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1 Introduction

The study of Lie bialgebras [1, 2] is now well established as an infinitesimalization of the
notion of a quantum group or Hopf algebra. A Lie bialgebra is a Lie algebra g provided
with a Lie cobracket which is related to the Lie bracket by a certain compatibility condition.
According to quantum groups theory, a quantum group is essentially a formal deformation
of the universal enveloping algebra of a Lie algebra g, the semiclassical structure associated
with such a deformation is a Lie bialgebra structure on g. Constructing quantizations of
Lie bialgebras is an important method to produce new quantum groups. Using the method
twisting the coproduct by a Drinfel’d twist element but keeping the product unchanged,
Grunspan [3] presented the quantization of a class of infinite dimensional Lie algebras con-
taining Virasoro algebras studied in [4] (see also [5, 6]). Using the same technique, Hu and
Wang [7] quantized some Lie algebras presented in [8]. In a recent paper [9], the Lie bialgebra
structures of q-analog Virasoro-like algebras L with the basis {Lα, d1, d2 | α ∈ Z2\{(0, 0)}}
and brackets[

Lα, Lβ
]

=
(
qα2β1 − qα1β2

)
Lα+β,

[
di, Lα

]
= αiLα, i = 1, 2, (1.1)

for α = (α1, α2), β = (β1, β2) ∈ Z2\{(0, 0)}, were considered, where 0 6= q ∈ C is a fixed
non-root of unity. Here we treat L0,0 as zero. Obviously, the Lie algebra L is Z2-graded
(however its structural constant qα2β1 − qα1β2 is not linearly dependent on the gradings α, β;
in this case, the Lie algebra L is called non-linear). This Lie algebra is closely related to
the Virasoro and Virasoro-like algebras and the Lie algebras of Cartan type S and H (cf.
[15, 16]), which is probably why this type of Lie algebras has attracted some attentions in
the literature (cf. [10, 11, 12, 13, 14, 17, 18]).

In this paper, we will use the techniques developed in [3, 7] to construct the quantization
of this type of bialgebra. However, since in our case the Lie algebra is non-linear, some of
our arguments may render rather technical.
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We fix a field F of characteristic zero. Let A be a unitary R-algebra (R is a ring). For
z ∈ A, n ∈ Z, we set

z〈n〉 = z(z + 1) · · · (z + n− 1), z[n] = z(z − 1) · · · (z − n+ 1)

and set z〈0〉 = 1 and z[0] = 1. If a ∈ R is any scalar, set z〈n〉a = (z+a)〈n〉 and z[n]
a = (z+a)[n],

that is

z〈n〉a = (z + a)(z + a+ 1) · · · (z + a+ n− 1), (1.2)

z[n]
a = (z + a)(z + a− 1) · · · (z + a− n+ 1). (1.3)

Obviously z〈n〉 = z
〈n〉
0 , z[n] = z

[n]
0 .

The following lemma can be found in [3].

Lemma 1.1. Let z be any element of a unitary F-algebras A. For a, d ∈ F, and m,n, r ∈ Z,
one has

z〈m+n〉
a = z〈m〉a z

〈n〉
a+m, z[m+n]

a = z[m]
a z

[n]
a−m, z[m]

a = z
〈m〉
a−m+1, (1.4)∑

m+n=r

(−1)n

m!n!
z[m]
a z

〈n〉
d =

(
a− d
r

)
,

∑
m+n=r

(−1)n

m!n!
z[m]
a z

[n]
d−m =

(
a− d+ r − 1

r

)
,

(1.5)

where in general (ab ) is the binomial coefficient.

Denote by (U(L), µ, τ,∆0, S0, ε0) the natural Hopf algebra structure on U(L) (the univer-
sal enveloping algebra of the Lie algebra L), that is, the coproduct ∆0, the antipode S0 and
the counit ε0 are respectively defined by

∆0

(
Lβ
)

= Lβ ⊗ 1 + 1⊗ Lβ, ∆0

(
di
)

= di ⊗ 1 + 1⊗ di,
S0

(
Lβ
)

= −Lβ, S0

(
di
)

= −di,
ε0
(
Lβ
)

= 0, ε0
(
di
)

= 0 for β ∈ Z2 \ {(0, 0)}, i = 1, 2.

The following definition and well-known result can be found in [2].

