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Abstract

In this work, the nul-filiform and filiform Zinbiel algebras are described up to iso-
morphism. Moreover, the classification of complex Zinbiel algebras dimensions ≤ 3 is
extended up to dimension 4.
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1 Introduction

One of the important objects of the modern theory of nonassociative algebras is Lie algebras.
Active investigations in the theory of Lie algebras lead to the appearance of some general-
izations of these algebras such as Mal’cev algebras, Lie superalgebras, binary Lie algebras,
Leibniz algebras, and others.

In the present work, we consider algebras which are dual to Leibniz algebras. Recall that
Leibniz algebras were introduced in [6] in the nineties of the last century. They are defined
by the following identity:[

x, [y, z]
]

=
[
[x, y], z

]
−
[
[x, z], y

]
.

J.-L. Loday in [5] studied categorical properties of Leibniz algebras and considered in
this connection a new object – Zinbiel algebra (read Leibniz in the reverse order). Since the
category of Zinbiel algebras is Koszul dual to the category of Leibniz algebras, sometimes
they are also called dual Leibniz algebras [7].

In works [3, 4], some interesting properties of Zinbiel algebras were obtained. In particular,
the nilpotency of an arbitrary complex finite-dimensional Zinbiel algebra was proved in [4].

For the examples of Zinbiel algebras, we refer to works [4, 5, 7].
Since description of all finite-dimensional complex Zinbiel algebras (which are nilpotent)

is a boundless problem, it is natural to add certain restrictions for their investigation. One of
such restrictions is the condition on the nilindex. Recall that in works [2, 8] some descriptions
of nilpotent Leibniz algebras and Lie algebras are given.

At the beginning of the study of any class of algebras, it is important to describe up
to isomorphism algebras of lower dimensions, because such description gives examples for
to establish or reject certain conjectures. In this way, in [4], the classification of complex
Zinbiel algebras of dimensions ≤ 3 is given. Applying some general results obtained for
finite-dimensional Zinbiel algebras, we extend the classification of complex Zinbiel algebras
up to dimension 4. It should be noted that this classification shows that associative algebras
play the crucial role in the classification of four-dimensional algebras, which are defined by
the multilinear identity of degree 3.
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2 Classification of complex nul-filiform Zinbiel algebras

Definition 2.1. An algebra A over a field F is called Zinbiel algebra if for any x, y, z ∈ A
the identity

(x ◦ y) ◦ z = x ◦ (y ◦ z) + x ◦ (z ◦ y) (2.1)

holds.

For a given Zinbiel algebra A, we define the following sequence:

A1 = A, Ak+1 = A ◦Ak, k ≥ 1.

Definition 2.2. A Zinbiel algebra A is called nilpotent if there exists s ∈ N such that
As = 0. The minimal number s satisfying this property is called index of nilpotency or
nilindex of the algebra A.

It is not difficult to see that the index of nilpotency of an arbitrary n-dimensional nilpotent
algebra does not exceed the number n+ 1.

Definition 2.3. An n-dimensional Zinbiel algebra A is called nul-filiform if dimAi =
(n+ 1)− i, 1 ≤ i ≤ n+ 1.

It is evident that the last definition is equivalent to the fact that algebra A has maximal
index of nilpotency.

Theorem 2.4. An arbitrary n-dimensional nul-filiform Zinbiel algebra is isomorphic to the
following algebra:

ei ◦ ej = Cji+j−1ei+j , for 2 ≤ i+ j ≤ n, (2.2)

where omitted products are equal to zero and {e1, e2, . . . , en} is a basis of the algebra, the
symbols Cts are binomial coefficients defined as Cts = s!

t!(s−t!) .

Proof. Let A be an n-dimensional nul-filiform Zinbiel algebra and let {x1, x2, . . . , xn} be a
basis of the algebra A such that x1 ∈ A1 \A2, x2 ∈ A2 \A3, . . ., xn ∈ An. Since x2 ∈ A2 \A3,
for some elements b2,p, c2,p of algebra A, we have

x2 =
∑

b2,p ◦ c2,p =
∑

αi,jxi ◦ xj = α1,1x1 ◦ x1 + (∗),

where (∗) ∈ A3, i.e., x2 = α1,1x1 ◦x1 + (∗). Note that α1,1x1 ◦x1 6= 0. Indeed, in the opposite
case, x2 ∈ A3.

