact if and only if ( ) ( )= i E C A . It is easy to verify [9] that the extension 
is exact if and only if I[g]=0, where

{ }[ ] : 0 and ( , ) ( , ) 0for all y A= ∈ ⋅ = ⋅ = = = ∈gI x A x y y x g x y g y x

We observe that I[g] is depends only on the co-homology class of g, 
that is I[g] is well defined. In case E is a trivial A - bimodule, we denote the 
central extension corresponding to the class ( ) [ ]( )2[ ] , , .∈ g H A E by A g

Let [ ]( ),A g and [ ]( ), 'A g  be two central extensions of A by E, 
( ) ( )µ ∈ =Aut E GL E and ( ) ,η∈ Aut A where Aut (E) and Aut (A) are the 

groups of left-symmetric automorphisms of E and K, respectively. It is 
clear that if,   ( )1 , ,∈h L A E  then the linear mapping : 'ψ → A A defined 
by

( ) ( ) ( ) ( )( ), ,ψ η µ= +x a x a h x

is an isomorphism provided 

( ) ( )( ) ( )( ) ( ) ( ) [ ]*
1 *i' , , , , , .e., [g'] .η η µ δ η µ= + ∈ × =g x y g x y h x y forall x y A A g

This allows us to define an action of the group G=Aut (E) x Aut (A)
on H 2 (A, E) by setting

( ) [ ] [ ]*
*,µ η µη⋅ =g g

or equivalently, ( ) ( ) ( ) ( )( )( ), , ,µ η µ η η⋅ =g x y g x y for all , .∈x y A

Denoting the set of all exact central extensions of A by E by

( ) [ ] ( ){ }2 2
[ ], , : 0= ∈ =ex gH A E g H A E I

and the orbit of [g] by G[g], it turns out that the following result is 
valid  [9].

Proposition 3: Let [g] and [ ]'g  be two classes in ( )2 , .exH A E Then, 
the central extensions [ ]( ),A g  and ( ,[ ])′ ′A g  are isomorphic if and only 
if [ ][ ]   '=gG G g . In other words, the classification of the exact central 
extensions of A by E is, up to left-symmetric isomorphism the orbit space 

of ( )2 ,exH A E  under the natural action of G=Aut (E) x Aut(A).

We close this section by the following important result [15].

Proposition 4: Let 0 % 0→ → → →I A J be an exact sequence of left-
symmetric algebras such that A is complete then I and J are complete

Proof: Let A be a complete left-symmetric algebra. Then Rx is 
nilpotent for all ,∈x A . Since J is an ideal of A, then Rx is nilpotent for 
all x I∈ , that is I is complete. On the other hand, Since /≅J A I , we 
can define for ∈x A , : ,→x JR J J|  by ( )| = +x J xR y R y I for all ,∈y A

.= +y y I . Since for all 1 2, ∈y y A  such that yl+ I=y2 + I there exists 
∈z I so that y2=yl+ z, and

Rx (y2 +I)   =  Rx y2 + I

=   Rx (yl+ z) +I

=   Rx yl + Rx z + I

=   Rx yl+I

=   Rx (yl+ I)

then, x JR | is well defined. We also have, for all , ,∈x y A , that

( ) ( )= + ⋅ +

= ⋅ +
= +

=

x

x

x

R y y I x I
y x I
R y I
R y

Thus, to prove that J is complete, it is enough to prove that x JR |
is nilpotent for all ∈x A .  Since Rx is nilpotent, then 0=k

xR for some
∈k . This implies that

( ) 0+ = =k
xR y I I

for all ∈y A Hence, ( ) 0=k
xR y for all ∈y J , that is x JR |  is nilpotent 

for all ∈x A , and hence J is complete.

Complete Left-Symmetric Structures on Solvable Non-
Unimodular Lie Algebras of Dimension 3

Recall that a lie algebra  is unimodular if and only if tr(adx)=0 for 
all xϵ. The classification of solvable non unimodular Lie algebras of 
dimension 3 can be found [16].

Lemma 5: Let g be solvable non-unimodular Lie algebra of dimension 
3. Then there is a basis {el, e2, e3} of  so    that

[ ]
[ ]

1 2 2 3

1 3 2 3

,

, (2 )

α β

γ α

= +

= + −

e e e e

e e e e

If we exclude the case where D is the identity matrix then the 
determinant det (2 )α α βγ= − −D provides a complete isomorphism 
invariant for this Lie algebra.

According to this result, we can, by simple computations, find that 
there are five possibilities for D:

0 0 0 1 0
0 1 0 1 1 1

0 0 0
0 1 or  where 0

0

1
, , ,

,
1
ς

µ ς
µ ς

     
     
     
   
   
   

≅ ≅ ≅

−
≅ < < ≅ >

D D D

D ere Dwh

This implies that any solvable non-unimodular Lie algebra of 
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dimension 3 is isomorphic to one and only one of the following Lie 
algebras

[ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

3,1 1 2 2

3,2 1 2 2 1 3 3

3,3 1 2 2 3 1 3 3

3,4 1 2 2 1 3 3

3,5 1 2 2 3 1 3 2 3

: ,

: , , ,

: , , ,

: , , , ,0 1

: , , , , 0

µ

ζ

µ µ

ζ ζ ζ

=

= =

= + =

= = < <

= + = − + >

e e e

e e e e e e

e e e e e e e

e e e e e e

e e e e e e e e











Now let  be real solvable non-unimodular Lie algebra of dimension 
3.  Let A3 be a complete left- symmetric algebra whose associated Lie 
algebra is.

We shall first recall the following result from [12].

Lemma 6: Only the complex sim le left-symmetric algebras and 
even-dimensional complex semisim le left- symmetric algebras may have 
simple real forms, where a real form of a complex left-symmetric algebra 
A is sub algebra A0 of A   such that 0 .=A A Here A is A regarded as a 
real left-symmetric algebra.

Now, we can prove the following

Proposition 7: A3 is not simple. In other words, any complete 
left-symmetric structure on a solvable non- unimodular Lie algebra of 
dimension 3 is not simple.

Proof: Assume to the contrary that A3 is simple. Then, Lemma 6 
shows that complexification 3

A of A3 is simple as the dimension of 3
A

is odd. We can now apply Corollary 4.2 in [11] to deduce that 3
A is 

isomorphic to the complex left-symmetric algebra 1
1A− having a basis 

{el, e2, e3} such that the only non-trivial products are

1 2 2

1 3 3

2 3 3 2 1

,
,

.