Definition 1.2. Let (H, µ, τ,∆0, S0, ε0) be a Hopf algebra over a commutative ring. An
element F ∈ H ⊗H is called Drinfel’d twist element, if it is invertible such that

(F ⊗ 1)
(
∆0 ⊗ Id

)
(F ) = (1⊗F )

(
Id⊗∆0

)
(F ), (1.6)

(ε0 ⊗ Id)(F ) = 1⊗ 1 =
(
Id⊗ ε0

)
(F ). (1.7)

Lemma 1.3. Let (H, µ, τ,∆0, S0, ε0) be a Hopf algebra over a commutative ring, and let F
be a Drinfel’d twist element of H⊗H, then

(1) U = µ(Id⊗ S0)(F ) is an invertible element of H with U −1 = µ(S0 ⊗ Id)(F−1);

(2) the algebra (H, µ, τ,∆, S, ε) is a new Hopf algebra if we keep the counit undeformed
(i.e., ε = ε0) and define ∆ : H → H⊗H, S : H → H by

∆(h) = F∆0(h)F−1, S(h) = uS0(h)u−1.
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Let (U(g), µ, τ,∆0, S0, ε0) be the natural Hopf algebra structure, where g is a triangular
Lie bialgebra, and denote by U(g)[[t]] an associative F-algebra of formal power series with
coefficients in U(g). Naturally, U(g)[[t]] is equipped with an induced Hopf algebra structure
arising from that on U(g).

Definition 1.4. For a triangular Lie bialgebra g over F, the Hopf algebra (U(g)[[t]], µ, τ,∆r,
Sr, ε0) is called a quantization of (U(g), µ, τ,∆0, S0, ε0) by a Drinfel’d twist element F , if
U(g)[[t]]/tU(g)[[t]] ∼= U(g) and F is determined by its r-matrix r.

We will fix the following notations, for x1, x2 ∈ Z,

T = x1d1 + x2d2 ∈ span
{
d1, d2

}
,

E = Lα for α ∈ Z2 \ (0, 0) satisfying [T,E] = E.
(1.8)

The following result is obtained in [9].

Lemma 1.5. There is a triangular Lie bialgebra structure on the Lie algebras L given by
the r-matrix T ⊗ E − E ⊗ T , where T and E are defined in (1.8).

The main result of this paper is the following theorem.

Theorem 1.6. Let L be the q-analog Virasoro-like algebras with [T,E] = E (cf. (1.8)), then
there exists a noncommutative and noncocommutative Hopf algebra structure (U(L)[[t]], µ, τ,
∆, S, ε) on U(L)[[t]], such that U(L)[[t]]/tU(L)[[t]] = U(L), which preserves the product and
the counit of U(L)[[t]], but the coproduct and antipode are defined by

∆
(
Lβ
)

= Lβ ⊗ (1− Et)c +
∞∑
k=0

(−1)kakT 〈k〉 ⊗ (1− Et)−kLβ+kαt
k, (1.9)

∆
(
di
)

= di ⊗ 1 + 1⊗ di + αiT ⊗ (1− Et)−1Et, (1.10)

S
(
Lβ
)

= −(1− Et)−c
∞∑
k=0

akLβ+kαT
〈k〉
1 tk, (1.11)

S
(
di
)

= αiT (1− Et)−1
(
Et− E2t2

)
− di, (1.12)

where

c = x1β1 + x2β2, ak =
1
k!

k∏
p=1

(
qα2(β1+(p−1)α1) − qα1(β2+(p−1)α2)

)
, c0 = 1, i = 1, 2.

In fact, we can introduce the operator D(n) (n ∈ N) on U(L) defined by D(n) := 1
n!(adE)n;

it is easy to check that

D(n)

(
Lβ
)

= anLβ+nα. (1.13)

Thus, (1.9) and (1.11) in Theorem 1.6 can be rewritten as

∆
(
Lβ
)

= Lβ ⊗ (1− Et)c +
∞∑
p=0

(−1)pT 〈p〉 ⊗ (1− Et)−pD(p)

(
Lβ
)
tp, (1.14)

S
(
Lβ
)

= −(1− Et)−c
∞∑
p=0

D(p)

(
Lβ
)
T
〈p〉
1 tp. (1.15)
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2 Proof of the main results

From above, in order to quantize the Lie bialgebra structures on q-analog Virasoro-like
algebras, the key is to construct the Drinfel’d twisting, thus we have to do some necessary
computation.

