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Abstract

We establish connection between product of two matrices of order k X k over a field
and the product of the k-mappings corresponding to the k-operations, defined by these
matrices. It is proved that, in contrast to the binary case, for arity k£ > 3 the components
of the k-permutation inverse to a k-permutation, all components of which are polynomial
k-quasigroups, are not necessarily k-quasigroups although are invertible at least in two
places. Some transformations with the help of permutations of orthogonal systems of
polynomial k-operations over a field are considered.
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1 Introduction

It is known that polynomial k-ary operations (shortly, polynomial k-operations), that is, the
operations of the form A(x1,xa,...,2) = a1x1 + agxa + - - - + apxy over a field and systems
of t > k of such operations are used in different applications, in particular in coding theory
and cryptography. If ¢ = k, then we have a matrix A = (a;;) of order k£ x k. However, any
k-tuple (Ay, As, ..., Ag) of k-operations given on a set @ defines some mapping 6 of the set
Q" into QF (shortly, a k-mapping):

5(161,332,--.,.%']{;) = (Al(xlax%"-7$k)aA2($17$2>"'7:Bk)7"'aAk($17$2>"'7xk))>

and conversely, any mapping of a set Q into Q* defines some k-tuple of k-operations [1].

We establish connection between product of two matrices of order k X k over a field and
the product of the k-mappings corresponding to the k-operations, defined by these matrices.
As a corollary, we obtain that the inverse matrix A~! to a nonsingular matrix A is defined
by the components of the k-permutation (that is the bijective k-mapping) #~! inverse to
the k-permutation 6 with the components which are polynomial k-operations, defined by the
matrix A.

In [2], Belousov proved that if A and B are binary quasigroups given on a set () such
that (A, B) is a permutation of 2, then the operations C and D, where (C, D) = (4, B) ™!,
are quasigroups as well. We prove that, in contrast to the binary case, for arity & > 3 the
components of the k-permutation inverse to a k-permutation, all components of which are
polynomial k-quasigroups, are not necessarily k-quasigroups although are invertible at least
in two places.

In different applications, using orthogonal systems of operations, quasigroups, Latin
squares, or hypercubes, especially by coding and ciphering of information, necessity to obtain
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distinct orthogonal systems of operations from one orthogonal system is arisen. In the theory
of binary and k-ary operations, some transformations of orthogonal systems of operations
(which lead to orthogonal systems) with the help of permutations are known. These trans-
formations we use for the most known and often used orthogonal systems of polynomial
k-operations (in particular, of polynomial k-quasigroups) over a field.

2 Preliminaries

Recall some necessary designations, definitions, and results.

Let Q be a finite or an infinite set, let k > 2 be a positive integer, and let Q¥ denote the
kth Cartesian power of Q.

A k-groupoid (Q, A) is a set @) with one k-ary operation A defined on Q.

A k-operation B given on a set @ is called isotopic to a k-operation A if there ex-
ists a (k + 1)-tuple of permutations T = (1,2, . ..,k 1) of Q such that B(zk) =
agilA(alxl,agxg, .o apxy), where (2¥) = (z1,22,...,2), shortly B = AT,

A k-ary quasigroup (or a k-quasigroup) is a k-groupoid (@, A), such that in the equality
A(zh) = xp41, each set of k elements from 2% uniquely defines the (k + 1)th element.
Sometimes a quasigroup k-operation A is itself considered as a k-quasigroup.

An i-invertible k-operation A defined on @ is a k-operation for which the equation:

Aai™ " @, afyy) = ara

has a unique solution for each fixed k-tuple (a’i_l, aﬁ_l, aps1) of QF.

So a k-ary quasigroup (or simply, a k-quasigroup) is a k-groupoid (Q, A), such that the
k-operation A is i-invertible for each i = 1,2, ... k (briefly, i € 1,k).

The k-operation F;, 1 < i < k, on @ with El(a:]f) = x; is called the ith identity operation
(or the ith selector) of arity k.

Recall also the following information of [1] (for the case k = 2 see [2]).