⋅ =
⋅ = −
⋅ = ⋅ =

e e e
e e e
e e e e e

Thus, the complex lie algebra 3 associated to 1
3 1

−≅A A  is 
unimodular and hence  must be unimodular. This contradiction 
shows that A3 is not simple

Before returning to the left-symmetric algebra A3, we need to state 
the following facts without proofs.

Lemma 8: Let A be a left-symmetric algebra with associated Lie 
algebra  and R a two -sided ideal in A. Then the lie algebra R associated 
to R is an ideal in 

Lemma 9:  Let  be solvable non-unimodular Lie algebra of 
dimension 3 and let   be a proper ideal of . Then   is isomorphic to



2


, ( ) [ ]1 2 1 2 2, : , .aff e e e e e= =

By Proposition 7, A3 is not simple and hence it has a proper two-
sided ideal I, so we get a short exact sequence of left-symmetric algebras

30 0
i

I A J
π

→ → → → 				                   (8)

If   is the Lie sub algebra associated to I then, by Lemma 8,  is 
an ideal in . From Lemma 9 it follows that there are three cases to be 
considered according to weather   is isomorphic to, 2, or off ().

Case 1: .≅ 

In this case, the short exact sequence (8) becomes

0 3 20 0→ → → → A I

where I2 is a complete left-symmetric algebra of dimension 2 and 0 
is  with the trivial  product. At the Lie algebra level, we have a short 
exact sequence of Lie algebras of the form

~

20 0→ → → →   				                   (9)

where 2 denotes the associated Lie algebra of I2 and 
~
  is an extension 

of 2 by .

Since 2 is of dimension 2, then 2  is either isomorphic to  2 or 
off ().

Assume first that 
2

2 .≅   Then, the short exact sequence (9) 
becomes

~
20 0→ → → → 

Let {el , e2} be a basis for 2. On 2 × , the extended Lie bracket 
given by (4) takes the simplified form

( ) ( ) ( ) ( ) ( )( ), , , 0, , ,x a y b x b y a x yφ φ ω= − +   	             (10)

for all , ∈a b , 2, ∈x y .

Setting  ( )
~

,0=i ie e , i=1, 2 and  ( )
~

3 0,1=e we get

[ ] ( )
[ ] ( )

[ ] ( )

1 2 1 2 3

3 1 3 1 3

2 3 2 3

, ,

,

,

ω

φ

φ

=

=

=

  

  

  

e e e e e

e e e e e

e e e e

Since is solvable and non-unimodular, we can, without loss of 
generality, assume that ( )2 0φ =e . That is

( )
( )

1 2

1

0 ,

0

ω

φ

 
  
 

=
e e

D
e

Notice that ( )1eφ should be non- zero, since otherwise  becomes 
unimodular. In other words,

0  0
0 1
 

≅  
 

D

Now, we shall determine all the complete left-symmetric structures 
on 2. These are described by the following lemma that we state without 
proof.

Lemma 10: Up to left-symmetric isomorphism, there are two 
complete left-symmetric structures on 2 given, in a basis {el, e2} of 2, 
by either

(i) 0⋅ =i je e i,j=1,2

(ii) 2 2 1.⋅ =e e e

From now on, A2 will denote the vector space 2 endowed with 
one of the complete left-symmetric structures described in Lemma 10.

The extended left-symmetric product on 2 0×A given by (5) turns 
out to take the simplified form

( ) ( ) ( )( ), , , , ,λ ρ⋅ = ⋅ + +x yx a y b x y b a g x y 		               (11)

for all 2, ∈x y A and , ∈a b . Indeed, ( ),ρ λ ∈ ≅ x x End for all 2∈x A . So, 
we can identify ρx and λx with real numbers that we denote by ρx and
λx , respectively.
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Note here that ( )λ φ ρ= +x xx , for all 2∈x whereas ( )2:φ → ≅  End  
in (10).

The conditions in Theorem 1 can be simplified to the following 
conditions

( )ρ ρ ρ⋅ = °y xx y 					                     (12)

( , . ) ( , . ) ( ( , )) ( ( , ))

( ( , y) g(y, x)) 0

λ λ

ρ

− + −

− − =
x y

z

g x y z g y x z g y z g y z
g x

		               (13)

By using (10) and (11), we deduce from

( ) ( ) ( ) ( ) ( ) ( ), , , , , , , ,  = ⋅ − ⋅ x a y b x a y b y b x a 		                 (14)

that

( ), ( , ) ( , ) ω = −x y g x y g y x .

Since ( )1 2, 0e eω = , then g(el, e2)=g(e2, el). Since ( )2 0φ =e , then

2 2
λ ρ=e e . Also, since ( )1 0φ ≠e , then 

1 1
0λ ρ− ≠e e . By applying identity 

(12) to i, =1,2,⋅i ie e  we deduce that 0ρ = . Hence 
2e  = 0λ and

1e 0λ ≠ , 
say

1e = λ α , *α ∈ .

In this case, the formula (6) and (7) become

( ) ( )( ) ( )1 ,δ λ= − ⋅xh x y h y h x y

And

( ) ( ) ( ) ( )( ) ( )( ), , , , , ,δ λ λ= ⋅ − ⋅ + −x yg x y z g x y z g y x z g y z g x z

where ( )1
2 ,∈ h A and ( )2

2 ,∈ g A .

According to Lemma 10, there are two cases to be considered.

10.1. 2 1 2, : 0, , 1,2= ⋅ = =i jA e e e e i j .

In this case, using the first formula above for 1δ , we get

11 12
1 ,

0 0
δ

 
=  
 

h h
h

Where ( )11 1α=h h e  and ( )12 2α=h h e . Similarly, using the second 

formula above for 2δ , we verify easily that if g is a cocycle (i.e. 2 0δ =g ) 
and ( ),=ij i jg g e e , then

11 0
0 0

 
=  
 

g
g

that is gl2 =g2l =g22=0. In this case, the class [ ] ( )2
, 2 ,λ ρ∈ g H A  of a cocycle 

g may be represented, in the basis above, by a matrix of the simplified 
form

0
0 0
 

=  
 

s
g

We can now determine the extended complete left-symmetric 
structures on A3. By setting ( ),0=i ie e , i=1, 2 and ( )3 0,1e =  and using 
formula (11) we obtain that the non- zero relations in A3are

1 2 3

1 3 3

,
,α

⋅ =

⋅ =

  

  

e e se
e e e

with 
1

0eα λ= ≠

By setting 1 1
1
α

= e e , 2 3= e e  and 3 2=e e , and 
α

=
st  we see that the 

new basis {el, e2, e3} of A3satisfies

2 2. =le e e

3 2. =le e te

and all other products are zero. We can easily see that this product 
is isomorphic to

2 2.le e e=

We set 3,0 1 2 3 1 2 2, , := ⋅ =N e e e e e e .