Similarly, for x3 ∈ A3 \A4, we have

x3 =
∑

a3,p ◦
(
b3,p ◦ c3,p

)
=
∑

αi,j,kxi ◦
(
xj ◦ xk

)
= α1,1,1x1 ◦

(
x1 ◦ x1

)
+ (∗∗),

where (∗∗) ∈ A4 and α1,1,1x1 ◦ (x1 ◦ x1) 6= 0 (otherwise x3 ∈ A4), i.e., x3 = α1,1,1x1 ◦
(x1 ◦ x1) + (∗∗). Continuing this process, we obtain that elements

e1 := x1, e2 := x1 ◦ x1, e3 := x1 ◦ (x1 ◦ x1), . . . , en := (x1 ◦ · · · ◦ (x1 ◦ (x1 ◦ x1)))
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are distinct from zero. It is not difficult to check the linear independence of these elements.
Hence, we can choose the elements {e1, e2, . . . , en} as a basis of algebra A. We have by
construction

e1 ◦ ei = ei+1 for 1 ≤ i ≤ n− 1. (2.3)

We prove equality (2.2) by induction on j for every i.
Using identities (2.1), (2.3), we can prove by induction the equality

ei ◦ e1 = iei+1 for 1 ≤ i ≤ n− 1,

i.e., equality (2.2) is true for j = 1 and every i.
Suppose that the equality is true for all j ≤ k − 1 and every i.
Let us prove the equality (2.2) for j = k and every i. Using the inductive hypothesis and

the following chain of equalities:

ei ◦ ek = ei ◦
(
e1 ◦ ek−1

)
=
(
ei ◦ e1

)
◦ ek−1 − ei ◦

(
ek−1 ◦ e1

)
= iei+1 ◦ ek−1 − (k − 1)ei ◦ ek = iCk−1

i+k−1ei+k − (k − 1)ei ◦ ek,

we obtain kei ◦ ek = iCk−1
i+k−1ei+k, i.e.,

ei ◦ ek =
i

k
Ck−1
i+k−1ei+k =

i

k

(i+ k − 1)!
(k − 1)!i!

ei+k =
(i+ k − 1)!
k!(i− 1)!

ei+k = Cki+k−1ei+k.

We denote the algebra from Theorem 2.4 as NFn. It is not difficult to see that the n-
dimensional Zinbiel algebra is one generated if and only if it is isomorphic to the algebra NFn.

3 Classification of complex filiform Zinbiel algebras

In this section, we classify filiform Zinbiel algebras.

Definition 3.1. An n-dimensional Zinbiel algebra A is said to be filiform if dimAi = n− i,
2 ≤ i ≤ n.

Definition 3.2. Given a filiform Zinbiel algebra A, put Ai = Ai/Ai+1, 1 ≤ i ≤ n − 1 and
grA = A1⊕A2⊕ · · · ⊕An−1. Then Ai ◦Aj ⊆ Ai+j , dimA1 = 2, dimAi = 1 for 2 ≤ i ≤ n− 1
and we obtain the graded algebra grA. If an algebra B is isomorphic to grA, then we say
that the algebra B is naturally graded.

In the following theorem, the classification of complex naturally graded filiform Zinbiel
algebras is represented.

Theorem 3.3. An arbitrary n-dimensional (n ≥ 5) naturally graded complex filiform Zinbiel
algebra is isomorphic to the following algebra:

Fn : ei ◦ ej = Cji+j−1ei+j , 2 ≤ i+ j ≤ n− 1,

where omitted products are equal to zero and {e1, e2, . . . , en} is a basis of the algebra.