Let (A1, Ag, ..., Ag) (briefly, (AY)) be a k-tuple of k-operations defined on a set Q. This

k-tuple defines the unique mapping 6 : Q¥ — QF in the following way:
0 : (ac]f) — (A1 (:L"f),Ag(:L‘]f), e ,Ak(xlf)),

(briefly, 8 : (x%) — (A¥)(z}) or 6 = (A1, Ag,..., Ag)). These mappings we will call k-
mappings.

Conversely, any mapping Q¥ into Q* uniquely defines a k-tuple (A’f) of k-operations on
Q: if O(x¥) = (y¥), then we define A;(2¥) = y; for all i € 1, k. Thus, we obtain the following:

0 = () where (%) = (AF)(ah) = (A¥(ah).

If C is a k-operation on @ and @ is a mapping of Q¥ into QF, then the operation C@
defined by the equality CO(z¥) = C(0(z})) is also a k-operation. Let Cd = D and 6 = (A¥),
then D(x¥) = C(A¥(2%)) or briefly, D = C(A¥). If § = (Bf) and @ = (A¥) are mappings of
Q" into QF, then according to [1]:

50 = (AF)0 = (4,0)7 | = (410, A2, ..., A) = (A1 (BF), As(BY),..., AL (BY)).
If 0 = (Bf) is a permutation of Q*, then B; = F;0 and B;6~! = Bi(B{“)_l =FE;, i€,k

Definition 2.1 [1]. A k-tuple (A¥) of (different) k-operations given on a set @ is called
orthogonal if the system {A;(x¥) = a;}*_, has a unique solution for all a¥ € Q*.
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The k-tuple (E}) = (E1, E, ..., E},) of the selectors of arity k is the identity permutation
of QF and is orthogonal.

There is a close connection between orthogonal k-tuples of k-operations given on a set
@ and permutations of QF (such permutations we will call k-permutations) by virtue of the
following

Proposition 2.2 [1]. A k-tuple (A¥) of k-operations defined on a set Q is orthogonal if and
only if the mapping 0 = (A¥) is a permutation of Q".

Definition 2.3 [1]. A system ¥ = {4y, As,..., A} = {Al}, t > k, of k-operations is called
orthogonal if any k-tuple of k-operations of 3 is orthogonal.

Definition 2.4 [1]. A system ¥ = {A;1, Ao, . > , A}, t > 1, of k-operations, given on a set
Q, is called strongly orthogonal if the system ¥ = {EF, A}} is orthogonal.

In a strongly orthogonal system Y = {A!}, all k-operations A;, i € 1,t, of ¥ are k-
quasigroups since a k-operation A is i-invertible if and only if the mapping (F1, Eo, ..., E;_1,
A Eiiq,...,EL) is a k-permutation. So the system X is called an orthogonal system of k-
quasigroups (a k-0SQ) [1].

A k-operation A is a k-quasigroup if and only if the set ¥ = {A} is strongly orthogonal.
A set ¥ = {A!} of k-quasigroups when k > 2, t > k, can be orthogonal but not strongly
orthogonal in contrast to the binary case (k = 2) [1].

Note that in the case of a strongly orthogonal set ¥ = {A;, Ay, ..., A} of k-operations,
the number ¢ of k-operations in X can be less than arity k.

3 Product of (k x k)-matrices and product of k-mappings

Consider k-operations of a special kind (polynomial k-operations), that is k-operations of the
form A(a:’f) = a1x1 + asxs + - - - + agpxy over a field.
A polynomial k-operation is a polynomial k-quasigroup if and only if a; # 0 for all i € 1, k.
If a k-operation B is isotopic to a polynomial k-operation A(x]f) =air1+axxe+- - -+apx,
that is B = AT, where T = (a1, asg, ..., g, apy1), then

B($’f) = 04;;11 (a1041$1 + a2z + - - + akak:ck).

Note that the selectors E; of arity k can be also considered as polynomial k-operations over
a field:

El(x’f) =a1x1 +agxy + -+ a;x; + - + apwy, where a; =1, a; =0, j # 1.

