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Abstract

We establish connection between product of two matrices of order k × k over a field
and the product of the k-mappings corresponding to the k-operations, defined by these
matrices. It is proved that, in contrast to the binary case, for arity k ≥ 3 the components
of the k-permutation inverse to a k-permutation, all components of which are polynomial
k-quasigroups, are not necessarily k-quasigroups although are invertible at least in two
places. Some transformations with the help of permutations of orthogonal systems of
polynomial k-operations over a field are considered.
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1 Introduction

It is known that polynomial k-ary operations (shortly, polynomial k-operations), that is, the
operations of the form A(x1, x2, . . . , xk) = a1x1 + a2x2 + · · ·+ akxk over a field and systems
of t ≥ k of such operations are used in different applications, in particular in coding theory
and cryptography. If t = k, then we have a matrix A = (aij) of order k × k. However, any
k-tuple (A1, A2, . . . , Ak) of k-operations given on a set Q defines some mapping θ̄ of the set
Qk into Qk (shortly, a k-mapping):

θ̄
(
x1, x2, . . . , xk

)
=
(
A1

(
x1, x2, . . . , xk

)
, A2

(
x1, x2, . . . , xk

)
, . . . , Ak

(
x1, x2, . . . , xk

))
,

and conversely, any mapping of a set Qk into Qk defines some k-tuple of k-operations [1].
We establish connection between product of two matrices of order k × k over a field and

the product of the k-mappings corresponding to the k-operations, defined by these matrices.
As a corollary, we obtain that the inverse matrix A−1 to a nonsingular matrix A is defined
by the components of the k-permutation (that is the bijective k-mapping) θ̄−1 inverse to
the k-permutation θ̄ with the components which are polynomial k-operations, defined by the
matrix A.

In [2], Belousov proved that if A and B are binary quasigroups given on a set Q such
that (A,B) is a permutation of Q2, then the operations C and D, where (C,D) = (A,B)−1,
are quasigroups as well. We prove that, in contrast to the binary case, for arity k ≥ 3 the
components of the k-permutation inverse to a k-permutation, all components of which are
polynomial k-quasigroups, are not necessarily k-quasigroups although are invertible at least
in two places.

In different applications, using orthogonal systems of operations, quasigroups, Latin
squares, or hypercubes, especially by coding and ciphering of information, necessity to obtain
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distinct orthogonal systems of operations from one orthogonal system is arisen. In the theory
of binary and k-ary operations, some transformations of orthogonal systems of operations
(which lead to orthogonal systems) with the help of permutations are known. These trans-
formations we use for the most known and often used orthogonal systems of polynomial
k-operations (in particular, of polynomial k-quasigroups) over a field.

2 Preliminaries

Recall some necessary designations, definitions, and results.
Let Q be a finite or an infinite set, let k ≥ 2 be a positive integer, and let Qk denote the

kth Cartesian power of Q.
A k-groupoid (Q,A) is a set Q with one k-ary operation A defined on Q.
A k-operation B given on a set Q is called isotopic to a k-operation A if there ex-

ists a (k + 1)-tuple of permutations T = (α1, α2, . . . , αk, αk+1) of Q such that B(xk
1) =

α−1
k+1A(α1x1, α2x2, . . . , αkxk), where (xk

1) = (x1, x2, . . . , xk), shortly B = AT .
A k-ary quasigroup (or a k-quasigroup) is a k-groupoid (Q,A), such that in the equality

A(xk
1) = xk+1, each set of k elements from xk+1

1 uniquely defines the (k + 1)th element.
Sometimes a quasigroup k-operation A is itself considered as a k-quasigroup.

An i-invertible k-operation A defined on Q is a k-operation for which the equation:

A
(
ai−1

1 , x, ak
i+1

)
= ak+1

has a unique solution for each fixed k-tuple (ai−1
1 , ak

i+1, ak+1) of Qk.
So a k-ary quasigroup (or simply, a k-quasigroup) is a k-groupoid (Q,A), such that the

k-operation A is i-invertible for each i = 1, 2, . . . , k (briefly, i ∈ 1, k).
The k-operation Ei, 1 ≤ i ≤ k, on Q with Ei(xk

1) = xi is called the ith identity operation
(or the ith selector) of arity k.

