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Abstract
In this paper we discuss the normal ordering procedure of the q-deformed generalized Heisenberg algebra. We 

also obtain the coherent state for some types of characteristic functions.

Keywords: Heisenberg algebra; q-deformed

Introduction
In the last few years quantum algebras and quantum groups 

have been the subject of intensive research in several physics and 
mathematics fields. Quantum groups or q-deformed Lie algebra 
implies some specific deformation of classical Lie algebra. From the 
mathematical point of view, it is a non-commutative associative Hopf 
algebra. The structure and representation theory of quantum groups 
have been developed extensively by Jimbo [1] and Drinfeld [2]. In the 
study of the basic hypergeometric function Jackson [3] invented the 
Jackson derivative and integral, which is now called q-derivative and 
q-integral. Jackson's pioneering research enabled theoretical physicists 
and mathematician to study the new physics or mathematics related 
to the q-calculus. Much was accomplished in this direction and work 
is under way to find the meaning of the deformed theory. By using 
the q- calculus, Arik and Coon [4] proposed the q-deformation of the 
Heisenberg algebra as follows;

† † 1aa qa a− =
† †[ , ] ,[ , ]N a a N a a= = −                                                                (1)

Where †N N= is called a number operator and † †( )a a= Following 
the approach of the authors of ref [4], several deformed Heisenberg 
algebra has been proposed in the literature [5-10]. In most of deformed 
Heisenberg algebra, authors adopted the same commutation relations 
between the number operator and step operators and deformed the 
commutation relation between a  and †a

In 2000, the new generalization of the Heisenberg algebra was 
introduced by Rego-Monteiro and Curado [11-13], which takes the 
form

† † †( ) , ( ) , [ , ] ( )Ha a f H aH F H a a a f H H= = = −                  (2) 

where H is a hamiltonian of the physical system under consideration 
and f(H) is an analytic function of H, called a characteristic function 
of the algebra. In this algebra, the commutation relations between 
the number operator and step operators were changed into the more 
general form which is characterized in terms of the function of the 
number operator. The authors of the ref [11,12] called this function a 
characteristic function and discussed the cases when the characteristic 
function is linear and quadratic in the number operator [12].

In this paper we change the algebra (2) by introducing the 
parameter q and discuss the normal ordering procedure of the 
q-deformed generalized Heisenberg algebra (GHA). We use some 
operator identities to construct the q-deformed generalized Stirling 
operator of the second kind and its generating function. We also 

present the q-deformed generalized Heisenberg algebra whose 
characteristic function is a MÄobius transformation. Finally we discuss 
some characteristic functions giving a Klauder's coherent state.

Q Deformed Generalized Heisenberg Algebra 
In this section we discuss the representation theory of the 

q-deformed generalized Heisenberg algebra. The q-deformed 
generalized Heisenberg algebra takes the following form;

† † † † †
q( ) , ( ) , [ , ] ( ) ,Ha a f H aH f H a a a aa qa a f H qH= = = − = −      (3)

Where H is a hamiltonian of the physical system under consideration 
and f(H) is an analytic function of H, called a characteristic function of 
the algebra. The deformation parameter is related to the concrete form 
of f(H) and a large class of type Heisenberg algebra can be obtained by 
choosing the function f(H). From now on we restrict our concern to 
the case of

0 < q < 1

For example, if we take f(H) = 1 + qH, the algebra (3) reduces to the 
q-deformed Heisenberg algebra where the hamiltonian is related to the 
number operator N as follows

1[ ]
1

NqH N
q

−
= =

−
                                                                             (4) 

The choice of f(H) gives a lot of deformed algebra, which is the 
reason why f(H) is called a characteristic function of the algebra. Now 
let us introduce the q-Casimir operator as follows;

† 1 † †( ) ( ( )) , qCq a a f H q aa f H C Cq−= − = − =                                                     (5)

We demand that the q-Casimir operator obeys

†[ , ] 0, [ , ] 0, [ , ] 0q q q qCq H a C C a= = =                                                            (6)

When q goes to a unity, the q-Casimir operator reduces to an 
ordinary Casimir operator. If
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We let C=CqCq-1 , we have