Let a set ¥ = {Ay,As,..., A}, k> 2, t > k, be a set of k-operations each of which is a
polynomial k-operation over a field, that is

k
Ay (ZL’l) = a11x1 + ae®2 + - - - + a15 T,

k
A2 (ml) = 9171 + G222 + - - - + A2k Tk,

k
Ay (2]) = anz1 + apas + - + apzs.

These polynomial operations define corresponding rows of the (¢ x k)-matrix A. It is
easy to see from Definition 2.1 that the following statement is valid, where a k-minor is the
determinant of a (k x k)-subarray of a matrix A.
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Proposition 3.1 [3]. A system ¥ = {A}}, k> 2, t > k, of polynomial k-operations of (3.1)
is orthogonal if and only if all k-minors of the matriz A defined by these k-operations are
different from 0.

Let in (3.1) t = k, A = (a;j), i,j € 1,k, be the (k x k)-matrix the rows of which are
defined by the k-operations Aq, As,..., Ay and 04 = (A1, Ag, ..., Ag). It is clear that the
mapping 04 is a k-permutation if and only if the matrix A is nonsingular.

The following statement establishes a connection between product of matrices and product
of k-mappings.

Theorem 3.2. Let A and B be (k x k)-matrices over a field, 04 = (A1, Aa, ..., Ay), let Op =
(By1, Ba, ..., Bg) be the k-mappings defined by the polynomial k-operations corresponding to
the rows of these matrices, O40p = (C1,Cs,...,Cyk). Then the k-operations C1,Ca, ..., Cy
are polynomial and define the matriz C = AB, that is 040 = O45.

Proof. Let éAéB = (A1, Ag, ..., Ax)(B1,Ba,...,By) = (C1,Cy,...,Ck), i € 1,7]{, then by
the definition,

Ci(z}) = Aiflp(2}) = Ai(B1, Ba, ..., By) (2f) = A;(Bi(2}), Ba(2}), ..., Bi(af))
= a;1 (bi1@1 + biawa + -+ - + bigwr) + iz (b2121 + boowa + - - - + bopay,)
+ -t ak (bk1x1 + boxo + -+ + bkkxk)
= (ai1b11 + aizba1 + - - + axbp1)x1 + (airbi2 + aiobo + - - + aibrz) x2
+ -+ (anbig + aibor + - - - + awbr) T

= Ci1T1 + Ci2T2 + - - - + Cip Tk,

where ¢;; = ainby + aigby + -+ + @b, 1 € 1, k.
It means that C; = A;0p is the polynomial k-operation defined by the ith row of the
matrix AB, so C = AB. O

Theorem 3.2 can be formulated otherwise.

Corollary 3.3. Let A1, As, ..., A and By, Bo, ... , By,_be polynomial k-operations over a
field, 6p = (B1,Ba,...,By), then the k-operations A10p, A20p, ..., A0p are polynomial,
and the matrix AB is the coefficient matriz for them.

Corollary 3.4. Let 04 = (Ay, As, ..., Ag), where A is a nonsingular matriz, and the matriz
A~ s inverse to A. Then 04 is a k-permutation and (9;11 =04-1.

Proof. Let (By,Ba,...,B;) = 04-1. Show that §404-1 is the identity permutation of Q¥,
that is (A1, A, ..., Ax)(B1,Ba,...,By) = (F1, Ea, ..., Ey). Let

Ai(2}) = a1 + @iz + - - + agag, Bi(2}) = by + bigwa + -+ - + iy

Then as it follows from the proof of Theorem 3.2 in the k-operation A;(Bj, Ba, ..., Bi) the
multipliers by x;, j # i, are equal to 0, and the multiplier (aj1b1i + azbo; + - - - + ajkby;) by
x; is equal 1, since the operations By, Ba, ..., By are defined by the matrix A~!. It means
that A;(Bi1,Ba,...,By) = E;, i € 1,k, but k-selectors E1, Es, ..., Ey define the rows of the
identity matrix of order k x k the rows of which correspond to the selectors E1, Fo, ..., Ey.
Hence, 040,41 = (A1, As, ..., Ay)(B1, Ba, ..., By) = (B1,Fa, ..., E), 50 0" = 0,4-1. O

Corollary 3.4 at once implies.
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Corollary 3.5. If A is a nonsingular (k x k)-matriz and Ay, Ag, ..., A are the polyno-
mial operations defined by the rows of A, respectively, then 0 = (A1, Ao, ..., Ay) is a k-
permutation, and the permutation 1 = (By, Ba, ..., By) defines the polynomial operations
corresponding to the rows of the matriz A~ inverse to A.