10.2. 2 1 2 2 2 1, := ⋅ =A e e e e e .

We obtain, as above, that A3 is isomorphic to one of the following 
complete left-symmetric algebras

(i) 3,2 1 2 3 1 2 2 3 3 1, , : ,= ⋅ = ⋅ =N e e e e e e e e e ,

(ii) 3,3 1 2 3 1 2 2 3 3 1, , : ,= ⋅ = ⋅ = −N e e e e e e e e e  .

Assume now that ( )2 ≅ aff . Then the extended Lie bracket on 
aff () X  given by (4) takes the form

( ) ( ) [ ] ( ) ( ) ( )( ), , , , , , ,φ φ ω= − +  x a y b x y x b y a x y

for all ∈a b , ( )f, af∈ x y .

Let {el , e2} be a basis of aff () satisfying [ ]1 2 2,e e e= . By setting 
( ),0=i ie e , i=1, 2 and ( )

~

3 0,1e =

we get
[ ] ( )
[ ] ( )

[ ] ( )

1 2 1 2 3

3 1 3 1 3

2 3 2 3

, ,

,

,

ω

φ

φ

= +

=

=

  

  

  

e e e e e e

e e e e e

e e e e

Since   is solvable and non-unimodular, then as above, we can 

assume that ( )2 0φ =e . That is,

( )
( )

1 2

1

0 ,

0

ω

φ

 
  
 

=
e e

D
e

Notice that ( )1 1 0φ + ≠e , since otherwise g becomes unimodular. 

Now, we have the following cases.

1. If det 0=D , then 
1 0
0 1
 

≅  
 

D that is, ( )1 0φ =e and ( )1 2, 0ω =e e . 

This means that φ  is identically zero, i.e.
~
 is a central extension of 

aff () by .

2. If 1 0 1 1 1 0
det 0, , ,

0 1 0 1 0 µ
     

≠ ≅      
     

D D or with 0 1µ< < .

It is not hard to prove the following

Lemma 11: Up to left-symmetric isomorphisms, there is a unique 
complete left-symmetric structure on aff () which is given, relative to a 
basis el, e2 of aff () [ ]1 2 2,e e e= , by 1 2 2e e e⋅ = .

We will denote by N2 the vector space aff () endowed with the 
complete left-symmetric product given in Lemma 11.

On the other hand, the extended left-symmetric product on  N2 × 
0 is given by

( ) ( ) ( ) ( ) ( )( ), , , , ,λ ρ⋅ = ⋅ + +x a y b x y b x a y g x y 		                (15)

for all , ∈a b , ( ), ∈ x y .
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The conditions in Theorem 1 can be simplified to the following 
conditions

[ ], 0λ =x y 					                  (16)

( )ρ ρ ρ⋅ = °y xx y 				                                (17)

( ) ( ) ( )( ) ( )( ) [ ]( ), , , , , ,λ λ⋅ − ⋅ + − −x yg x y z g y x z g y z g x z g x y z

( ) ( )( ), , 0ρ− − =z g x y g y x

By using (10) and (11), we deduce from

( ) ( ) ( ) ( ) ( ) ( ), , , , , , , ,= ⋅ − ⋅  x a y b x a y b y b x a

that

( ), ( , ) ( , )ω = −x y g x y g y x

From condition (16), we get
2

0eλ = . Applying the identity (17) 
above to i ie e⋅ , i=1, 2, we deduce that 0ρ = and hence ( )

1 1e eλ φ= .

Assume first that
1 0
0 0
 

≅  
 

D , that is, ( )1 2, 0e eω = and ( )1 0eφ = , 

then 0λ ρ= = . Thus, the extension is central.

We know that the classification of the exact central extension 
of N2 by 0 is, up to left-symmetric isomorphism, the orbit space of 

( )2
2 0,exH N   under the natural action of 0 2( ) ( )G Aut Aut N= ×

(Proposition3). So, we must compute ( )2
2 0,exH N  . Since 0 is a 

trivial N2 -bimodule, then

( ) ( )
( ) ( ) ( ) [ ]( )

1

2

, ,

, , , , , , ,

h x y h x y

g x y z g x y z g y x z g x y z

δ

δ

= − ⋅

= ⋅ − ⋅ −

where ( )1
2 ,h N∈  and ( )2

2 ,g N∈  . This implies that, with respect 
to the basis 1 2,e e of N2, 1hδ is of the form

12
1

0
0 0

h
hδ

 
=  
 

where 12 2( )h h e= − .

Observe that if g is a 2-cocycle (i.e. 2 0gδ = ), then

11 0
0 0

 
=  
 

g
g

where ( , )ij i jg g e e= . Hence, [ ] ( )2
2 ,g H N∈   can be represented as a 

matrix with respect to 1 2{ , }e e by
0

,
0 0
 

= ∈ 
 



t
g t

We determine, in this case, the extended left-symmetric structure 
on A3. By setting ( ),0i ie e= , i=1, 2

and ( )3 0,1e = , and using formula (15), we find 	

1 1 3 1 2 2, .⋅ = ⋅ =     e e te e e e

and all other products are zero, ∈t . We denote endowed with 
this structure by 3,tN .

Recall that the extension

0 3 20 0→ → → → A N

is exact (i.e. 0 2( ) ( ))=i C A  if and only if { }[ ] 0=gI .

Let 1 2 [ ]= + ∈ gx ae be I . Then computing all the products

0⋅ = ⋅ =i ix e e x , we deduce that x=0, that

is the extension is exact.

Let 3,tN , 3,tN ′ be two left-symmetric algebras as above. We 
know that 3,tN is isomorphic to 3,tN  if and only if there exists 
( ) *

0 2 2, ( ) ( ) ( )α η ∈ × = × Aut Aut N Aut N  such that for all 2,x y N∈ , 
we have

( ) ( ) ( )( ), ,α η η′ =g x y g x y . 			                  (18) 

Now, we have to calculate 2( )Aut N . Let 2( )Aut Nη ∈ so that, 
with respect to the basis 1 2,e e of N2with 1 2 2e e e⋅ = ,

η
 

=  
 

a b
c d

Since 2 1 2 1 2( ) ( ) ( ) ( )η η η η= ⋅ = ⋅e e e e e , then b=0 and d=ad. Also 

1 1 1 10 ( ) ( ) ( )η η η= ⋅ = ⋅e e e e which implies that a= 0 or c= 0. Since det 0η ≠ , 

then 0≠d and hence a=1 and c=0. This means that

1 0
0

η
 

=  
 d

with 0d ≠ . We shall now apply formula (18).  For this we recall first 
that in the basis 1 2,e e , the classes g and g′  corresponding to 3,tN and 

3, 'tN have, respectively, the forms

0
0 0
 

=  
 

t
g and

' 0
'

0 0
 

=  
 

t
g

From ( ) ( )( )1 1 1 1( , ,' ) α η η=g e e g e e , we get

't tα=
Hence 3,tN and '3,tN are isomorphic if and only if 't tα= , for 

some *α ∈ .