  †[ , ] [ , ] [ , ] 0C H C a C a= = =                                                                    (7)

Now let us construct the irreducible representation of the algebra 
(3) by introducing the ground state 0 with the lowest eigenvalue of H 
obeying

00 0=H є                                                                                        (8)

Let n  be a normalized eigenstate of H

, 0,1, 2,....= =nєH n n n                                                                     (9) 

Applying H on †a n  yields

† † †( ) ( ) ( )( ,)= = nH a n a f H n a nєf                                                              (10)

Which means that †a n is an eigen state of H with eigen value 
)( nf є  Applying †a on the ground state successively, we have 

†
0

†(( ) 0 ) ( )(( 0 ),)= n nn є aH a f                                                            (11)

Where 0( )= n
nє f є  denotes the n-th iterate of f defined as 

0 0( ) ( ( ( (... ( ))))=nf є f f f f є  If we assume that †( ) 0na is proportional to 
n , we have

0 1( ) ( )−= =n
n nє f є f є

                                                                  (12)

So all eigen values of H are determined from 0є  through f.

Acting a on 1n + we get

1( 1 ) ( )( 1 ) ( 1 ) ( )( 1 ),−+ = + = + = +n na H n f H a n є a n f є a n  (13)

We get

 ( 1 ) ( 1 ),+ = +nH a n є a n                                                                     (14)

Which shows that 1a n + is also an eigen state of H with eigen 
value nє  and 1a n + is proportional to n

The representation of the q-deformed generalized Heisenberg 
algebra is then given by

, 0,1, 2,3....= =n nH єn n

†
11 , 1 ,n na n N n a n N n−= + = −                                                           (15)

Where
1 1

0 1 0 1
2 1 ) ,( 0+ +

+ −
+ − = − == n

n
n

n nє q є є Nf є qN                                                (16)

The relation between step operators and hamiltonian is given by

 
†

0( )= Ρ− qaa f H є
                                                                            (17)

 
† 1

0 ,−= − Ρqєa a H q                                                                            (18)

Where we have

 
n

q n q nΡ =                                                                                      (19)

Here Pq is a q-projection operator satisfying
† †, ,q q q q qaP qP a Pqa qa P P H HP= = =                                                             (20)

Then we have

†

0

1 ( ) 0 ,
[ ] !

n
n

f

n a
N n

=                               (21)

Where f-number is defined as

 

2
1

2
0

0 0

0 0

) ,
)

([ ]
(

−= =
−
−

n
n

f

nєN fn
N

q є
є qєf                                                                            (22)

And

0
2
0 0 )(= −єN qєf                                                                                        (23)

The (n+1)-th eigenvalue en+1 of the Hamiltonian depends on the 
previous eigenvalue en

( )1   n ne f e+ =                                                                                            (24)

So this algebra is sometimes called a one step algebra.

The representation can be rewritten in terms of the f-number as 
follows;

†
0 0[ 1] 1 , [ ] 1 ,f fa n N n n a n N n n= + + = −              (25)

Normal Ordering Process and F-stirling Operator
Now we discuss the normal ordering process for the q-deformed 

generalized Heisenberg algebra. From the second relation of the eq.(3), 
we have

( ) ( ( ))a H f H aΦ = Φ                                                                        (26)

For an arbitrary function ( )HΦ . For ( ) ( ),x f xΦ =  we get

1 k † † 1( ) (H)a , ( )( ) ( ) ( )k k k k ka f H f f H a a f H+ += =        (27)

Replacing 1( )H f H−→  in the first relation of the eq.(3), we have 

† 1 †( )a H f H a−=                                                                                   (28)

or generally 
† †( ) ( )k ka H f H a−=                                                                              (29)

And

( )k kHa af H−=                                                                                     (30)

Where 

1 1 1k

k

f f f f− − − −= ⋅ ⋅ ⋅  

                                                               (31)

Then we have the following formulas;

† 1

1
0( ) [ ( ) ]−

=

= −∏
k

k k j

j
q

ja a f є PH q                                                        (32)

 0

1
† ( 1)

0

( ) [ ( ) ],
−

− − +

=

= −∏
k

k k j j

j
qєa H Pa f q                                                    (33)

Where   f0(H) = f(H).