It is known that if A and B are orthogonal binary quasigroups given on a set ), that is
(A, B) is a permutation of Q?, then the operations C and D, where (C, D) = (A, B)™!, are
quasigroups as well (see [2, Lemma 3]). Taking into account this fact and Corollary 3.5, we
obtain that if in a nonsingular matrix A of order 2 x 2 there is no the element 0, then in the
inverse matrix A~! the element 0 absents also. Below we will show that in the case of arity
k > 3 this statement in general is not true.

The following statement is valid for a k-permutation (A1, Ag, ..., Ax) all components A;,
i € 1, k, of which are polynomial k-ary quasigroups over a field.

Theorem 3.6. If all polynomial k—opemtz'ons_Al, Ao, ..., A over a field are k-quasigroups,
0 = (Ay, Ag, ..., Ap) is a k-permutation and 0~ = (By, Bo, ..., By), then each k-operation
of B1,Bo, ..., By is invertible at least in two places.

Proof. A polynomial k-operation Aj;: Az(x’f) = ajnr1 + apre + - + appzy, @ € 1k,
is a k-quasigroup if and only if all coefficients a;;, 7 € 1,k, are distinct from 0. Since
(B1,Ba,...,By) (A1, Ag, ..., Ag) = (B4, Ea, ..., Ey), then (bj1a1; + bigag; + - - + bjrag;) = 1
for any ¢ € 1,k and (bjia1; + bjoag + -+ + bjgar;) = 0 for all j # i (see the proof of
Corollary 3.4). By Corollary 3.5, all elements of the jth row of the matrix A~! = B cannot
simultaneously be equal to 0 as the matrix A~! = B is nonsingular (by the conditions of the
theorem 6 is a k-permutation).

If k—1 of the coefficients b;1, bjo, ..., bji is equal 0, then the last coefficient is also equal 0.
Thus, there exist at least two elements which are not equal 0 in every row j # ¢ of the matrix
B and the k-operation Bj, corresponding to it is invertible at least in two places. Changing
i, i € 1,k, we obtain that the statement is true for any k-operations of By, Bs,...,B;. [

Using the matrices corresponding to the k-permutations of Theorem 3.6 we obtain the
following corollary.

Corollary 3.7. If a nonsingular (k x k)-matriz A has not zero elements, then every row
(every column) of the matriz A~' contains at least two nonzero elements.

Proof. This statement for rows follows from Corollary 3.5 and Theorem 3.6. The statement
with respect to columns we can obtain from the proof of Theorem 3.6 considering the prod-
uct (Al, Ao, ... ,Ak)(Bl, Bs, ... ,Bk) = (El, FEo, ... ,Ek), the elements ailblj + ai2b2j + -+
a;xbr; = 0, j # i, and reasoning similarly. O

Below we will show that the result of Belousov for the binary case, in general, is not
true with respect to arity & > 2 (i.e., the result of Theorem 3.6 for £ > 2, in general, is
not improved) constructing the following two counterexamples of k-permutations for ternary
case.

Consider three ternary polynomial operations over the field GF(7):

Al(x,y,z):$+y+z, Ag(l’,y,Z):IE—Fy—{—QZ, A3($,y,2):$+3y—|—32,
and three operations:

Bi(z,y,2) =x+2y+4z, Bo(x,y,z) =x+3y+2z, Bs(x,y,z)=1x+4y+2z.
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The following nonsingular (3 x 3)-matrices A, A=1 (B, B~!) correspond to these ternary
operations:

111 50 3 1 2 4 6 6 3
A=1|11 2|, At'=|4 6 4|, B=[1 3 2], B'=[0 61
1 3 3 6 10 1 4 2 4 6 4