Notice that if t= 0, we obtain the complete left-symmetric algebra 
3,0N described above. If 0t ≠ , we obtain, by setting i ie e=  , i=1, 2, and

3 3= e te , the complete left-symmetric algebra

3,1 1 2 3 1 1 3 1 2 2, , : ,N e e e e e e e e e= ⋅ = ⋅ =

Assume now that 
1 0
0 1
 

≅  
 

D , that is, ( )1 2, 0ω =e e and ( )1 1φ =e . 

Then ( ) ( )1 1 1λ φ= =e e . We deduce, in this case, that, in the basis el , e2  of 

N2, the [ ] ( )2
, 2 ,λ ρ∈ g H N of a cocycle g may berepresented by a matrix 

of the simplified form

0
0

 
=  
 

t
g

t

We determine, in this case, the extended complete left-symmetric 
structure on A3. By setting ( ),0i ie e=  ,i=1, 2 and ( )3 0,1e = and using 
formula (15), we obtain

1 2 2 3

2 1 3

1 3 3

⋅ = +
⋅ =
⋅ =

   

  

  

e e e te
e e te
e e e

We denote this left-symmetric algebra by B3,t. Notice that if t=0, 
we obtain the complete left-symmetric algebra B3,0 with the non- zero 
relations

http://dx.doi.org/10.4172/1736-4337.1000222


Citation: Guediri M, Al-Balawi K (2015) Complete Left-Invariant Affine Structures on Solvable Non-Unimodular Three-Dimensional Lie Groups. J 
Generalized Lie Theory Appl 9: 222. doi:10.4172/1736-4337.1000222

Page 7 of 11

Volume 9 • Issue 1 • 1000222J Generalized Lie Theory Appl
ISSN: 1736-4337 GLTA, an open access journal

1 2 2

1 3 3

,
.

⋅ =
⋅ =

e e e
e e e

If 0t ≠ ; we obtain, by setting i ie e=  , i=1,2 and 3 3e te=  ; the 
complete left-symmetric algebra B3,1with the non-zero relations

1 2 2 3

2 1 3

1 3 3

⋅ = +
⋅ =
⋅ =

e e e e
e e e
e e e

Assume now that 
1 1
0 1
 

≅  
 

D that is, ( )1 2, 1ω =e e  and ( )1 1φ =e . 

Hence ( ) ( )1 1 1λ φ= =e e . Usingthe same method as above, it follows that 
the class [ ] ( )2

, 2 ,λ ρ∈ g H N  of a co-cycle g takes the reduced form
0

1 0
 

=  − 

t
g

t

We determine, in this case, the extended complete left-symmetric 
structures on A3. By setting ( ),0=i ie e ,i=1, 2 and ( )3 0,1=e and using 
formula (15), we obtain 

( )
1 2 2 3

2 1 3

1 3 3

1
⋅ = +

⋅ = −

⋅ =

  

  

  

e e e te
e e t e
e e e

We denote such a left-symmetric algebra by C3,t. Notice that  
if  t=1, we  obtain the complete left- symmetric algebra C3,l  with the 
non-zero relations

1 2 2 3

1 3 3

,
,

⋅ = +

⋅ =

e e e e
e e e

and if 1≠t , we obtain the complete left-symmetric algebra C3,t with 
the non-zero relations

( )
1 2 2 3

2 1 3

1 3 3

1
⋅ = +

⋅ = −

⋅ =

e e e te
e e t e
e e e

where different values of t give non-isomorphic complete left-
symmetric algebras.

Assume finally that 1 0
0 µ
 

≅  
 

D , with 0 1µ< < , that is ( )1 2, 0ω =e e

and ( )1φ µ=e . Hence ( ) ( )1 1λ φ µ= =e e . It follows that the class 
[ ] ( )2

, 2 ,λ ρ∈ g H N of a co-cycle g is identically zero.

We determine, in this case, the extended complete left-symmetric 
structures on A3. By setting ( ),0=i ie e , i=1, 2 and ( )3 0,1e = and using 
formula (15), we obtain

1 2 2

1 3 3

,
.µ

⋅ =
⋅ =

  

  

e e e
e e e

where 0 1µ< < . We set

( )3,1 1 2 3: 1 2 2 1 3 3, , ,µ µ= ⋅ = ⋅ =D e e e e e e e e e

where 0 1µ< < .

Case 2: ( )≅ aff  .

In this case, the short exact sequence (8) becomes

2 3 00 0→ → → →N A 				                  (19)

where N2 is the complete left-symmetric algebra whose associated 
Lie algebra is aff () and  0  is the trivial left-symmetric algebra over 
.

Let 0 3:σ → A  be a section and set ( ) 31σ °= ∈x A  and define two 
linear maps ( )2,λ ρ ∈End N  by putting ( )λ °= ⋅y x y  and ( )ρ °= ⋅y y x . By 
setting e x x° °= ⋅ , we see that 2∈e N . Let 0 0 2: × → g N  be the bilinear 
map defined by ( ) ( ) ( ) ( ), σ σ σ= ⋅ − ⋅g a b a b a b  . Since the complete left-
symmetric structure on  is trivial, then ( ), =g a b abe , or equivalently
( )1,1g e= . Also we can show that 2 0gδ = , i.e. ( )2

, 0 2,λ ρ∈ g Z N .

In this case, the extended left-symmetric product on 0 2⊕ N
given by (5) takes the simplified form

( ) ( ) ( ) ( )( ), , 0, ,λ ρ⋅ = ⋅ + + +a x b y x y a y b x abe

for all , ∈a b and 2, ∈x y N .