Proof. Let A be a Zinbiel algebra satisfying conditions of the theorem. Similar to the work
[8], we choose a basis {e1, e2, . . . , en} of the algebra A such that A1 = 〈e1, en〉, Aj = 〈ej〉,
2 ≤ j ≤ n− 1 and e1 ◦ ei = ei+1 for 2 ≤ i ≤ n− 2.
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Introduce the following notations:

e1 ◦ e1 = α1e2, e1 ◦ en = α2e2, en ◦ e1 = α3e2, en ◦ en = α4e2.

Consider the possible cases.
Case 1. Let (α1, α4) 6= (0, 0). Then without loss of generality we can suppose α1 6= 0. Change
the basis as follows: e′1 = e1, e′i = α1ei, 2 ≤ i ≤ n − 1. We can suppose α1 = 1. Then the
space spanned on the vectors {e1, e2, . . . , en−1} forms a nul-filiform Zinbiel algebra of the
dimension n − 1. From the proof of Theorem 2.4, we can conclude ei ◦ ej = Cji+j−1ei+j ,
2 ≤ i+ j ≤ n− 1.

Let us show that the omitted products are equal to zero.
Apply identity (2.1) in the following multiplications:(

e1 ◦ en
)
◦ e1 = e1 ◦

(
en ◦ e1

)
+ e1 ◦

(
e1 ◦ en

)
=⇒ 2α2e3 = α3e3 + α2e3,

i.e., α2 = α3;(
e1 ◦ e1

)
◦ en = e1 ◦

(
e1 ◦ en

)
+ e1 ◦

(
en ◦ e1

)
=⇒ e2 ◦ en = α2e3 + α3e3,

hence, e2 ◦ en = 2α2e3;(
e1 ◦ en

)
◦ en = 2e1 ◦

(
en ◦ en

)
=⇒ 2α2

2e3 = 2α4e3,

consequently, α2
2 = α4;(

en ◦ e1
)
◦ e1 = 2en ◦

(
e1 ◦ e1

)
=⇒ 2α2e3 = 2en ◦ e2,

i.e., we have en ◦ e2 = α2e3.
Taking the change of the basic elements by the following way:

e′n = −α2e1 + en, e′i = ei for 1 ≤ i ≤ n− 1,

it is not difficult to see that e′1 ◦ e′n = e′n ◦ e′1 = e′n ◦ e′n = e′2 ◦ e′n = e′n ◦ e′2 = 0. Moreover, the
other products are not changed, i.e., we can suppose α2 = α3 = α4 = 0.

Using identity (2.1) and the method of mathematical induction, it is easy to prove

en ◦ ei = 0 for 1 ≤ i ≤ n− 1. (3.1)

The equality

ei ◦ en = 0 for 1 ≤ i ≤ n− 1

can be proved by induction and using (2.1), (3.1).
Case 2. Let (α1, α4) = (0, 0). Then (α2, α3) 6= (0, 0). In the case of α2 6= −α3, taking
e′1 = e1 + en, we obtain the conditions of Case 1. Therefore, we need to consider only the
case of α2 = −α3 6= 0. By the following change of basis:

e′1 = e1, e′n = en, e′i = α2ei for 2 ≤ i ≤ n− 1,

we can suppose α2 = 1.
The products(

e1 ◦ en
)
◦ e1 = e1 ◦

(
en ◦ e1

)
+ e1 ◦

(
e1 ◦ en

)
=⇒ e2 ◦ e1 = 0,
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0 =
(
e1 ◦ e1

)
◦ e2 = e1 ◦

(
e1 ◦ e2

)
+ e1 ◦

(
e2 ◦ e1

)
= e1 ◦ e3 = e4

deduce the contradiction to the existence of algebra in this case.

The following proposition allows to extract a “convenient” basis in an arbitrary complex
filiform Zinbiel algebra. Such basis in the literature is called adapted [8].

Proposition 3.4. There exists a basis {e1, e2, . . . , en} in an arbitrary n-dimensional (n ≥ 5)
complex filiform Zinbiel algebra such that the multiplication of the algebra has the following
form:

ei ◦ ej = Cji+j−1ei+j , 2 ≤ i+ j ≤ n− 1,

en ◦ e1 = αen−1, en ◦ en = βen−1,
(3.2)

where α, β ∈ C.