The inverse matrix C = A~! (D = B~!) defines the following 3 operations: C}(x,y,z) =
S5x+0y+3z, Cay(z,y,2) = dx+6y+4z, C3(x,y,2) = 6z +y+0z (Di(x,y,2) = 62+ 6y + 3z,
Dy(z,y,2z) = 0z + 6y + 2z, D3(z,y,2) = 4z + 6y + 4z). The k-operations Cy, C3, Dy are
not 3-quasigroups, but every from them is invertible in two places. The permutation ¢ =
(C1,Cs,C3) (Op = (D1, D2, D3)), not all components of which are 3-quasigroups, is inverse
to the 3-permutations 64 = (Ay, A2, A3) (0 = (B1, B2, B3)) with quasigroup components.

4 Transformations of orthogonal systems of polynomial
k-operations

Now we recall some necessary information from [1] with respect to transformations of or-
thogonal systems of k-operations (k-OSOs) (for the case k = 2 see [2]).

Two k-OSOs ¥ and ¥’ given on a set Q are called conjugate if there exists a permutation
6 of Q* such that ¥/ = £, and a k-OSO ¥ is called parastrophic to ¥ if ¥/ = £0~!, where
0= (Ai, Ay, ..., Aip), A;; € ¥ for any j € 1, k. In this case,

Y =%0"t={E, By,....,E, A0 i€ Tt i#i; je Lk}

By [1, Theorem 1], every k-OSO is conjugate to a k-OSQ, and by [1, Lemma 3], two k-OSQs
are conjugate if and only if they are parastrophic.

Two orthogonal systems of k-operations ¥ and ¥/ given on a set @) are called isotopic,
if ¥ = (0)T = {1 A1, a249,...,0:A;}, A; € B, where T' = (ay,a9,...,0q4) is a tuple of
permutations of the set Q.

The transformation ¥ — (20)7 = ¥/ is called isostrophy.

Remark 4.1. Note that if a k-OSO ¥ = {A!} of k-operations on a set @ is strongly
orthogonal (i.e. the system ¥ = {EF, A!} is orthogonal), and T = (a1, ,...,a: 1) is a
(t + k)-tuple of permutations of @, then ()7 = {a1E1,0F5,...,a;Ey, B1,Ba, ..., B},
where Bj = ayy;A;, j € 1,t, are k-quasigroups.

According to [1], the equality (30)7 = (X7)0 is true, that is if B; € ¥/ = (20)7, i € 1,1,
then,

B; (:L']f) = (ai (Azé))(ac]f) = (CtiAi)é(l‘]f). (4.1)

In addition, we consider the following case of the transformation of isostrophy of a k-OSO,
namely, Y = (Eél)T, where 51 = 9_50, éo = (ﬂlEl,ﬂgEQ, cee ,ﬁkEk), 61,,82, cee ,ﬁk are per-
mutations of (), that is é()(xlf) = (f1E1, BaEs, ... ,ﬁkEk)(x’f) = (frx1, Poxa, ..., Opxr).

In this case if B; € X', then from (4.1), we have

Bi(2%) = (0s40) 01 (24) = (s (000) (24) = ((0iAs)0)fo (). (4.2)
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Let 0 = (Cl, Cy,... ,Ck), then (éé@)(xlf) = (Cl, Cy,... ,Ck)(ﬂlflil,ﬂgl’g, ce, ﬂkxk) and
from (4.2), it follows

Bi (.’L’lf) = OziAi (Cl (5jxj)§:1’ CQ (ﬁjxj)j';:l’ e ,Ck (ﬂjxj)§:1>, (43)

where (le‘j)?:l = (ﬂll‘l, ﬁg.ﬁz, ce ,kak)

Now consider all these transformations for the case of orthogonal systems of polynomial
k-ary operations.

Let A = (a5), i € 1,¢, j € 1k, be a (t x k)-matrix, let ¥4 = {A1, Ag,..., At} be the
orthogonal system of the polynomial k-operations, defined by the corresponding rows of the
matrix A (see (3.1)).

Proposition 4.2. Let B; € (X4)7, where T = (a1, aa, ..., q4), s, i € 1,1, are permutations,
then,

B; (azlf) = qy (aﬂfL‘l + ajoxo + -+ aikxk), 1 e 1,t.