The conditions in Theorem 1 can be simplified to the following 
conditions

( ) ( ) ( ) ( )λ λ λ ρ⋅ = ⋅ + ⋅ − ⋅x y x y x y x y 		                 (20)

[ ]( ) ( ) ( ),ρ ρ ρ= ⋅ − ⋅x y x y y x 			               (21)

[ ] 2,λ ρ ρ+ = eR 				                 (22)

 Let ( )( ): aff ,φ → Der be a derivation of aff ().  Set

( )1φ
 

=  
 

a c
b d

relative to a basis 1 2,e e of aff () satisfying [ ]1 2 2,e e e= .  From the 
identity ( ) ( ) ( )2 1 2 1 21 1 , , 1φ φ φ= +      e e e e e , we deduce that a=c=0, hence

( )
0 0

1φ
 

=  
 b d

Let

1 1

2 2

α β
ρ

α β
 

=  
 

relative to a basis 1 2,e e of aff () satisfying [ ]1 2 2,e e e= . Applying 
formula (21) to e2, we get 1 0β = . Since ( )1φ λ ρ= − , we deduce that, 
relative to the basis 1 2,e e , we have

1

2 2

0α
λ

α β
 

=  + + b d

Applying formula (20) to all products of the form ei, ej, i=1, 2, we 
get 2 0α + =b . Moreover, by applying formula (22) to e1 and e2, we get

1 2 0α β= = . Thus

0 0
0

ρ
 

=  − b
 and

0 0
0

λ
 

=  
 d

Now, since 2∈e N , then 1 2= +e te se for some , ∈t s .  Formula 
(22) when applied to e1 gives

2 2− =bde se

for which we get that 1 2° °= ⋅ = −e x x te bde , ∈ t . Hence we get a 
left-symmetric product on A3. Now, let us write down the structure of 
A3using a basis. From above we have

1 2 2 1 2, °⋅ = ⋅ = − ⋅e e e e x be
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2 2 1 2, ,  ° ° °= ⋅ = − ∈x e de x x te bde t

Since 0 3x A∈  and ( )0 1xπ = , then 0 3 2x A N∈  . Indeed if
0 2x N∈ , then the exactness of the short sequence (19) implies that

( )0 2 kerπ∈ =x i N , a contradiction. This implies that, relative to a 
basis { }1 2 3, ,e e e of A3, x0 is of the form 0 1 2 3α β γ= + +x e e e , where 

, ,α β γ ∈ with 0γ ≠ . In this case, we can, without loss of generality, 
assume that 1γ = . Thus, 3 0 1 2α β= − −e x e e . Since 1 2°⋅ = −e x be we get 
that

( )1 3 2β⋅ = − +e e b e , 

also since 2 2° ⋅ =x e de we get that

( )3 2 2.α⋅ = −e e d e

since 1 2,° °⋅ = −x x te bde , we deduce that

( )3 3 1 2α αβ β⋅ = + + − −e e te b bd d e .

Since ,α β  are arbitrary, we can choose ,α β so that

3 1 2°= − −e x de be . Hence the left-symmetric product on A3 is given, 
relative the basis{ }1 2 3, ,e e e , by the non- zero relations

1 2 2

3 3 1,
⋅ =
⋅ =

e e e
e e te

Notice that if t=0, we obtain the complete left-symmetric algebra

3,0N . If 0≠t , we obtain, by setting = i ie e ; i=1, 2 and 3 3
1

=e e
t

; that 

A 3 is isomorphic to one of the left-symmetric algebras N3,2 or N3,3 given 
above

Case 3: 2≅  .

In this case, the short exact sequence (8) becomes

2 3 00 0→ → → →A A

where A2 is a complete left-symmetric algebra whose lie algebra is 2 
and 0 is the trivial  left-symmetric algebra over .

At the lie algebra level, we have a short exact sequence of lie algebras 
of the form

20 0→ → → →

 

Let ( ) ( )2 2:φ → ≅  Der End , be a derivation of 2. Relative to a 
basis 1 2,e e of 2 set

( )1φ
 

=  
 

a c
b d

In this case, the extended Lie bracket on  × 2, given by (4), takes 
the simplified form

( ) ( ) ( ) ( ) ( )( ), , , 0, ,φ φ ω  = − + a x b y a y b x a b

for all 2, ∈x y and , ∈a b . By setting ( )1 1,0=e  and ( )1 0,+ =i ie e , 
i=1, 2 we obtain

1 2 1 2

1 3 1 2

2 3

[e , e ] = ae  + be
[e , e ] = ce + de
[e , e ] = 0

   

   

 

By Lemma 5, we obtain that, relative to the basis 1 2,e e ,

 
=  
 

a b
D

c d
with 0+ ≠a d . Note that, in this case,ω  may not be zero, that is, the 
extensions of   by 2are not necessarily semi direct products of  by 


2 .
According to Lemma 5, there are five cases to be considered

1 0 1 0 1 1 1 0 1
,  ,  ,   or ,

0 0 0 1 0 1 0 1
ζ

µ ζ
−         

≅          
         

D

Where 0ζ > and 0 1µ< < .

Let 0 3:σ → A be a section and set ( ) 31σ °= ∈x A
and define two linear maps ( )2,λ ρ ∈End A  by putting 
( )y x yλ °= ⋅  and ( )y y xρ °= ⋅ . By setting e x x° °= ⋅ , we see 

that 2e A∈ . Let 0 0 2: × → g A be the bilinear map defined by
( ) ( ) ( ) ( ), σ σ σ= ⋅ − ⋅g a b a b a b . Since the complete left-symmetric 

structure on  is trivial, then ( ), =g a b abe , or equivalently
( )1,1 =g e . Also we can show that 2 0δ =g , i.e. ( )2

, 0 2,λ ρ∈ g Z A .

The extended left-symmetric product on 0 2⊕ A given by (5) is 
then takes the simplified form

( ) ( ) ( ) ( )( ), , 0, λ ρ⋅ = ⋅ + + +a x b y x y a y b x abe 		               (23)

for all 2, ∈x y A and , ∈a b .

The conditions in Theorem 1 can be simplified to the following 
conditions

( ) ( ) ( ) ( )λ λ λ ρ⋅ = ⋅ + ⋅ − ⋅x y x y x y x y 		              (24)

( ) ( ) 0ρ ρ⋅ − ⋅ =x y y x 				                  (25)

[ ] 2,λ ρ ρ+ = eR 				                (26) 

According to Lemma 10, we have the following cases of A2

1. 2 1 2, : 0, , 1, 2= ⋅ = =i jA e e e e i j .

Assume first that 
1 0
0 0
 

≅  
 

D

and let

1 1

2 2

α β
ρ

α β
 

=  
 

relative to the basis 1 2,e e of 2A . Since ( )1φ λ ρ= − , we deduce that, 
relative to the basis 1 2,e e , we have

1 1

2 2

1α β
λ

α β
+ 

=  
 

Applying formula (26) to e2, we obtain 1 2 0β β= = . The same 
formula when applied to e1 yields 1 2 0α α= = . It follows that ρ  is 
identically zero and

1 0
0 0

λ
 

=  
 

We can easily show that the condition (26) above is satisfied for 
all 1 2e x x se te° °= ⋅ = + , s t∈ . Hence we get a left-symmetric 
product on A3.