Recall also the following information of [1] (for the case k = 2 see [2]).
Let (A1, A2, . . . , Ak) (briefly, (Ak

1)) be a k-tuple of k-operations defined on a set Q. This
k-tuple defines the unique mapping θ̄ : Qk → Qk in the following way:

θ̄ :
(
xk

1

)
−→

(
A1

(
xk

1

)
, A2

(
xk

1

)
, . . . , Ak

(
xk

1

))
,

(briefly, θ̄ : (xk
1) → (Ak

1)(xk
1) or θ̄ = (A1, A2, . . . , Ak)). These mappings we will call k-

mappings.
Conversely, any mapping Qk into Qk uniquely defines a k-tuple (Ak

1) of k-operations on
Q: if θ̄(xk

1) = (yk
1 ), then we define Ai(xk

1) = yi for all i ∈ 1, k. Thus, we obtain the following:
θ̄ = (Ak

1) where θ̄(xk
1) = (Ak

1)(xk
1) = (Ak

1(xk
1)).

If C is a k-operation on Q and θ̄ is a mapping of Qk into Qk, then the operation Cθ̄
defined by the equality Cθ̄(xk

1) = C(θ̄(xk
1)) is also a k-operation. Let Cθ̄ = D and θ̄ = (Ak

1),
then D(xk

1) = C(Ak
1(xk

1)) or briefly, D = C(Ak
1). If θ̄ = (Bk

1 ) and ϕ̄ = (Ak
1) are mappings of

Qk into Qk, then according to [1]:

ϕ̄θ̄ =
(
Ak

1

)
θ̄ =

(
Aiθ̄
)k
i=1

=
(
A1θ̄, A2θ̄, . . . , Akθ̄

)
=
(
A1

(
Bk

1

)
, A2

(
Bk

1

)
, . . . , Ak

(
Bk

1

))
.

If θ̄ = (Bk
1 ) is a permutation of Qk, then Bi = Eiθ̄ and Biθ̄

−1 = Bi(Bk
1 )−1 = Ei, i ∈ 1, k.

Definition 2.1 [1]. A k-tuple (Ak
1) of (different) k-operations given on a set Q is called

orthogonal if the system {Ai(xk
1) = ai}ki=1 has a unique solution for all ak

1 ∈ Qk.
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The k-tuple (Ek
1 ) = (E1, E2, . . . , Ek) of the selectors of arity k is the identity permutation

of Qk and is orthogonal.
There is a close connection between orthogonal k-tuples of k-operations given on a set

Q and permutations of Qk (such permutations we will call k-permutations) by virtue of the
following

Proposition 2.2 [1]. A k-tuple (Ak
1) of k-operations defined on a set Q is orthogonal if and

only if the mapping θ̄ = (Ak
1) is a permutation of Qk.

Definition 2.3 [1]. A system Σ = {A1, A2, . . . , At} = {At
1}, t ≥ k, of k-operations is called

orthogonal if any k-tuple of k-operations of Σ is orthogonal.

Definition 2.4 [1]. A system Σ = {A1, A2, . . . , At}, t ≥ 1, of k-operations, given on a set
Q, is called strongly orthogonal if the system Σ̄ = {Ek

1 , A
t
1} is orthogonal.

In a strongly orthogonal system Σ = {At
1}, all k-operations Ai, i ∈ 1, t, of Σ are k-

quasigroups since a k-operation A is i-invertible if and only if the mapping (E1, E2, . . . , Ei−1,
A,Ei+1, . . . , Ek) is a k-permutation. So the system Σ̄ is called an orthogonal system of k-
quasigroups (a k-OSQ) [1].

A k-operation A is a k-quasigroup if and only if the set Σ = {A} is strongly orthogonal.
A set Σ = {At

1} of k-quasigroups when k > 2, t ≥ k, can be orthogonal but not strongly
orthogonal in contrast to the binary case (k = 2) [1].

Note that in the case of a strongly orthogonal set Σ = {A1, A2, . . . , At} of k-operations,
the number t of k-operations in Σ can be less than arity k.