Lemma 2.1. Let L be the q-analog Virasoro-like algebras. The following equations hold in
U(L):

LβT
[m]
a = T

[m]
a−cLβ, LβT

〈m〉
a = T

〈m〉
a−cLβ, (2.1)

EnT [m]
a = T

[m]
a−nE

n, EnT 〈m〉a = T
〈m〉
a−nE

n, (2.2)

dknT
[m]
a = T [m]

a dkn, dknT
〈m〉
a = T 〈m〉a dkn, (2.3)

LβL
m
γ =

m∑
i=0

(−1)i
(
m
i

) i∏
p=1

(
qγ2(β1+(p−1)γ1) − qγ1(β2+(p−1)γ2)

)
Lm−iγ Lβ+iγ , (2.4)

dnL
m
γ = mγnL

m
γ + Lmγ dn, (2.5)

where T = x1d1 + x2d2 ∈ span{d1, d2}, E = Lα satisfying [T,E] = E (cf. (1.8)), β, γ ∈
Z2 \ {(0, 0)}, c = x1β1 + x2β2, a ∈ C and n = 1, 2.

Proof. Since [T, Lβ] = cLβ, we have LβT = (T − c)Lβ. It is easy to see that (2.1) is true for
m = 1. We can suppose that the first equation of (2.1) is true for m, then for m+ 1, we have

LβT
[m+1]
a = LβT

[m]
a (T + a−m) = T

[m]
a−cLβ(T + a−m)

= T
[m]
a−c(T + a− c−m)Lβ = T

[m+1]
a−c Lβ.

Thus we get (2.1) by induction on m. The second equation in (2.1), (2.2) and (2.3) can be
verified in a similar way. Since

(
adLγ

)i
Lβ =

i∏
p=1

(
qγ2(β1+(p−1)γ1) − qγ1(β2+(p−1)γ2)

)
Lβ+iγ , (2.6)

for any Lβ, Lγ ∈ L, then for (2.4), we have

LβL
m
γ =

m∑
i=0

(−1)i
(
m
i

)
Lm−iγ

(
adLγ

)i(
Lβ
)

=
m∑
i=0

(−1)i
(
m
i

) i∏
p=1

(
qγ2(β1+(p−1)γ1) − qγ1(β2+(p−1)γ2)

)
Lm−iγ Lβ+iγ .

Similarly, we can obtain (2.5).

For a ∈ F, we set

Fa :=
∞∑
i=0

(−1)i

i!
T [i]
a ⊗ Eiti, Fa :=

∞∑
i=0

1
i!
T 〈i〉a ⊗ Eiti,

Ua := µ ·
(
S0 ⊗ Id

)(
Fa
)
, Va := µ ·

(
Id⊗ S0

)(
Fa
)
,
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where t denotes a formal variable. Denote F = F0, F = F0, U = U0, V = V0. Since
S0(T 〈i〉a ) = (−1)iT [i]

−a, S0(Ei) = (−1)iEi, we have

Ua = µ
(
S0 ⊗ Id

)( ∞∑
i=0

1
i!
T 〈i〉a ⊗ Eiti

)
=
∞∑
i=0

(−1)i

i!
T

[i]
−aE

iti,

Va = µ
(
Id⊗ S0

)( ∞∑
i=0

(−1)i

i!
T [i]
a ⊗ Eiti

)
=
∞∑
i=0

1
i!
T [i]
a E

iti.

Lemma 2.2. For a, d ∈ C, one has

FaFd = 1⊗ (1− Et)(a−d), VaUd = (1− Et)−(a+d). (2.7)

Therefore the elements Fa, Fa, Ua, Va are invertible elements with F−1
a = Fa, U −1

a = V−a.

Proof. Using the formula (1.5), we have

FaFd =
∞∑
m=0

(−1)m

 ∑
i+j=m

(−1)j

i!j!
T [i]
a T

〈j〉
d

⊗ Emtm
=
∞∑
m=0

(−1)m
(
a− d
m

)
⊗ Emtm

= 1⊗ (1− Et)a−d.

For the second equation, using (2.2) and (1.5), we have

VaUd =
∞∑
m=0

 ∑
i+j=m

(−1)j

i!j!
T [i]
a T

[j]
−d−i

Ei+jti+j

=
∞∑
m=0

(
a+ d+m− 1

m

)
Emtm

= (1− Et)−(a+d).