Now, let us write down the structure of A3 using a basis. From 
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above we have

1 1 1 2, .° ° °⋅ = ⋅ = +x e e x x se te

We can easily prove that 0 3 2∈x A A .  This implies that, relative 

to a basis { }1 2 3, ,e e e of A3, x0 is of the form 0 1 2 3α β γ= + +x e e e , where 
, ,α β γ ∈ with 0γ ≠ . In this case, we can, without loss of generality, 

assume that 1γ = . Thus, 3 0 1 2α β= − −e x e e . Since 1 1x e e° ⋅ = we get 
that

3 1 1⋅ =e e e

also since 1 2,° °⋅ = +x x se te we deduce that

( )3 3 1 2α⋅ = − +e e s e te .

Since ,α β are arbitrary, we can choose ,α β so that 3 1°= −e x se .  
Hence the left-symmetric product on A3 is given, relative to the basis 
{ }1 2 3, ,e e e of A3, by the non- zero relations

3 1 1

3 3 2

⋅ =
⋅ =

e e e
e e te

Notice that if t= 0, we find the complete left-symmetric algebra 
N3,0.  If 0≠t , we get, by setting 1 3 2 1,= = e e e e , and 3 2=e te that A3 is 
isomorphic to the complete left-symmetric algebra N3,l .

Assume then that 
1 0
0 1
 

≅  
 

D and let

1 1

2 2

α β
ρ

α β
 

=  
 

relative to the basis 1 2,e e of A2 . Since ( )1φ λ ρ= − , we deduce that, 
relative to the basis 1 2,e e , we have

1 1

2 2

1
1

α β
λ

α β
+ 

=  + 
By applying formula (26) to e1 and e2, we get

0
,  

0 0

1
,  

0 1

α
ρ

α
λ α

 
=  
 
 

= ∈ 
 



and 2
1 2e x x e eα α° °= ⋅ = + .

Similarly, we find that,  relative  to the basis { }1 2 3, ,e e e  of A3 with 
2

3 1 2α α°= + −e x e e , the left- symmetric product on A3  is given by the 

non- zero relations

3 1 1

3 2 1 2

2 3 1.
α
α

⋅ =

⋅ = +
⋅ =

e e e
e e e e
e e e
Notice that if 0α = , we get, by setting 1 3=e e , 2 1=e e and 3 2=e e , 

the complete left-symmetric algebra 3,0B . If 0≠t  we get, by setting 

1 3e e= ; 2 2e e= 3 1e eα= ; that A3 is isomorphic to the complete left-
symmetric algebras B3,l .

Assume now that
1 1
0 1
 

≅  
 

D , and let

1 1

2 2

α β
ρ

α β
 

=  
 

relative to the basis 1 2,e e of A2. Since λ ρ= −D , we deduce that, 

relative to the basis 1 2,e e , we have

1 1

2 2

1 1
1

α β
λ

α β
+ + 

=  + 

By applying formula (26) to e1 and e2, we get

0 1 1
, ,  

0 0 0 1
α α

ρ λ α
+   

= = ∈   
   



and 1 2α α° °= ⋅ = +e x x e e .

Similarly, we find that, relative to a basis { }1 2 3, ,e e e of A3 with
2

3 1 22α α°= + −e x e e , the left-symmetric product on A3 is given by the 
non-zero relations

( )
3 1 1

3 2 1 2

2 3 1

1
.

α
α

⋅ =

⋅ = + +

⋅ =

e e e
e e e e
e e e

Notice that if 0α = , we get, by setting 1 3=e e , 2 1=e e and 3 2=e e
the complete left-symmetric algebra C3,l .  If 0α ≠ , we get, by setting 

1tα = − with 1t ≠ , the complete left-symmetric algebra C3,1 where 
different values of t give non-isomorphic  complete left-symmetric 
algebras.

Assume then that
1 0
0 1
 

≅  
 

D , where 0 1µ< < , and let

1 1

2 2

α β
ρ

α β
 

=  
 

relative to the basis 1 2,e e of A2. Since ( )1φ λ ρ= − , we deduce that, 
relative to the basis 1 2,e e , we have

1 1

2 2

1α β
λ

α β µ
+ 

=  + 

By applying formula (26) to el and e2, we obtain that ρ  is identically 
zero,

1 0
0

λ
µ

 
=  
 

and 1 2µ° °= ⋅ = +e x x e e .

Similarly, we find that, relative to a basis { }1 2 3, ,e e e of A3 with
3 1 2e x e e°= − − , the left-symmetric product on A3 is given by the 

non- zero relations

3 1 1

3 2 2.µ
⋅ =
⋅ =

e e e
e e e

By setting 1 3e e= , 2 1e e= and 3 2e e= , we get the complete left-

symmetric algebra ( )3,  µlD where 0 | | 1µ< <

Assume finally that
1

1
ζ

ζ
− 

≅  
 

D , where 0ζ > , and let

1 1

2 2

α β
ρ

α β
 

=  
 

relative to the basis el , e2 of A2. Since ( )1φ λ ρ= − , we deduce that, 
relative to the basis el , e2 above, we have

1 1

2 2

1
1

α β ζ
λ

α ζ β
+ − 

=  + + 
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By applying formula (26) to el and e2 , we obtain that ρ is identically 
zero,

1
1
ζ

λ
ζ

− 
=  
 

and ( )2
1 22 1ζ ζ° °= ⋅ = + −e x x e e  .

Similarly, we find that, relative to a basis { }1 2 3, ,e e e of A3 with 
3 1 2ζ°= − +e x e e , the left-symmetric product on A3 is given by the 

non- zero relations

3 1 1 2

3 2 1 2

ζ
ζ

⋅ = +
⋅ = − +

e e e e
e e e e

Set 1 3=e e , 2 1=e e and 3 2=e e . Then, the non- zero relations above 
become

1 2 2 3

1 3 2 3

ζ
ζ

⋅ = +
⋅ = − +

   

   

e e e e
e e e e

We set

3, 1 2 3 1 2 2 3 1 3 2 3, , : , , 0 .ζ ζ ζ ζ= ⋅ = + ⋅ = − + >E e e e e e e e e e e e

2.  2 1 2 2 2 1, : .= ⋅ =A e e e e e .