3 Product of (k × k)-matrices and product of k-mappings

Consider k-operations of a special kind (polynomial k-operations), that is k-operations of the
form A(xk

1) = a1x1 + a2x2 + · · ·+ akxk over a field.
A polynomial k-operation is a polynomial k-quasigroup if and only if ai 6= 0 for all i ∈ 1, k.
If a k-operation B is isotopic to a polynomial k-operation A(xk

1) = a1x1+a2x2+· · ·+akxk,
that is B = AT , where T = (α1, α2, . . . , αk, αk+1), then

B
(
xk

1

)
= α−1

k+1

(
a1α1x1 + a2α2x2 + · · ·+ akαkxk

)
.

Note that the selectors Ei of arity k can be also considered as polynomial k-operations over
a field:
Ei(xk

1) = a1x1 + a2x2 + · · ·+ aixi + · · ·+ akxk, where ai = 1, aj = 0, j 6= i.
Let a set Σ = {A1, A2, . . . , At}, k ≥ 2, t ≥ k, be a set of k-operations each of which is a

polynomial k-operation over a field, that is

A1

(
xk

1

)
= a11x1 + a12x2 + · · ·+ a1kxk,

A2

(
xk

1

)
= a21x1 + a22x2 + · · ·+ a2kxk,

...

At

(
xk

1

)
= at1x1 + at2x2 + · · ·+ atkxk.

(3.1)

These polynomial operations define corresponding rows of the (t × k)-matrix A. It is
easy to see from Definition 2.1 that the following statement is valid, where a k-minor is the
determinant of a (k × k)-subarray of a matrix A.
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Proposition 3.1 [3]. A system Σ = {At
1}, k ≥ 2, t ≥ k, of polynomial k-operations of (3.1)

is orthogonal if and only if all k-minors of the matrix A defined by these k-operations are
different from 0.

Let in (3.1) t = k, A = (aij), i, j ∈ 1, k, be the (k × k)-matrix the rows of which are
defined by the k-operations A1, A2, . . . , Ak and θ̄A = (A1, A2, . . . , Ak). It is clear that the
mapping θ̄A is a k-permutation if and only if the matrix A is nonsingular.

The following statement establishes a connection between product of matrices and product
of k-mappings.

Theorem 3.2. Let A and B be (k×k)-matrices over a field, θ̄A = (A1, A2, . . . , Ak), let θ̄B =
(B1, B2, . . . , Bk) be the k-mappings defined by the polynomial k-operations corresponding to
the rows of these matrices, θ̄Aθ̄B = (C1, C2, . . . , Ck). Then the k-operations C1, C2, . . . , Ck

are polynomial and define the matrix C = AB, that is θ̄Aθ̄B = θ̄AB.

Proof. Let θ̄Aθ̄B = (A1, A2, . . . , Ak)(B1, B2, . . . , Bk) = (C1, C2, . . . , Ck), i ∈ 1, k, then by
the definition,

Ci

(
xk

1

)
= Aiθ̄B

(
xk

1

)
= Ai

(
B1, B2, . . . , Bk

)(
xk

1

)
= Ai

(
B1

(
xk

1

)
, B2

(
xk

1

)
, . . . , Bk

(
xk

1

))
= ai1

(
b11x1 + b12x2 + · · ·+ b1kxk

)
+ ai2

(
b21x1 + b22x2 + · · ·+ b2kxk

)
+ · · ·+ aik

(
bk1x1 + bk2x2 + · · ·+ bkkxk

)
=
(
ai1b11 + ai2b21 + · · ·+ aikbk1

)
x1 +

(
ai1b12 + ai2b22 + · · ·+ aikbk2

)
x2

+ · · ·+
(
ai1b1k + ai2b2k + · · ·+ aikbkk

)
xk

= ci1x1 + ci2x2 + · · ·+ cikxk,

where cil = ai1b1l + ai2b2l + · · ·+ aikbkl, l ∈ 1, k.
It means that Ci = Aiθ̄B is the polynomial k-operation defined by the ith row of the

matrix AB, so C = AB.

Theorem 3.2 can be formulated otherwise.