The f-Stirling operator of the second kind is defined as
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† †

1

( ) ( ) ( , , ) ,
n

n k k

k
a a a S n k H a

=

= ∑                                                        (34)

Where S(n; k;H) is the f-Stirling operator of the second kind. Using 
† 1 † †( ) ( )( ) ,n na a a a a a+ =

We can obtain the recurrence relation

( 1,1, ) ( ( ) ) ( ,1, ),S n H f H qH S n H+ = −

1( 1, , ) ( , 1, ( )) ( ( ) ) ( , , ), (1 )
( 1, 1, ) ( 1, , ( )),

k k k

n

S n k H q S N K f H f H q H S n k H k n
S n n H q S n n f H

−+ = − = − ≤ ≤

+ + = +   (35)

Where S(I, j,H) = 0 for i < j and we used the following formulas

† † † 1

† † 1

( ) ( ) ( ) ( ( ) )
( ( ) )

k k k k k k

k k k k k k

a a q a a a f H q H
a a q a a f H q H a

−

−

= + −

= + −
                     (36,37)

The first few Stirling operator of the second kind are

2 2 2 3 2

3

2 2 2 2 3 2 3 2 4 5 2

2 3

(1,1, ) ,
(2,1, ) ( ) , (2,2, ) ,

(3,1 ) ( ) ) , (3,2, ) 2 ( ) ( ) , (3,3, )
(4,1, ) ( ( ) )

(4,2, ) 3 ( ( )) 3 ( ) ( ) ( ( )) 3 ( ) ( ) ,
(4,3, ) (2 1)

S H I
S h f H qH S H q

S H f H qH S H qf H q f H q H S H q
S H f H qH

S H q f H q f H f H q f H q Hf H q Hf H q H
S c q q f

=
= − =

= − = − − =

= −

= − + − + +

= + 4 2 5 5 3( ) ( ) ( ) , (4,4, )H q f H q f H q H S H q− − − =

(38)

We define the generating function of the f-Stirling operator of the 
second kind in the form

( | ) ( , , ) n
k

n k
P H x S n k H x

∞

=

= ∑                                                                   (39)

The recurrence relations are then given by

1( | )
1 ( ( ) ( )

xP H x
f H q H x

=
− −                                                              (40)

1

1( | ) ( ( ) | ), ( 1)
1 ( ( ) )

k

kk k
q xPk H x p f H x k

f H q H x

−

−= >
− −

         (41)

If we set 0( | )P H x I= , we get
11

0

( | )
1 ( ( ) ( ))

k jk

k k k j r
j

q xP H x
f H q f H x

− −−

−
=

=
− −∏                                              (42)

The eq.(42) can be written in terms of a sum of partial fractions

( 1) 1
2

0

( | ) ,
1 ) ( ) ( ))

k k k
k r

k k k r r
r

pP H x q x
f H q f H x

− −

−
=

=
− −∑                                       (43)

Where

1

0, j r

1
( ) ( )1
( ) ( )

r k k j j
k

k k r rj

p
f H q f H
f H q f H

−
−

−= ≠

=
 −− − 

∏                                                  (44)

Therefore the f-Stirling operator of the second kind takes the 
following form;

( 1) 11
2

0
1,

( ( ) ( ))( , , )
( ( ) ( ))

k k k k r r nk

k k j j k r r
r

j j r

f H q f HS n k H q
q f H q f H

− − −−

− −
=

= ≠

−
=

−
∑
∏         (45)

The Deformed Heisenberg Algebra Related to the 
Mäobius Transformation

In this section we are going to find the representation for the 
algebra defined by the relation given in the eq.(3) considering

( ) ,Hf H
H

γ δ
α β

+
=

+
                                                                           (46)

Where , , ,α β γ δ are real. The ordinary Heisenberg algebra and 
q-deformed Heisenberg algebra are obtained from the suitable choice 
of , , ,α β γ δ inverse of the MÄobius transformation is given by

1( ) ,Hf H
H

β δ
α γ

− −
=
− +

                                                                        (47)

Where 0βγ αδ− ≠ .