Lemma 2.3. For any positive integer m and any a ∈ F, one has

∆0

(
T [m]

)
=

m∑
i=0

(
m
i

)
T

[i]
−a ⊗ T [m−i]

a . (2.8)

In particular, one has

∆0

(
T [m]

)
=

m∑
i=0

(
m
i

)
T [i] ⊗ T [m−i].
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Proof. In order to get the result, we want to use induction. Since ∆0(T ) = T ⊗ 1 + 1⊗ T ,
it is easy to see that the result is true for m = 1; suppose that it is true for m, then it is
enough to consider the condition for m+ 1,

∆0

(
T [m+1]

)
= ∆0

(
T [m]

)
∆0(T −m)

=

(
m∑
i=0

(
m
i

)
T

[i]
−a ⊗ T [m−i]

a

)
×
(
(T − a−m)⊗ 1 + 1⊗ (T + a−m) +m(1⊗ 1)

)
= 1⊗ T [m+1]

a + T
[m+1]
−a ⊗ 1 +m

(
m−1∑
i=1

(
m
i

)
T

[i]
−a ⊗ T [m−i]

a

)

+ (T − a)⊗ T [m]
a + T

[m]
−a ⊗ (T + a) +

m−1∑
i=1

(
m
i

)
T

[i+1]
−a ⊗ T [m−i]

a

+
m−1∑
i=1

(i−m)
(
m
i

)
T

[i]
−a ⊗ T [m−i]

a +
m−1∑
i=1

(
m
i

)
T

[i]
−a ⊗ T [m−i+1]

a

+
m−1∑
i=1

(−i)
(
m
i

)
T

[i]
−a ⊗ T [m−i]

a

= 1⊗ T [m+1]
a + T

[m+1]
−a ⊗ 1 +

m∑
i=1

((
m
i− 1

)
+
(
m
i

))
T

[i]
−a ⊗ T [m+1−i]

a

=
m+1∑
i=0

(
m+ 1
i

)
T

[i]
−a ⊗ T [m+1−i]

a .

Therefore, the result is proved by induction.

Proposition 2.4. F =
∑∞

i=0
(−1)i

i! T [i] ⊗Eiti is a Drinfel’d twist element of (U(L)[[t]], µ, τ,
∆0, S0, ε0), that is F satisfies (1.6) and (1.7).

Proof. The proof of (1.7) is easy, we just need to check (1.6). Since

(F ⊗ 1)
(
∆0 ⊗ Id

)
(F ) =

( ∞∑
i=0

(−1)i

i!
T [i] ⊗ Eiti ⊗ 1

)

·

 ∞∑
j=0

(−1)j

j!

j∑
k=0

(
j
k

)
T

[k]
−i ⊗ T

[j−k]
i ⊗ Ejtj


=

∞∑
i,j=0

(−1)i+j

i!j!

j∑
k=0

(
j
k

)
T [i]T

[k]
−i ⊗ E

iT
[j−k]
i ⊗ Ejti+j

=
∞∑

i,j=0

(−1)i+j

i!j!

j∑
k=0

(
j
k

)
T [i+k] ⊗ T [j−k]Ei ⊗ Ejti+j ,
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and on the other hand,

(1⊗F )
(
Id⊗∆0

)
(F ) =

( ∞∑
r=0

(−1)r

r!
1⊗ T [r] ⊗ Ertr

)

·

 ∞∑
s=0

(−1)s

s!
T [s] ⊗

s∑
q=0

(
s
q

)
Eq ⊗ Es−qts


=

∞∑
r,s=0

(−1)r+s

r!s!

s∑
q=0

(
s
q

)
T [s] ⊗ T [r]Eq ⊗ Er+s−qtr+s,

thus, to verify (1.6), it suffices to show for a fixed m that

∑
i+j=m

1
i!j!

j∑
k=0

(
j
k

)
T [i+k] ⊗ T [j−k]Ei ⊗ Ej

=
∑

r+s=m

1
r!s!

s∑
q=0

(
s
q

)
T [s] ⊗ T [r]Eq ⊗ Er+s−q.

Now, fix r, s, q such that r+ s = m, 0 ≤ q ≤ s, set i = q, i+ k = s, then we have j = m− q,
j − k = r. We see that the coefficients of T [s] ⊗ T [r]Eq ⊗ Em−q in both sides are equal. So
the result follows.