Corollary 3.3. Let A1, A2, . . . , Ak and B1, B2, . . . , Bk be polynomial k-operations over a
field, θ̄B = (B1, B2, . . . , Bk), then the k-operations A1θ̄B, A2θ̄B, . . . , Akθ̄B are polynomial,
and the matrix AB is the coefficient matrix for them.

Corollary 3.4. Let θ̄A = (A1, A2, . . . , Ak), where A is a nonsingular matrix, and the matrix
A−1 is inverse to A. Then θ̄A is a k-permutation and θ̄−1

A = θ̄A−1.

Proof. Let (B1, B2, . . . , Bk) = θ̄A−1 . Show that θ̄Aθ̄A−1 is the identity permutation of Qk,
that is (A1, A2, . . . , Ak)(B1, B2, . . . , Bk) = (E1, E2, . . . , Ek). Let

Ai

(
xk

1

)
= ai1x1 + ai2x2 + · · ·+ aikxk, Bi

(
xk

1

)
= bi1x1 + bi2x2 + · · ·+ bikxk.

Then as it follows from the proof of Theorem 3.2 in the k-operation Ai(B1, B2, . . . , Bk) the
multipliers by xj , j 6= i, are equal to 0, and the multiplier (ai1b1i + ai2b2i + · · ·+ aikbki) by
xi is equal 1, since the operations B1, B2, . . . , Bk are defined by the matrix A−1. It means
that Ai(B1, B2, . . . , Bk) = Ei, i ∈ 1, k, but k-selectors E1, E2, . . . , Ek define the rows of the
identity matrix of order k × k the rows of which correspond to the selectors E1, E2, . . . , Ek.
Hence, θ̄Aθ̄A−1 = (A1, A2, . . . , Ak)(B1, B2, . . . , Bk) = (E1, E2, . . . , Ek), so θ̄−1

A = θ̄A−1 .

Corollary 3.4 at once implies.
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Corollary 3.5. If A is a nonsingular (k × k)-matrix and A1, A2, . . . , Ak are the polyno-
mial operations defined by the rows of A, respectively, then θ̄ = (A1, A2, . . . , Ak) is a k-
permutation, and the permutation θ̄−1 = (B1, B2, . . . , Bk) defines the polynomial operations
corresponding to the rows of the matrix A−1 inverse to A.

It is known that if A and B are orthogonal binary quasigroups given on a set Q, that is
(A,B) is a permutation of Q2, then the operations C and D, where (C,D) = (A,B)−1, are
quasigroups as well (see [2, Lemma 3]). Taking into account this fact and Corollary 3.5, we
obtain that if in a nonsingular matrix A of order 2× 2 there is no the element 0, then in the
inverse matrix A−1 the element 0 absents also. Below we will show that in the case of arity
k ≥ 3 this statement in general is not true.

The following statement is valid for a k-permutation (A1, A2, . . . , Ak) all components Ai,
i ∈ 1, k, of which are polynomial k-ary quasigroups over a field.

Theorem 3.6. If all polynomial k-operations A1, A2, . . . , Ak over a field are k-quasigroups,
θ̄ = (A1, A2, . . . , Ak) is a k-permutation and θ̄−1 = (B1, B2, . . . , Bk), then each k-operation
of B1, B2, . . . , Bk is invertible at least in two places.

Proof. A polynomial k-operation Ai: Ai(xk
1) = ai1x1 + ai2x2 + · · · + aikxk, i ∈ 1, k,

is a k-quasigroup if and only if all coefficients aij , j ∈ 1, k, are distinct from 0. Since
(B1, B2, . . . , Bk)(A1, A2, . . . , Ak) = (E1, E2, . . . , Ek), then (bi1a1i + bi2a2i + · · ·+ bikaki) = 1
for any i ∈ 1, k and (bj1a1i + bj2a2i + · · · + bjkaki) = 0 for all j 6= i (see the proof of
Corollary 3.4). By Corollary 3.5, all elements of the jth row of the matrix A−1 = B cannot
simultaneously be equal to 0 as the matrix A−1 = B is nonsingular (by the conditions of the
theorem θ̄ is a k-permutation).