Let

1 1

2 2

α β
ρ

α β
 

=  
 

relative to the basis 1 2,e e of 2A . By applying formula (25) to el and e2, 
we get that 2 0α =

Assume first that 1 0
0 0
 

≅  
 

D . Then, as ( )1φ λ ρ= − , we deduce 

that, relative to the basis el , e2,we have

1 1

2

1
0

α β
λ

β
+ 

=  
 

By applying formula (26) to el and e2, we get that 1 2 0α β= = . Moreover, 
by applying formula (24) to all products of the form , , 1,2⋅ =i je e i j , we get 
that 1=0, a contradiction. Thus D cannot be of this form. Similarly, we can 

prove that D cannot be of the forms
1 0 1 1 1

, , , 0.
0 1 0 1 1

ζ
ζ

ζ
−     

>     
     

or

where 0ζ > .

Assume that
1 0
0 µ
 

≅  
 

D , where 0 1µ< < , Then, as ( )1φ λ ρ= − , 
we deduce that 

1 1

2

1
0
α β

λ
β µ
+ 

=  + 

By applying formula (26) to el and e2, we get that 1 2 0α β= = . Moreover, 
by applying formula (24) to all products of the form , , 1,2,⋅ =i je e i j  we 

get that 
1
2

µ = . Thus

10
, ,  10 0 0

2

αα
ρ λ α

    = = ∈       



and 1 2 ,1
2
α° °= ⋅ = + ∈e x x e tte .

Similarly, we find that, relative to a basis { }1 2 3, ,e e e  of A3with  
( )2

3 1 2α α°= + − −e x t e e , the left-symmetric product on  A3 is given by 
the non-zero relations

2 2 1

3 1 1

3 2 2

,
,

1 ,
2

⋅ =
⋅ =

⋅ =

e e e
e e e

e e e

Set 1 3=e e , 2 1=e e and 3 2=e e . Then the non- zero relations above 
become

2 2 1

1 2 2

1 3 3

,
,

1
2

⋅ =
⋅ =

⋅ =

  

  

  

e e e
e e e

e e e

We set

3,2 1 2 3 2 2 1 1 2 2 1 3 3
1, , : , , .
2

= ⋅ = ⋅ = ⋅ =D e e e e e e e e e e e e

Conclusion

We can now state the main result of this paper

Theorem 12: Let A3 be a three dimensional complete left-symmetric 
algebra whose associated Lie algebra  is solvable and non-unimodular. 
Then A3 is isomorphic to one of the following left-symmetric algebras 
(Table 1).
Name Non-zero product Lie algebra Remarks

3,0N 1 2 2⋅ =e e e 3,1 N,D,S

3,1N 1 1 3 1 2 2,⋅ = ⋅ =e e e e e e 3,1 N,D,S

3,2N 1 2 2 3 3 1,⋅ = ⋅ =e e e e e e 3,1 S

3,3N 1 2 2 3 3 1,⋅ = ⋅ = −e e e e e e 3,1 S

3,0B 1 2 2 1 3 3,⋅ = ⋅ =e e e e e e 3,2 N,D,S

3,1B 1 2 2 3

2 1 3 1 3 3

,
,

⋅ = +
⋅ = ⋅ =
e e e e

e e e e e e
3,2 D

3,1C 1 2 2 3

1 3 3

,⋅ = +
⋅ =

e e e e
e e e

3,3 N,D,S

3,tC
( )

1 2 2 3 1 3 3

2 1 3

,  ,
1 ,, 1

⋅ = + ⋅ =
⋅ = − ≠

e e e te e e e
e e t e t

3,3 D

( )3,1 µD 1 2 2

1 3 3

,
,  0 1µ µ

⋅ =
⋅ = < <

e e e
e e e

3,4
µ N,D,S

3,2D
1 2 2 1 3 3

2 2 1

1, ,
2

⋅ = ⋅ =

⋅ =

e e e e e e

e e e

1
2

3,4
N

( )3,1 ζE 1 2 2 3

1 3 2 3

,
,  0

e e e e
e e e e

ζ
ζ ζ

⋅ = +
⋅ = − + >

3,5
ζ N,D,S

Table 1: Left-symmetric algebras.

Here, the letter N that the left-symmetric algebra A3 is Novikov, 
the letter D means that A3 is derivation and the letter S means that 
A3satisfying [ ], 0⋅ =x y z for all 3, , ∈x y z A .

Remark 1: We note that left-symmetric algebras satisfying the 
identity ( ) ( )⋅ ⋅ = ⋅ ⋅x y z y x z  for all , ,x y z A∈ (or equivalently, the 

http://dx.doi.org/10.4172/1736-4337.1000222


Citation: Guediri M, Al-Balawi K (2015) Complete Left-Invariant Affine Structures on Solvable Non-Unimodular Three-Dimensional Lie Groups. J 
Generalized Lie Theory Appl 9: 222. doi:10.4172/1736-4337.1000222

Page 11 of 11

Volume 9 • Issue 1 • 1000222J Generalized Lie Theory Appl
ISSN: 1736-4337 GLTA, an open access journal

identity [ ], 0x y z⋅ =  for all , ,x y z A∈ are of special interest because 
they correspond to locally simply transitive a¢ ne actions of Lie groups G 
on a vector space E such that the commutator subgroup [G,G] is acting 
by translations. These left-symmetric algebras have been considered and 
studied in [7].

We note that the mapping ( ),→ XX L X  is a Lie algebra 

representation of  in ( ) ( )3 3 3= ⊕  aff End .

By using the exponential maps, Theorem 12 can now be stated, 
in terms of simply transitive actions of subgroups of the affine group

( )3 3 3( )Aff GL=  

, as follows

To state it, define the continuous functions f, g, h, k and φ  by

( )
1, 0,

1 0

 −
≠= 

 =

xe xf x x
x

( )
2

1, 0
,

1 0
2

 − −
≠= 

 =

xe x x
xg x

x

( )
cos 1 , 0

,2
0 0

− + ≠= 
 =

x x x
h x x

x
( )

sin , 0
,

0 0

− ≠= 
 =

x x x
k x x

x

( ) ( )1 1 !

n

n

nxx
n

φ
∞

=

=
+∑

Theorem 13: Suppose that the Lie group G of the non-unimodular 
Lie algebra  of dimension 3 acts simply transitively by affine 
transformations on 3. Then, as a subgroup of Aff (3), G is conjugate to 
one of the following sub groups:

( )
3,0

1 0 0
0 0 ,  , ,
0 0 1

    
    = ∈    
        



a
A

a
G e bf a a b c

c

( )
3,1

2

1 0
0 0 ,  , ,

0 1 1
2

0
  
   
   = ∈   
      + 

  



a
A

a
G e bf a a b c

a c a

( )
3,2

21
1 0 2
0 0 ,  , ,
0 0 1

  +   
    = ∈   
       
   



a
A

a c

G e b
c

f a a b c
c

( )
3,3

21
1 0 2
0 0 , , ,
0 0 1

  −  − 
    = ∈   
       
   



a
A

a cc
G e bf a  a b c

c

( )
( )