In the choice of the characteristic function given in the eq.(46), the 
algebra (3) takes the following form;

† † † †

† † 2

,
,

( ) ( ) ( )

Ha a H a Ha H
aH Ha a HaH
H aa q H a a q H q H

β γ δ α
β γ δ α

α β α β δ γ β α

− = −
− = −

+ − + = + − −
 (48)

Now let us introduce the following characteristic function;

( ) ,
1

Hf H
H

γ
α

=
−

                                                                         (49)

Where we assume that α > 0; 0 < γ < 1. Then we have the following 
algebra

† † †

† † 2

,
,

(1 ) (1 ) ( )

Ha a H Ha H
aH Ha HaH

H aa q H a a q H qH

γ α
γ α

α α γ α

− =
− =

− − − = − +
            (50)

The inverse of the characteristic function is given by

1( )
γ α

− =
+
Hf H

H                                                                         (51)

The n-the iterate of f is then given by

( )
1 [ ]

n
n Hf H

n Hγ

γ
α

=
−

                                                                    (52)

Where 
1[ ]
1

n

n γ
γ
γ

−
=

−
Representation

For the characteristic function given in the eq.(49), we have

02
0

0

0

( )
1 α

γ α− +
=

−
qєN є q

є                                                                 (53)

0 0

0 0

(1
[ ]

)( [ ] )
)(1 [ ] )(

γα
γ α

γ α
α γ

− −

−
=

− +

+n n

f

nє q є q n
є nq є

n
q                                                (54)

From 2
0 0,[ ] 0fN n> > for all n, we have

0
1 1(1 ) (1 )º

q
γ γ

α α
≤− ≤ −                                                       (55)
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Where we assumed that

0 0, 0, 0 1,α γ γ> > < < >є q
The representation takes the following form;

   

0

0

0 0

0

1 1 1
0† 0

0

( [ ]
[ ]

( [ 1]
[

1

1

1]

[ ]

1

1
1

γ

γ

γ

γ

γ

γ
α

α

α

γ α

γ α+ + +

 
=   − 

= −
−

= +

− +

− + +
+−

n n n

n n n

nє
є

є q є q n
є n

є q є q

H n n
n

n
є n

a n n

a n n

                      (56)

Coherent state

We define a coherent state as a eigenvector of the annihilation 
operator as follows:

,a z z z=                                                                                       (57)

Where z is a complex number. The coherent state can be represented 
by using the number state as follows :

0

( )n
n

z c z n
∞

=

= ∑                                                                               (58)

Inserting the eq.(58) into the eq.(57), we obtain the following 
relations :

1
0

0

[ ]1
( )

[
(

]
)γ

γ

α
γ α −

−
=

− +n nn n nc z zc z
q

є n
є q n                                      (59)

Solving the eq.(59), the coherent state is given by

2

0 0
0

0

01

[ ]
[

1
(| | ,

]
γ

γ

α
γ α

∞

= =

 −
=   − +  

∑  k

n
n

k k
n k

є k
є q

z
q є

zz
k

c
      (60)

Where
1/2

2

0

2
0 , ,

| |(| | ) α γ

−
  

=   
  

q
zc z e
є                                                        (61)

And

1

0
,

0
,

0

1 [ ]
[ ]

( )α
γ

γ
γ

α
γ α

∞

= =

−
=

− =∑ ∏
n

n
q k k

n k
ke

є q kq
є k

x x                                          (62)

Some Characteristic Functions giving Klauder's 
Coherent State

In this section we discuss the some characteristic functions giving 
q-deformed Klauder's coherent state (KCS). The KCS should satisfy the 
normalizability

| 1z z =                                                                                               (63)

and the completeness
2 (| |) 1,qd zw z z z =∫                                                                   (64)

Where we use the q-integral instead of the ordinary integral and 

assume 20 | | 1.z≤ <

From the definition of the coherent state

 ,a z z z=                                                                                        (65)

We have

  2
0

0 1

(| | )
!

n

n n

zz c z n
N

∞

= −

= ∑                                                                           (66)