Proof. By Theorem 3.3 we have that any n-dimensional complex filiform Zinbiel algebra is
isomorphic to the algebra of the form Fn + β, where

β
(
e1, ei

)
= 0 for 1 ≤ i ≤ n− 1,

β
(
en, en

)
∈ lin

{
e3, e4, . . . , en−1

}
,

β
(
ei, en

)
, β
(
en, ei

)
∈ lin

{
ei+2, ei+3, . . . , en−1

}
for 1 ≤ i ≤ n− 1,

β
(
ei, e1

)
∈ lin

{
ei+2, ei+3, . . . , en−1

}
for 2 ≤ i ≤ n− 1,

β
(
ei, ej

)
∈ lin

{
ei+j+1, ei+j+2, . . . , en−1

}
for 2 ≤ i, j ≤ n− 1.

Similarly to the proof of Theorem 3.3, it is not difficult to establish that the multiplications

ei ◦ e1, ei ◦ ej , 1 ≤ i, j ≤ n− 1

can be obtained from e1 ◦ ei = ei+1, 1 ≤ i ≤ n− 2, and identity (2.1).
By the similar process, we obtain

β
(
ei, e1

)
= 0 for 1 ≤ i ≤ n− 1, β

(
ei, ej

)
= 0 for 2 ≤ i, j ≤ n− 1.

So, we have the products

ei ◦ ej = Cji+j−1ei+j , 2 ≤ i+ j ≤ n− 1.

Now define the products ei ◦ en and en ◦ ei for 1 ≤ i ≤ n and put

e1 ◦ en = α3e3 + α4e4 + · · ·+ αn−1en−1, en ◦ e1 = β3e3 + β4e4 + · · ·+ βn−1en−1.

Taking the change

e′n = en − α3e2 − α4e3 − · · · − αn−1en−2,

we can suppose α3 = α4 = · · · = αn−1 = 0, i.e., e1 ◦ en = 0.
Identity (2.1) implies(

e1 ◦ en
)
◦ e1 =e1 ◦

(
en ◦ e1

)
+e1 ◦

(
e1 ◦ en

)
=⇒e1 ◦

(
β3e3+β4e4+· · ·+βn−1en−1

)
=0.

Therefore, β3e4 + β4e5 + · · ·+ βn−2en−1 = 0 and en ◦ e1 = βn−1en−1.
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Consider the product(
en ◦ en

)
◦ e1 = en ◦

(
en ◦ e1

)
+ en ◦

(
e1 ◦ en

)
= 0

from which we obtain en ◦ en = γen−1 for some γ.
Similar to the proof of Theorem 3.3, we can obtain that en ◦ ei = 0 and ei ◦ en = 0 for

2 ≤ i ≤ n− 1, which complete the proof of the proposition.

The classification of complex filiform Zinbiel algebras is given in the following theorem.

Theorem 3.5. An arbitrary n-dimensional (n ≥ 5) complex filiform Zinbiel algebra is iso-
morphic to one of the following pairwise nonisomorphic algebras:

F 1
n : ei ◦ ej = Cji+j−1ei+j , 2 ≤ i+ j ≤ n− 1;

F 2
n : ei ◦ ej = Cji+j−1ei+j , 2 ≤ i+ j ≤ n− 1, en ◦ e1 = en−1;

F 3
n : ei ◦ ej = Cji+j−1ei+j , 2 ≤ i+ j ≤ n− 1, en ◦ en = en−1.

Proof. From Proposition 3.4, we have the multiplication (multiplication (3.2)) of n-
dimensional complex filiform Zinbiel algebra, namely,

ei ◦ ej = Cji+j−1ei+j , 2 ≤ i+ j ≤ n− 1,

en ◦ e1 = αen−1, en ◦ en = βen−1.