3,0

1 0 0
0 0 ,  , , 8
0 0

 
   
   = ∈   
        



a
B

a

a
G e bf a a b c

e cf a

( )
( )

( ) ( )
3,1

1 0 0
0 0 ,  , ,

    
    = ∈    
    +    



a
B

a a

a
G e bf a a b c

bf a ae e ab c f a

( )
( ) ( )

3,1

1 0 0
0 0 ,  , ,
0 φ

   
   = ∈   
    +    



a
C

a a

a
G e bf a a b c

ae e cf a b a

( ) ( )
( )

( ) ( )
3,

1 0 0
0 0 ,  , , ,  1

1

    
    = ∈ ≠    
    − + − +    



t

a
C

a a

a
G e bf a a b c t

t bf a tae e tab c b f a b

( ) ( )
( )

3,1

1 0 0
0 0 ,  , ,  ,0 1
0 0

µ
µ

µ
µ

   
   = ∈ < <   
        



a
D

a

a
G e bf a a b c

e cf a

( ) ( )
( )

3,2

2

1
2

1 0
0 0 ,  , ,

0 0
2

  
   +       = ∈                   



a
D

a

bf a a b g a
G e bf a a b c

acfe

( )

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

3

1 0 0
0 cos sin
0 sin cos

,  , , , 0

ζ

ζ ζ
ζ ζ

ζ ζ ζφ ζ

ζφ ζ ζ

  
  −  
    =      + + − ∈ >    − + +   



a a

a a

E

e a e a
e a e a

G
a
b f a k a c h a a a b c

b a h a c f a k a

Acknowledgment

The first author would like to extend his sincere appreciation to the Dean-
ship of Scientific Research at King Saud University for its funding of this research 
through the Research Group No. RGP-1435-069.

References

1.	 Koszul JL (1961) Domaines bornes homogenes et orbites de groups de 
transformations affines. Bull Soc Math France 89: 515-533.

2.	 Vinberg E (1963) The theory of convex homogeneous cones. Transl Moscow 
Math Soc 12: 303-358.

3.	 Milnor J (1977) On fundamental groups of complete affinity flat manifolds. Adv 
Matt 25: 178-187.

4.	 Segal D (1992) The structure of complete left-symmetric algebras. Math Ann 
293: 569-578.

5.	 Kim H (1986) Complete left-invariant affine structures on nilpotent lie groups. 
Diff Geom 24: 373-394.

6.	 Auslander L (1977) Simply transitive groups of affine motions. Amer Math 99: 
809-826.

7.	 Benoist Y (1995) Une nilvariete non affine. J Differential Geom 41: 21-52.

8.	 Fried D, Goldman W (1983) Three dimensional affine crystallographic groups. 
Advances in Math 47: 1-49.

9.	 Kim H (1986) Complete left-invariant affine structures on nilpotent Lie groups. 
Diff Geom 24: 373-394.

10.	Guediri M (2014) Classification of complete left-invariant affine structures on 
the oscillator group. Math Commun 19: 343-362.

11.	Burde D (1998) Simple left-symmetric algebras with solvable lie algebra. 
Manuscript Math 95: 397-411.

12.	Kong X, Bai CM, Meng D (2012) On real simple left-symmetric algebras. Comm 
in Algebra 40: 1641-1668.

13.	Neeb KH (2006) Non-abelian extensions of topological lie algebras. Comm in 
Algebra 34: 991-1041.

14.	Jacobson N (1979) Lie algebras. Dover Publications, New York.

15.	Chang K, Kim H, Lee H (2004) Radicals of a left-symmetric algebra on a 
nilpotent lie group. Bull Korean Math Soc 41: 359-369.

16.	Milnor J (1976) Curvatures of left invariant metrics on lie groups. Advances in 
Math 21: 293-329.

http://dx.doi.org/10.4172/1736-4337.1000222
https://eudml.org/doc/87010
https://eudml.org/doc/87010
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=mmo&paperid=143&option_lang=eng
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=mmo&paperid=143&option_lang=eng
http://www.sciencedirect.com/science/article/pii/0001870877900044
http://www.sciencedirect.com/science/article/pii/0001870877900044
http://link.springer.com/article/10.1007%2FBF01444735
http://link.springer.com/article/10.1007%2FBF01444735
http://www.researchgate.net/publication/254206353_Complete_left-invariant_affine_structures_on_nilpotent_Lie_groups
http://www.researchgate.net/publication/254206353_Complete_left-invariant_affine_structures_on_nilpotent_Lie_groups
http://www.jstor.org/stable/2373867?seq=1#page_scan_tab_contents
http://www.jstor.org/stable/2373867?seq=1#page_scan_tab_contents
http://www.unige.ch/math/folks/bucher/Affine/pdfAffine/BenoistNilvarNonAffine.pdf
http://www.sciencedirect.com/science/article/pii/0001870883900531
http://www.sciencedirect.com/science/article/pii/0001870883900531
http://www.researchgate.net/publication/254206353_Complete_left-invariant_affine_structures_on_nilpotent_Lie_groups
http://www.researchgate.net/publication/254206353_Complete_left-invariant_affine_structures_on_nilpotent_Lie_groups
http://hrcak.srce.hr/129583?lang=en
http://hrcak.srce.hr/129583?lang=en
http://link.springer.com/article/10.1007/BF02678039
http://link.springer.com/article/10.1007/BF02678039
http://www.tandfonline.com/doi/abs/10.1080/00927872.2011.554472?journalCode=lagb20#.VZoamOHdXZ4
http://www.tandfonline.com/doi/abs/10.1080/00927872.2011.554472?journalCode=lagb20#.VZoamOHdXZ4
http://www.tandfonline.com/doi/abs/10.1080/00927870500441973#preview
http://www.tandfonline.com/doi/abs/10.1080/00927870500441973#preview
http://www.amazon.com/Lie-Algebras-Dover-Books-Mathematics/dp/0486638324
http://basilo.kaist.ac.kr/mathnet/kms_tex/981613.pdf
http://basilo.kaist.ac.kr/mathnet/kms_tex/981613.pdf
http://www.sciencedirect.com/science/article/pii/S0001870876800023
http://www.sciencedirect.com/science/article/pii/S0001870876800023

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Left-symmetric Algebras and their Extensions 
	Complete Left-Symmetric Structures on Solvable Non-Unimodular Lie Algebras of Dimension 3 
	Conclusion 
	Acknowledgment
	References