The case of 
1( )

[2]
f x

qx
=

−

In this choice we have 

[ ] [ 1]( ) ,
[n 1] [ ]

n n q n xf x
q n x

− −
=

+ −
                                                                                (67)

Where we used

 [2][ 1] [ ] [ 2]n q n n+ − = +                                                                                   (68)

If we choose 0 0=є  we have       

2
1

[ ]
[ 1]−= =
+n n
nє N

n                                                                                           (69)

The coherent state is then given by

2
0

0

(| | ) [ 1] ,n

n
z c z n z n

∞

=

= +∑                                                                     (70)

Where
2 2 2
0 ( ) (1 ) , | |qc x x x z= − =                                                                   (71)

And
1

0

(1 ) (1 )
n

n k
q

k
a q a

−

=

− = −∏                                                                         (72)

Now we have to find the weighting function w(x) so that the 
coherent sate may satisfy the Completeness. If we set 2,iz re x rθ= =
and assume 2 ,q qd z rd rdθ= we have

1
2

0 0

( )(1 ) [ 1] 1n
q q

n
n n d xw x x n xπ

∞

=

− + =∑ ∫                                                     (73)

We can easily find the weighting function

2

1( ) ,
(1 )q

w x
xπ

=
−                                                                                  (74)

Where we used
1

0

1
[ 1]

n
qd xx

n
=

+∫                                                                                       (75)

The case of 
2

1( )
[2]

f x
q x

 
=  − 

In this choice we have
2

[ ] [ 1]( )
[n 1] [ ]

n n q n xf x
q n x

 − −
=  

+ − 
                                                                               (76)
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If we choose 0 0=є  we have
2

2
1

[ ]
[ 1]−

 
= =  + 

n n
nє N

n
                                                                                          (77)

The coherent state is then given by 

 2
0

0

(| | ) [ 1] ,n

n
z c z n z n

∞

=

= +∑                                                                      (78)

Where
3

2
0

(1 )
( )

1
qx

c x
qx

−
=

+
                                                                                    (79)

Now we have to find the weighting function w(x) so that the 
coherent sate may satisfy the completeness, which implies

1
2 2
0

0 0

( ) ( )[ 1] 1n
q

n
n n d xw x c x n xπ

∞

=

+ =∑ ∫                                                          (80)

We can easily find the weighting function

3

(1 )(1 ) ln( )( ) ,
ln (1 )q

q qx qxw x
q xπ

− +
=

−
                                                                             (81)

Where we used

lnln( )
(1 )[ 1]

d xx qx
q n− +∫                                                                      (82)

The case of 
1/

1/

[ ] [ 1]( )
[ 1] [ ]

p

p
n q n xf x
n q n x

 − −
=  + − 

 p = 1; 2; 3; 

In this choice we have

1/

1/

[ ] [ 1]( )
[ 1] [ ]

pp
n

p
n q n xf x
n q n x

 − −
=  + − 

                                                                             (83)

If we choose 0 0=є  we have

2
1

[ ]
[ 1]−

 
= =  + 

p

n n
nє N

n                                                                                        (84)

The coherent state is then given by

2 /2
0

0

(| | ) [ 1] ,p n

n
z c z n z n

∞

=

= +∑                                                                             (85)

Where

2
0 ( )

li ( )q
p

xc x
x−

=                                                                                                      (86)

and the q-polylogarithm function is defined by

1

0

li ( ) [ 1]q p n
p

n
x n x

∞
+

−
=

= +∑                                                                         (87)

Now we have to find the weighting function w(x) so that the 
coherent sate may satisfy the completeness, which implies

1
2
0

0 0

( ) ( )[ 1] 1p n
q

n
n n d xw x c x n xπ

∞

=

+ =∑ ∫                                                            (88)

The eq.(70) is rewritten as

1

1
0

1
1

n
q n

qd xx
q +

−
=

−∫                                                                                  (89)

If we set 1,na q += we get (ln )
n

q a
a

∂ ∂
=

∂ ∂
Differentiating both sides of the eq.(89) p times with respect to n, 

we have

1

0

1(ln ) (1 )(ln )
1

p
n p p

qd xx x q q a
a a
∂   = −    ∂ −   ∫                  (90)