Let us check the isomorphism inside this family of algebras. Consider the general change of
the generators of the basic elements in the form

e′1 = a1e1 + a2e2 + · · ·+ anen, e′n = b1e1 + b2e2 + · · ·+ bnen,

where a1 6= 0 and a1bn − anb1 6= 0. Then for the remainder elements of the new basis we
have

e′2 = a2
1e2 + h3, e′3 = a3

1e3 + h4, . . . , e′n−1 = an−1
1 en−1,

where hi ∈ Ai. The relations

e′i ◦ e′j = Cji+j−1e
′
i+j , 2 ≤ i+ j ≤ n− 1,

imply the following restrictions:

a1b1 = 0,

a1b2 + 2a2b1 = 0,

a1b3 + C2
3a2b2 + 3a3b1 = 0,

...

a1bn−3 + Cn−4
n−3a2bn−4 + Cn−5

n−3a3bn−5 + · · ·+ (n− 3)an−3b1 = 0,

a1bn−2 + Cn−3
n−2a2bn−3 + Cn−4

n−2a3bn−4 + · · ·+ (n− 2)an−2b1 + αanb1 + βanbn = 0.

From these restrictions, we get

b1 = b2 = · · · = bn−3 = 0, bn−2 = −anbn
a1

β.
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Consider the product

e′n ◦ e′1 =
(
− anbn

a1
βen−2 + bn−1en−1 + bnen

)
◦
(
a1e1 + a2e2 + · · ·+ anen

)
= −(n− 2)βanbnen−1 + αa1bnen−1 + βanbnen−1 =

(
αa1bn − (n− 3)anbn

)
en−1.

On the other hand,

e′n ◦ e′1 = α′e′n−1 = α′an−1
1 en−1.

Comparing the coefficients at the basic element en−1, we obtain

αa1bn − (n− 3)βanbn = α′an−1
1 .

Consider the product

e′n ◦ e′n =
(
− anbn

a1
βen−2 + bn−1en−1 + bnen

)
◦
(
− anbn

a1
βen−2 + bn−1en−1 + bnen

)
= b2nβen−1.

On the other hand,

e′n ◦ e′n = β′e′n−1 = β′an−1
1 en−1.

Comparing the coefficients, we have

b2nβ = β′an−1
1 .

Now consider the following cases.
Case 1. Let β = 0. Then β′ = 0 and αbn = α′an−2

1 . If α = 0, then α′ = 0 and we have

algebra F 1
n . If α 6= 0, then taking bn = an−2

1
α we get α′ = 1, i.e., the algebra F 2

n is obtained.

Case 2. Let β 6= 0. Then putting bn =

√
an−1
1
β , an = αa1

(n−3)β we get β′ = 1, α′ = 0 and algebra

F 3
n is obtained.

Note that the obtained algebras are not pairwise isomorphic.

Comparing the description of complex filiform Leibniz algebras [2] and the result of The-
orem 3.5, we can note how the class of complex filiform Zinbiel algebras is “thinner”. So, al-
though Zinbiel algebras and Leibniz algebras are Koszul dual, they are quantitatively strongly
distinguished even in the class of filiform algebras.

It is known that for any variety of algebras Z2-graded algebras of that variety can be
defined, which is called superalgebras. In the same way, we define a notion of Zinbiel super-
algebra A = A0 ⊕A1 by the following identity:

(x ◦ y) ◦ z = x ◦ (y ◦ z) + (−1)αβx ◦ (z ◦ y),

where y ∈ Aα, z ∈ Aβ and α, β ∈ Z2.
It should be noted that the proof on the nilpotency of finite-dimensional complex Zinbiel

algebras can be extended to the proof of solvability of the finite-dimensional complex Zinbiel
superalgebras.

Moreover, from the obtained classification of complex filiform Zinbiel algebras, we give
the following conjecture.

Conjecture 3.6. Finite-dimensional complex Z2-graded Zinbiel algebra (Zinbiel superalge-
bra) is nilpotent.