Lemma 2.5. One has for any a ∈ F and Lβ ∈ L(
Lβ ⊗ 1

)
Fa = Fa−c

(
Lβ ⊗ 1

)
, (2.9)(

1⊗ Lβ
)
Fa =

∞∑
l=0

(−1)lalFa+l
(
T 〈l〉a ⊗ Lβ+lαt

l
)
, (2.10)

LβUa = Ua+c

∞∑
l=0

alLβ+lαT
〈l〉
1−at

l, (2.11)(
di ⊗ 1

)
Fa = Fa

(
di ⊗ 1

)
, (2.12)(

1⊗ di
)
Fa = Fa+1

(
T 〈1〉a ⊗ αiEt

)
+ Fa

(
1⊗ di

)
, (2.13)

diUa = −αiT [1]
−aUa+1Et+ Uadi, (2.14)

EUa = Ua+1E, (2.15)

VaT
[1]
−a = T

[1]
−aVa − T [1]

a Va−1Et, (2.16)

where

al =
1
l!

k∏
p=1

(
qα2(β1+(p−1)α1) − qα1(β2+(p−1)α2)

)
, c = x1β1 + x2β2, i = 1, 2.

Proof. By the second equation of (2.1) we have

(
Lβ ⊗ 1

)
Fa =

∞∑
i=0

1
i!
LβT

〈i〉
a ⊗ Eiti
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=
∞∑
i=0

1
i!
T
〈i〉
a−cLβ ⊗ Eiti

= Fa−c
(
Lβ ⊗ 1

)
;

this prove (2.12). For (2.10), using (2.4), we have

(
1⊗ Lβ

)
Fa =

∞∑
i=0

1
i!
T 〈i〉a ⊗ LβEiti

=
∞∑
i=0

i∑
l=0

(−1)l
1

(i− l)!
alT
〈i〉
a ⊗ Ei−lLβ+lαt

i

=
∞∑
i=0

∞∑
l=0

(−1)l
1
i!
alT
〈i+1〉
a ⊗ EiLβ+lαt

i+l

=
∞∑
l=0

(−1)lal
∞∑
i=0

1
i!
T
〈i〉
a+l ⊗ E

itiT 〈l〉a ⊗ Lβ+lαt
l

=
∞∑
l=0

(−1)lalFa+l
(
T 〈l〉a ⊗ Lβ+lαt

l
)
;

this proves (2.10). The following two equations give the proofs of (2.11) and (2.12):

LβUa =
∞∑
r=0

(−1)r

r!
T

[r]
−a−cLβE

rtr

=
∞∑
r=0

(−1)r

r!
T

[r]
−a−c

r∑
l=0

(−1)l
r!

(r − l)!
alE

r−lLβ+lαt
r

=
∞∑
r,l=0

(−1)r

r!
alT

[r+l]
−a−cE

rLβ+lαt
r+l

=
∞∑
r,l=0

(−1)r

r!
alT

[r]
−a−cT

[l]
−a−c−rE

rLβ+lαt
r+l

=
∞∑
l=0

∞∑
r=0

(
(−1)r

r!
alT

[r]
−a−cE

rtr
)
T

[l]
−a−cLβ+lαt

l

= Ua+c

∞∑
l=0

alT
[l]
−a−cLβ+lαt

l

= Ua+c

∞∑
l=0

alLβ+lαT
〈l〉
1−at

l,

(
di ⊗ 1

)
Fa =

(
di ⊗ 1

) ∞∑
r=0

1
r!
T 〈r〉a ⊗ Ertr

=
∞∑
r=0

1
r!
diT

〈r〉
a ⊗ Ertr

=
∞∑
r=0

1
r!
T 〈r〉a di ⊗ Ertr
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=

( ∞∑
r=0

1
r!
T 〈r〉a ⊗ Ertr

)(
di ⊗ 1

)
= Fa

(
di ⊗ 1

)
.

Using (1.4) and (2.5), we have

(
1⊗ di

)
Fa =

(
1⊗ di

) ∞∑
r=0

1
r!
T 〈r〉a ⊗ Ertr

=
∞∑
r=0

1
r!
T 〈r〉a ⊗ diErtr

=
∞∑
r=0

1
r!
T 〈r〉a ⊗

(
rαiE

r + Erdi
)
tr

=
∞∑
r=0

1
(r − 1)!