If k−1 of the coefficients bj1, bj2, . . . , bjk is equal 0, then the last coefficient is also equal 0.
Thus, there exist at least two elements which are not equal 0 in every row j 6= i of the matrix
B and the k-operation Bj , corresponding to it is invertible at least in two places. Changing
i, i ∈ 1, k, we obtain that the statement is true for any k-operations of B1, B2, . . . , Bk.

Using the matrices corresponding to the k-permutations of Theorem 3.6 we obtain the
following corollary.

Corollary 3.7. If a nonsingular (k × k)-matrix A has not zero elements, then every row
(every column) of the matrix A−1 contains at least two nonzero elements.

Proof. This statement for rows follows from Corollary 3.5 and Theorem 3.6. The statement
with respect to columns we can obtain from the proof of Theorem 3.6 considering the prod-
uct (A1, A2, . . . , Ak)(B1, B2, . . . , Bk) = (E1, E2, . . . , Ek), the elements ai1b1j + ai2b2j + · · ·+
aikbkj = 0, j 6= i, and reasoning similarly.

Below we will show that the result of Belousov for the binary case, in general, is not
true with respect to arity k > 2 (i.e., the result of Theorem 3.6 for k > 2, in general, is
not improved) constructing the following two counterexamples of k-permutations for ternary
case.

Consider three ternary polynomial operations over the field GF(7):

A1(x, y, z) = x+ y + z, A2(x, y, z) = x+ y + 2z, A3(x, y, z) = x+ 3y + 3z,

and three operations:

B1(x, y, z) = x+ 2y + 4z, B2(x, y, z) = x+ 3y + 2z, B3(x, y, z) = x+ 4y + 2z.
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The following nonsingular (3 × 3)-matrices A, A−1 (B,B−1) correspond to these ternary
operations:

A =

1 1 1
1 1 2
1 3 3

 , A−1 =

5 0 3
4 6 4
6 1 0

 , B =

1 2 4
1 3 2
1 4 2

 , B−1 =

6 6 3
0 6 1
4 6 4

 .

The inverse matrix C = A−1 (D = B−1) defines the following 3 operations: C1(x, y, z) =
5x+ 0y+ 3z, C2(x, y, z) = 4x+ 6y+ 4z, C3(x, y, z) = 6x+ y+ 0z (D1(x, y, z) = 6x+ 6y+ 3z,
D2(x, y, z) = 0x + 6y + z, D3(x, y, z) = 4x + 6y + 4z). The k-operations C1, C3, D2 are
not 3-quasigroups, but every from them is invertible in two places. The permutation θ̄C =
(C1, C2, C3) (θ̄D = (D1, D2, D3)), not all components of which are 3-quasigroups, is inverse
to the 3-permutations θ̄A = (A1, A2, A3) (θ̄B = (B1, B2, B3)) with quasigroup components.

4 Transformations of orthogonal systems of polynomial
k-operations

Now we recall some necessary information from [1] with respect to transformations of or-
thogonal systems of k-operations (k-OSOs) (for the case k = 2 see [2]).

Two k-OSOs Σ and Σ′ given on a set Q are called conjugate if there exists a permutation
θ̄ of Qk such that Σ′ = Σθ̄, and a k-OSO Σ′ is called parastrophic to Σ if Σ′ = Σθ̄−1, where
θ̄ = (Ai1 , Ai2 , . . . , Aik), Aij ∈ Σ for any j ∈ 1, k. In this case,

Σ′ = Σθ̄−1 =
{
E1, E2, . . . , Ek, Aiθ̄

−1 | i ∈ 1, t, i 6= ij , j ∈ 1, k
}
.

By [1, Theorem 1], every k-OSO is conjugate to a k-OSQ, and by [1, Lemma 3], two k-OSQs
are conjugate if and only if they are parastrophic.

Two orthogonal systems of k-operations Σ and Σ′ given on a set Q are called isotopic,
if Σ′ = (Σ)T = {α1A1, α2A2, . . . , αtAt}, Ai ∈ Σ, where T = (α1, α2, . . . , αt) is a tuple of
permutations of the set Q.

The transformation Σ→ (Σθ̄)T = Σ′ is called isostrophy.