8 J. Q. Adashev, A. Kh. Khudoyberdiyev, and B. A. Omirov

4 Classification of four-dimensional complex Zinbiel algebras

Since an arbitrary finite-dimensional complex Zinbiel algebra is nilpotent, then for an arbi-
trary four-dimensional Zinbiel algebra A the condition A5 = 0 holds.

Take into account that the direct sum of nilpotent Zinbiel algebras is nilpotent; further
we will not consider split algebras case.

Theorem 4.1. An arbitrary four-dimensional complex nonsplit Zinbiel algebra is isomorphic
to the one of the following pairwise nonisomorphic algebras:

A1 : e1 ◦ e1 = e2, e1 ◦ e2 = e3, e2 ◦ e1 = 2e3, e1 ◦ e3 = e4, e2 ◦ e2 = 3e4, e3 ◦ e1 =3e4;

A2 : e1 ◦ e1 = e3, e1 ◦ e2 = e4, e1 ◦ e3 = e4, e3 ◦ e1 = 2e4;

A3 : e1 ◦ e1 = e3, e1 ◦ e3 = e4, e2 ◦ e2 = e4, e3 ◦ e1 = 2e4;

A4 : e1 ◦ e2 = e3, e1 ◦ e3 = e4, e2 ◦ e1 = −e3;

A5 : e1 ◦ e2 = e3, e1 ◦ e3 = e4, e2 ◦ e1 = −e3, e2 ◦ e2 = e4;

A6 : e1 ◦ e1 = e4, e1 ◦ e2 = e3, e2 ◦ e1 = −e3, e2 ◦ e2 = −2e3 + e4;

A7 : e1 ◦ e2 = e3, e2 ◦ e1 = e4, e2 ◦ e2 = −e3;

A8(α) : e1 ◦ e1 = e3, e1 ◦ e2 = e4, e2 ◦ e1 = −αe3, e2 ◦ e2 = −e4, α ∈ C;

A9(α) : e1 ◦ e1 = e4, e1 ◦ e2 = αe4, e2 ◦ e1 = −αe4, e2 ◦ e2 = e4, e3 ◦ e3 = e4, α ∈ C;

A10 : e1 ◦ e2 = e4, e1 ◦ e3 = e4, e2 ◦ e1 = −e4, e2 ◦ e2 = e4, e3 ◦ e1 = e4;

A11 : e1 ◦ e1 = e4, e1 ◦ e2 = e4, e2 ◦ e1 = −e4, e3 ◦ e3 = e4;

A12 : e1 ◦ e2 = e3, e2 ◦ e1 = e4;

A13 : e1 ◦ e2 = e3, e2 ◦ e1 = −e3, e2 ◦ e2 = e4;

A14 : e2 ◦ e1 = e4, e2 ◦ e2 = e3;

A15(α) : e1 ◦ e2 = e4, e2 ◦ e2 = e3, e2 ◦ e1 =
1 + α

1− α
e4, α ∈ C \ {1};

A16 : e1 ◦ e2 = e4, e2 ◦ e1 = −e4, e3 ◦ e3 = e4.

Proof. Note that the result of [1, Proposition 3.1] also holds for Zinbiel algebras. Therefore,
we have the following possible cases for invariant sequence (dimA2, dimA3,dimA4):

(3, 2, 1), (2, 1, 0), (2, 0, 0), (1, 0, 0), (0, 0, 0).

Obviously, a Zinbiel algebra with the condition (3, 2, 1) is nul-filiform. Using Theorem 2.4,
we obtain the algebra A1.