T 〈r〉a ⊗ αiErtr +
∞∑
r=0

1
r!
T 〈r〉a ⊗ Erditr

=
∞∑
r=0

1
(r − 1)!

T 〈1〉a T
〈r−1〉
a+1 ⊗ αiErtr + Fa

(
1⊗ di

)
= Fa+1

(
T 〈1〉a ⊗ αiEt

)
+ Fa

(
1⊗ di

)
,

which gives (2.12). The equations (2.14) and (2.15) follow from the following computations:

diUa = di

∞∑
r=0

(−1)r

r!
T

[r]
−aE

rtr

=
∞∑
r=0

(−1)r

r!
T

[r]
−adiE

rtr

=
∞∑
r=0

(−1)r

r!
T

[r]
−a
(
rαiE

r + Erdi
)
tr

=
∞∑
r=0

αiT
[1]
−a

(−1)r

(r − 1)!
T

[r−1]
−a−1E

rtr +
∞∑
r=0

(−1)r

r!
T

[r]
−aE

rtrdi

= −αiT [1]
−aUa+1Et+ Uadi,

EUa = E

∞∑
i=0

(−1)i

i!
T

[i]
−aE

iti

=
∞∑
i=0

(−1)i

i!
T

[i]
−a−1E

i+1ti = Ua+1E.

Finally,

VaT
[1]
−a =

∞∑
i=0

1
i!
T [i]
a E

itiT
[1]
−a

=
∞∑
i=0

1
i!
T [i]
a (T − a− i)Eiti
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= T
[1]
−aVa −

∞∑
i=0

1
(i− 1)!

(T + a)T [i−1]
a−1 E

iti

= T
[1]
−aVa − T [1]

a Va−1Et,

which proves the last equation of the lemma.

Now we can prove our main theorem in this paper.

Proof of Theorem 1.6. For arbitrary elements, Lβ ∈ L, i = 1, 2. First, using (2.7), (2.12)
and (2.10), we have

∆
(
Lβ
)

= F∆0

(
Lβ
)
F−1

= F
(
Lβ ⊗ 1

)
F−1 + F

(
1⊗ Lβ

)
F−1

= FF−c
(
Lβ ⊗ 1

)
+ F

∞∑
l=0

(−1)lalFl
(
T 〈l〉 ⊗ Lβ+lαt

l
)

=
(
1⊗ (1− Et)c

)(
Lβ ⊗ 1

)
+
∞∑
l=0

(−1)lal
(
1⊗ (1− Et)−l

)
⊗
(
T 〈l〉 ⊗ Lβ+lαt

l
)

= Lβ ⊗ (1− Et)c +
∞∑
l=0

(−1)lalT 〈l〉 ⊗ (1− Et)−lLβ+lαt
l.

Using (2.7), (2.12) and (2.13), we have

∆
(
di
)

= F∆
(
di
)
F−1

= F
(
di ⊗ 1 + 1⊗ di

)
F

= F
(
di ⊗ 1

)
F + F

(
1⊗ di

)
F

= FF
(
di ⊗ 1

)
+ F

(
F1

(
T 〈1〉 ⊗ αiEt

)
+ F

(
1⊗ di

))
= di ⊗ 1 + 1⊗ di + 1⊗ (1− Et)−1

(
T 〈1〉 ⊗ αiEt

)
= di ⊗ 1 + 1⊗ di + αiT

〈1〉 ⊗ (1− Et)−1Et.

Using (2.7) and (2.11), we have

S
(
Lβ
)

= U −1S0

(
Lβ
)
U

= −V LβU

= −V Ub

( ∞∑
l=0

alLβ+lαT
〈l〉
1 tl

)

= −(1− Et)−b
( ∞∑
l=0

alLβ+lαT
〈l〉
1 tl

)
.

Using (2.7), (2.14), (2.15) and (2.16), we have

S
(
di
)

= U −1S0

(
di
)
U

= −V diU

= −V
(
− αiT [1]U1Et+ U di

)



Quantization of the q-analog Virasoro-like algebras 11

= αi
(
TV − TV Et

)
U1Et− di

= αiTV U1Et− αiTV U2E
2t2 − di

= αiT (1− Et)−1Et− αiT (1− Et)−1E2t2 − di
= αiT (1− Et)−1

(
Et− E2t2

)
− di.

This completes the proof of the theorem.
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