Where 

0 0

1
1

p p
k p k

k k
a a a k a

a a a

∞ ∞

= =

∂ ∂     = =     ∂ − ∂     
∑ ∑                                       (91)

If we set
1

( )
1

0

1 ,
1 (1 )

p p
p k

kp
k

aa c a
a a a

−

+
=

∂    = =   ∂ − −   
∑                                               (92)

We have the following recurrence relation
( ) ( ) ( 1)

1( 1) c ( 1 ) , ( 1,2,..., 1)p p p
k k kk p k c c k N+

−+ + + − = = −                 (93)

And
( ) ( )
0 1 1p p

pc c −= =                                                                                   (94)

For k = 1, the eq.(93) is as follows :

( 1) ( )
1 12p pc c p+ = +                                                                                             (95)

Solving the eq.(95), we have
1

( ) 1
1

1

.2 2 ( 1), ( 2)
p

p p k p

k
c k p p

−
− −

=

= = − + ≥∑                                                         (96)

For general k, we have

( ) ( 1)
1 1

2

( ) ( 1) ( 1) ( 2)
p

p i p i
k

i
c i k c k i k pθ− −

−
=

= − + − − ≥∑                             (97)

And

(1) 0, ( 1),kc k= ≥                                                                                         (98)

Where

{1 ( 0)
0 ( 0)( ) x

xxθ ≥
<=

                                                                                     (99)

Using the formula (92), we have

1 1
( ) 1

1
00

( 1) ( 1)(ln )
( 1)

p p
n p p k

q kp
k

qd xx x c a
a

−
+

+
=

− −
=

− ∑∫                                                     (100)

If we expand the summation of the eq.(100) in terms of a ¡ 1, we get
1

( ) 1 ( )

0 0

( 1) ,
p p

p k p l
k l

k i
c a B a

−
+

= =

= −∑ ∑                                                                  (101)

Where
1

( ) ( )

0

1 ( 1)( 2)...( ( 1))
!

p
p p

l k
k

B k k k k l c
l

−

=

= − − − −∑                      (102)
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Therefore we have the following formula;

1 ( )

1
00

( 1)(ln ) ( 1) (ln )
[ 1]

p k pp
n p p p k

q p k
k

B qd xx x q
n

−

+ −
=

−
= −

+∑∫                                                    (103)

If we define the new function
1

( )
1( )

00

(1 )(x) ((ln ) (ln ) (1 ) ( )),
(ln )

p p
p p k p p

P k p kp p
k

qL x q q B L x
B q

−
−

+ −
=

−
= − −∑       (104)

We have
1

1
0

1( )
[ 1]

n
q p pd xx L x

n +=
+∫                                                                  (105)

The first few Lp(x) are as follows;

0

1

2
2

2 2

( ) 1
1( ) (ln ln )
ln
(1 )L ( ) ((ln ) 7(ln )(ln ) 4(lnq)2)
4(ln )

L x
qL x x q
q

qx x q x
q

=
−

= +

−
= − −

        (106)

Therefore we obtain the weighting function as follows;

li ( )L ( )
( )

q
p px x

w x
xπ

−=                                                                               (107)

Conclusion
In this paper we discussed the normal ordering procedure of the 

q-deformed generalized Heisenberg algebra, where we introduced the 
q-deformed generalized Stirling operator of the second kind instead of 
the Stirling number of the second kind and constructed its generating 
function. We also discussed the q-deformed generalized Heisenberg 
algebra whose characteristic function is a MÄobius transformation. 
Finally we discussed some types of characteristic functions giving a 
Klauder's coherent state. In fact, it is possible to construct more general 

algebra as
† †

†

0 0

( ), ( ) ,

[ , ] ( ( ) ) ( )
d d

q
k k

Ha a f H aH f H a

a a f H k q H k
= =

= =

= + − +∏ ∏                                                  (108)

It is tempting to investigate, as we did in this paper, the above 
algebra for some interesting characteristic function. We hope that this 
topic and its related one will become clear in the near future.
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