Indeed, by the definition of isotopic systems, we have

B; (.’L’lf) = o; A; (xlf) = o4 (a“:cl + a;px9 + -+ + aikxk), 1€ 1,t.

In this case, the values of the operation A; are changed according to the permutation «,
i€l,t.

Proposition 4.3. Let B; € X 40, where = (C1,Cy, ...,Cy), then,
Bi(2}) = anC1(2) + anCs () + - + anCr(2}), €Tt

If the operations Cj, j € 1, k, are polynomial and define a matriz C, then the operations B;,
i € 1,t, are polynomial and are defined by the matriz AC.

Indeed, in this case,

Bi (l"lf) = Azé(:r’f) = Al (Cl, 02, ceey Ck) (l’lf)
= a;101 (2}) + ainCa(ah) + -+ + auwCr (), €Tt

It is evident that if the operations Cj, j € 1,k, are polynomial, then the operations B;,
i € 1,t, are also polynomial. Moreover, in this case, the operation B; is defined by the
ith row of the (¢t x k)-matrix B = AC (see the form of the operation C; in the proof of
Theorem 3.2 if the matrices B and C change places and i € 1,1).

Corollary 4.4. If in Proposition 4.3 0 = (A, Aiyy ., Asy), Aiy € Ba, L € 1k, 071 =
(D1, Da, ..., Dy), then $4071 is an orthogonal system of polynomial k-operations, B;, = Ej,
lel,k, and

B; (l“lf) =anDy (xlf) + a2 Do (fﬂlf) +--+ aika(l‘lf), i€ 1t i # iy, ..., 0g

are polynomial k-quasigroups.
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Proof. By the definition of the transformation of parastrophy, we have B;, (a:’f) =
A, 071 (2h) = Ey(2%), 1 € 1, K, since (A“,Am,... A ) (Aiy, Ay Ay )T = (B, Eay .. Ey)
and Bj(af) = 407" (af) = Az(Dtha c Dy)(ah) = Ai(Di(a}), Da(ah), ..., Di(ah)) =
ailDl(xlf)+a¢2D2(x’f)+ —|—aszk(:L"1) When i €1,t,1+#11,12,...,1, but by Corollary 3.4,
all components D;, i € 1,k of the permutation 8~ are polynomlal k-operations, so all k-
operations of Y401 are also polynomial k-operations. Moreover, in this case, we obtain that
the system ¥’ = {B; | i # i1,12,...,i} is strongly orthogonal, and so all k-operations of >’
are polynomial k-quasigroups. O

Proposition 4.5. If B; € (3 4000), where §=(C1,Cs,...,Cy), o= (81E1, BoFs, ..., BeEL),
T = (Oél, ag, ... ,Oét), then,

Bi(a}) = ai(anC1(Bj2))_, + aCa(Bay)_, + -+ auCi(Bizy)_, ), i€ T

Indeed, according to (4.3), B;(2}) = aiAi(Cl(ﬁjxj)le,Cg(ﬁjxj)?zl, ... ,Ck(ﬁjxj)é?:l) =
ai(ainC1(Bjzy)fy + anCa(Bja;)iy + - - + anCr(Bja;)i—y), i € 11

Proposition 4.6. If B; € (340700)T, where = (Ai), Aiy, ..., Aiy), Aiy € $a, L € 1k,
9 1= (D17D27 cee 7Dk’); 00 = (ﬁlEbﬁQEQv cee a/BkEk); then Bil = ailBlEl; le 17 k;

B; (x]f) = q; (alel (ﬂ]x]) + algDQ(ﬁ]x]) 1
+“_H%Dﬂﬁqhﬂ) i€ T,E, i A d1yins. . in,
moreover, the operations By, i # i1,19,...,1, are k-quasigroups.
This statement follows from Corollary 4.4, Proposition 4.5, and Remark 4.1 since
B, (:L‘If) = (a”AllQ )0 ( If) = (ailEl)éo(xlf)
= ;B (ﬁjxj)jzl = a;, B E (2f), 1€l k.
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