Consider an algebra with the invariant sequence (2, 1, 0) (this algebra is filiform).
Let {e1, e2, e3, e4} be a basis of algebra A satisfying the conditions A2 = {e3, e4}, A3 =

{e4}. Then we can suppose that

e1 ◦ e1 = α1e3 + α2e4, e1 ◦ e2 = α3e3 + α4e4, e2 ◦ e1 = α5e3 + α6e4,

e2 ◦ e2 = α7e3 + α8e4, e1 ◦ e3 = e4, e2 ◦ e3 = α9e4,

where (α1, α3, α5, α7) 6= (0, 0, 0, 0).
Case 1. Let (α1, α7) 6= (0, 0). Then by arguments analogous to the arguments in the proofs
of Theorems 3.3 and 3.5 we obtain the following algebras:

e1 ◦ e1 = e3, e1 ◦ e3 = e4, e3 ◦ e1 = 2e4;



Classifications of some classes of Zinbiel algebras 9

e1 ◦ e1 = e3, e1 ◦ e2 = e4, e1 ◦ e3 = e4, e3 ◦ e1 = 2e4;
e1 ◦ e1 = e3, e1 ◦ e3 = e4, e2 ◦ e2 = e4, e3 ◦ e1 = 2e4.

Note that the algebra defined by multiplication

e1 ◦ e1 = e3, e1 ◦ e3 = e4, e3 ◦ e1 = 2e4

is split. So, in this case, we have the algebras A2, A3.
Case 2. Let (α1, α7) = (0, 0). Then (α3, α5) 6= (0, 0). If α3 6= −α5, then taking e′1 = Ae1 +e2,
where A 6= −α9, we have Case 1. It remains to consider the case α3 = −α5. Denote e′3 =
α3e3 + α4e4. Then we can write

e1 ◦ e1 = α2e4, e1 ◦ e2 = e3, e2 ◦ e1 = −e3 + α6e4,

e2 ◦ e2 = α8e4, e1 ◦ e3 = e4, e2 ◦ e3 = α9e4.

Consider the products

(e1 ◦ e2) ◦ e1 = e1 ◦ (e2 ◦ e1) + e1 ◦ (e1 ◦ e2) = e1 ◦ (−e3 + α6e4) + e1 ◦ e3
= 0 =⇒ e3 ◦ e1 = 0,

(e1 ◦ e2) ◦ e2 = 2e1 ◦ (e2 ◦ e2) = 0 =⇒ e3 ◦ e2 = 0.

If we replace basic elements as follows:

e′1 = e1, e′2 = e2 − α9e1, e′3 = e3 − α2α9e4, e′4 = e4,

we obtain α9 = 0, i.e., the multiplication in the algebra has the following form:

e1 ◦ e1 = αe4, e1 ◦ e2 = e3, e2 ◦ e1 = −e3 + βe4, e2 ◦ e2 = γe4, e1 ◦ e3 = e4

(omitted products are equal to zero).
Let us check the isomorphism inside this family.
Consider the general change of generators of the basic elements:

e′1 = a1e1 + a2e2 + a3e3, e′2 = b1e1 + b2e2 + b3e3

where a1b2 − a2b1 6= 0. Expressing basic elements {e′3, e′4} via basic elements {e1, e2, e3, e4}
and analyzing the relations of the family in new basis, we obtain the following restrictions:

a2
1α+ a1a2β + a2

2γ + a1a3 = α′a2
1b2, a1b2β + 2a2b2γ + a1b3 = β′a2

1b2,

b2γ = γ′a2
1, b1 = 0.

Consider the following cases.

Case 2.1. Let γ = 0. Then γ′ = 0 and

a1α+ a2β + a3 = α′a1b2, b2 + b3 = β′a1b2.

Taking a3 =−a1α−a2β and b3 =−b2, we obtain α′=β′=0, i.e., we have the algebra A4.

Case 2.2. Let γ 6= 0. Then putting

b2 =
a2

1

γ
, a3 = −a

2
1α+ a1a2β + a2

2γ

a1
, b3 =

a1b2β + 2a2b2γ

a1
,

we get γ′ = 1, α′ = β′ = 0, i.e., the algebra A5 is obtained.
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Note that algebras with the conditions (2, 0, 0), (1, 0, 0), (0, 0, 0) are associative algebras.
Therefore, we can use the classification of four-dimensional algebras of Leibniz [1], i.e., choose
algebras with the condition A3 = 0.

Note that the problem of classification of complex five-dimensional Zinbiel algebras is
open and the solution of this problem is equivalent to the classification of such associative
algebras, which is still not obtained.
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