Remark 4.1. Note that if a k-OSO Σ = {At
1} of k-operations on a set Q is strongly

orthogonal (i.e. the system Σ̄ = {Ek
1 , A

t
1} is orthogonal), and T = (α1, α2, . . . , αt+k) is a

(t + k)-tuple of permutations of Q, then (Σ̄)T = {α1E1, α2E2, . . . , αkEk, B1, B2, . . . , Bt},
where Bj = αk+jAj , j ∈ 1, t, are k-quasigroups.

According to [1], the equality (Σθ̄)T = (ΣT )θ̄ is true, that is if Bi ∈ Σ′ = (Σθ̄)T , i ∈ 1, t,
then,

Bi

(
xk

1

)
=
(
αi

(
Aiθ̄
))(

xk
1

)
=
(
αiAi

)
θ̄
(
xk

1

)
. (4.1)

In addition, we consider the following case of the transformation of isostrophy of a k-OSO,
namely, Σ′ = (Σθ̄1)T , where θ̄1 = θ̄θ̄0, θ̄0 = (β1E1, β2E2, . . . , βkEk), β1, β2, . . . , βk are per-
mutations of Q, that is θ̄0(xk

1) = (β1E1, β2E2, . . . , βkEk)(xk
1) = (β1x1, β2x2, . . . , βkxk).

In this case if Bi ∈ Σ′, then from (4.1), we have

Bi

(
xk

1

)
=
(
αiAi

)
θ̄1
(
xk

1

)
=
(
αiAi

)(
θ̄θ̄0
)(
xk

1

)
=
((
αiAi

)
θ̄
)
θ̄0
(
xk

1

)
. (4.2)
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Let θ̄ = (C1, C2, . . . , Ck), then (θ̄θ̄0)(xk
1) = (C1, C2, . . . , Ck)(β1x1, β2x2, . . . , βkxk) and

from (4.2), it follows

Bi

(
xk

1

)
= αiAi

(
C1

(
βjxj

)k
j=1

, C2

(
βjxj

)k
j=1

, . . . , Ck

(
βjxj

)k
j=1

)
, (4.3)

where (βjxj)k
j=1 = (β1x1, β2x2, . . . , βkxk).

Now consider all these transformations for the case of orthogonal systems of polynomial
k-ary operations.

Let A = (aij), i ∈ 1, t, j ∈ 1, k, be a (t × k)-matrix, let ΣA = {A1, A2, . . . , At} be the
orthogonal system of the polynomial k-operations, defined by the corresponding rows of the
matrix A (see (3.1)).

Proposition 4.2. Let Bi ∈ (ΣA)T , where T = (α1, α2, . . . , αt), αi, i ∈ 1, t, are permutations,
then,

Bi

(
xk

1

)
= αi

(
ai1x1 + ai2x2 + · · ·+ aikxk

)
, i ∈ 1, t.

Indeed, by the definition of isotopic systems, we have

Bi

(
xk

1

)
= αiAi

(
xk

1

)
= αi

(
ai1x1 + ai2x2 + · · ·+ aikxk

)
, i ∈ 1, t.

In this case, the values of the operation Ai are changed according to the permutation αi,
i ∈ 1, t.

Proposition 4.3. Let Bi ∈ ΣAθ̄, where θ̄ = (C1, C2, . . . , Ck), then,

Bi

(
xk

1

)
= ai1C1

(
xk

1

)
+ ai2C2

(
xk

1

)
+ · · ·+ aikCk

(
xk

1

)
, i ∈ 1, t.

If the operations Cj, j ∈ 1, k, are polynomial and define a matrix C, then the operations Bi,
i ∈ 1, t, are polynomial and are defined by the matrix AC.

Indeed, in this case,

Bi

(
xk

1

)
= Aiθ̄

(
xk

1

)
= Ai

(
C1, C2, . . . , Ck

)(
xk

1

)
= ai1C1

(
xk

1

)
+ ai2C2

(
xk

1

)
+ · · ·+ aikCk

(
xk

1

)
, i ∈ 1, t.

It is evident that if the operations Cj , j ∈ 1, k, are polynomial, then the operations Bi,
i ∈ 1, t, are also polynomial. Moreover, in this case, the operation Bi is defined by the
ith row of the (t × k)-matrix B = AC (see the form of the operation Ci in the proof of
Theorem 3.2 if the matrices B and C change places and i ∈ 1, t).

Corollary 4.4. If in Proposition 4.3 θ̄ = (Ai1 , Ai2 , . . . , Aik), Ail ∈ ΣA, l ∈ 1, k, θ̄−1 =
(D1, D2, . . . , Dk), then ΣAθ̄

−1 is an orthogonal system of polynomial k-operations, Bil = El,
l ∈ 1, k, and

Bi

(
xk

1

)
= ai1D1

(
xk

1

)
+ ai2D2

(
xk

1

)
+ · · ·+ aikDk

(
xk

1

)
, i ∈ 1, t, i 6= i1, i2, . . . , ik

are polynomial k-quasigroups.
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Proof. By the definition of the transformation of parastrophy, we have Bil(x
k
1) =

Ail θ̄
−1(xk

1) = El(xk
1), l ∈ 1, k, since (Ai1 , Ai2 , . . . , Aik)(Ai1 , Ai2 , . . . , Aik)−1 =(E1, E2, . . . , Ek)

and Bi(xk
1) = Aiθ̄

−1(xk
1) = Ai(D1, D2, . . . , Dk)(xk

1) = Ai(D1(xk
1), D2(xk

1), . . . , Dk(xk
1)) =

ai1D1(xk
1)+ai2D2(xk

1)+ · · ·+aikDk(xk
1), when i ∈ 1, t, i 6= i1, i2, . . . , ik, but by Corollary 3.4,

all components Di, i ∈ 1, k of the permutation θ̄−1 are polynomial k-operations, so all k-
operations of ΣAθ̄

−1 are also polynomial k-operations. Moreover, in this case, we obtain that
the system Σ′ = {Bi | i 6= i1, i2, . . . , ik} is strongly orthogonal, and so all k-operations of Σ′

are polynomial k-quasigroups.

Proposition 4.5. If Bi∈(ΣAθ̄θ̄0)T , where θ̄=(C1, C2, . . . , Ck), θ̄0 =(β1E1, β2E2, . . . , βkEk),
T = (α1, α2, . . . , αt), then,

Bi

(
xk

1

)
= αi

(
ai1C1

(
βjxj

)k
j=1

+ ai2C2

(
βjxj

)k
j=1

+ · · ·+ aikCk

(
βjxj

)k
j=1

)
, i ∈ 1, t.

Indeed, according to (4.3), Bi(xk
1) = αiAi(C1(βjxj)k

j=1, C2(βjxj)k
j=1, . . . , Ck(βjxj)k

j=1) =
αi(ai1C1(βjxj)k

j=1 + ai2C2(βjxj)k
j=1 + · · ·+ aikCk(βjxj)k

j=1), i ∈ 1, t.

Proposition 4.6. If Bi ∈ (ΣAθ̄
−1θ̄0)T , where θ̄ = (Ai1 , Ai2 , . . . , Aik), Ail ∈ ΣA, l ∈ 1, k,

θ̄−1 = (D1, D2, . . . , Dk), θ̄0 = (β1E1, β2E2, . . . , βkEk), then Bil = αilβlEl, l ∈ 1, k,

Bi

(
xk

1

)
= αi

(
ai1D1

(
βjxj

)k
j=1

+ ai2D2

(
βjxj

)k
j=1

+ · · ·+ aikDk

(
βjxj

)k
j=1

)
, i ∈ 1, t, i 6= i1, i2, . . . , ik,

moreover, the operations Bi, i 6= i1, i2, . . . , ik, are k-quasigroups.

This statement follows from Corollary 4.4, Proposition 4.5, and Remark 4.1 since

Bil

(
xk

1

)
=
(
αilAil θ̄

−1
)
θ̄0
(
xk

1

)
=
(
αilEl

)
θ̄0
(
xk

1

)
= αilEl

(
βjxj

)k
j=1

= αilβlEl

(
xk

1

)
, l ∈ 1, k.
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