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Abstract

In this paper, we introduce a common generalizing framework for alternative types
of Hom-associative algebras. We show that the observation that unital Hom-associative
algebras with surjective or injective twisting map are already associative has a general-
ization in this new framework. We also show by construction of a counterexample that
another such generalization fails even in a very restricted particular case. Finally, we
discuss an application of these observations by answering in the negative the question
whether nonassociative algebras with unit such as the octonions may be twisted by the
composition trick into Hom-associative algebras.
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1 Introduction

Hom-Lie-algebras were first studied in the context of deformation of Witt and Virasoro
algebras by Hartwig, Larsson, and Silvestrov in [7]. The basic idea underlying Hom-algebras,
which amounts to generalization of a given type of algebraic structure by adjoining as an
additional piece of data linear maps twisting the defining identities, has since been applied
in many categories of algebraic objects. In [7, 8, 12], quasi-Hom-Lie algebras, the general
quasi-Lie algebras, and the corresponding generalization of Leibniz algebras quasi-Leibniz
algebras [9] have been introduced. The graded versions, Γ-graded quasi-Lie algebras, were
introduced in [10]. They contain Γ-graded quasi-Hom-Lie, Γ-graded Hom-Lie algebras, and
graded quasi-Lie algebras of Witt type considered by Sigurdsson and Silvestrov in [11].
Recently, Ammar and Makhlouf [1] furthered this line of investigation by extending the
main theorem from original paper by Hartwig, Larsson, and Silvestrov [7] to the Z2-graded
case of Hom-Lie superalgebras. Also, Daniel Larsson has considered in [13] a modification of
Hom-Lie algebras in connection to number theory and arithmetic geometry.

In the search of a counterpart of the associative algebras in the context of Hom-Lie alge-
bras, Hom-associative algebras have been introduced by Makhlouf and Silvestrov in 2006 in
[15], where it was shown that the commutator bracket of a Hom-associative algebra gives rise
to a Hom-Lie algebra. Furthermore, in [15], a classification of Hom-Lie admissible algebras
was established, Hom-Leibniz algebras, the subclass of quasi-Leibniz algebras, have been con-
sidered, notion of flexibility was extended to Hom-algebras, and flexible Hom-algebras have
been characterized using Jordan and Lie parts of the multiplication. Also, in [15], a gener-
alization of Hom-associative algebras, G-Hom-associative algebras, and their subclasses left
symmetric Hom-algebras, Hom-pre-Lie algebras, or right symmetric Hom-algebras, and two
other new classes of Hom-algebras have been introduced and G-Hom-associative algebras
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have been shown to be Hom-Lie admissible. The issue of constructing enveloping Hom-
algebra structures for Hom-Lie algebras has been considered by Yau in [19].

On the dual side, Hom-coalgebras, Hom-bialgabras, and Hom-Hopf algebras have been
considered for the first time by Makhlouf and Silvestrov in [16] in 2007 and further studied
by the same authors in [17] and also by Yau in [21]. Recently, Yau has continued this
investigation in the direction of Hom-quantum groups in [22, 23]. Also, in 2009, following the
works of Makhlouf, Silvestrov, and Yau, Hom-Hopf algebras were put in a general framework
of monoidal categories by Caenepeel and Goyvaerts [3]. At the same time, on the side of
algebra structures, formal deformations and elements of co-homology for Hom-associative
and Hom-Lie algebras have been considered by Makhlouf and Silvestrov in [18], and elements
of homology for Hom-algebras have been considered by Yau in [20]. Also, recently, Ataguema,
Makhlouf, and Silvestrov introduced Hom-Nambu and Hom-Nambu-Lie algebras and n-ary
versions of Hom-associative algebras in [2], and Makhlouf introduced Hom-Jordan algebras
in [14].

Hom-associative algebras have been a subject of recent intensive study due to their rich
structure theory and the fact that constructions coming from their classical counterparts have
been found to transfer to a meaningful extent. Also helpful in this context is the availability
of computational tools which greatly facilitate the search for examples and the proof of
equational theorems about Hom-associative structures. Finally, inspiration has come from
other types of Hom-algebras such as Hom-Lie algebras.

It was first pointed out by Fregier and Gohr in [4] that in the process of defining a twisted
notion of, for instance, associativity or the Jacobi identity, there are some choices left on
where to apply the twisting. At least in the Hom-associative category it does not seem to
be the case that only one of the choices leads to an interesting theory. In [4], this leads to a
systematic study of alternative types of Hom-associative algebras. In [3], an attempt is made
to identify a single “correct” set of definitions for the Hom-associative and eventually the
Hom-Hopf settings by approaching the problem of defining these notions from a category-
theoretical point of view.

In this article, we provide a common framework unifying all the types of Hom-associative
algebras previously considered and many more exotic ones. We show that there is significant
structure theory even in the context of such a strongly generalized notion of associativ-
ity. Finally, we discuss how conversely a related natural conjecture fails even under a mild
generalization of the ordinary notion of Hom-associativity.

2 Hom-associative algebras.

Hom-associative algebras were introduced in [15], motivated by the need to obtain replace-
ment of associative algebras in the context of Hom-Lie algebras providing also further ways of
construction of Hom-Lie algebras. In [4], a study of alternative notions of Hom-associativity
was started, essentially focusing on ways to use a single twisting map several times on both
sides of the defining identity, while trying to preserve its symmetry and without considering
cases where high powers of the twisting map appear. As a background, we quote the following
table from [4] which summarizes the types considered there:

I1 α(x) ? (y ? z) = (x ? y) ? α(z)

I2 x ? (α(y) ? z) = (x ? α(y)) ? z

I3 x ? (y ? α(z)) = (α(x) ? y) ? z
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II x ? α(y ? z) = α(x ? y) ? z

II1 x ? (α(y) ? α(z)) = (α(x) ? α(y)) ? z

II2 α(x) ? (y ? α(z)) = (α(x) ? y) ? α(z)

II3 α(x) ? (α(y) ? z) = (x ? α(y)) ? α(z)

III α(x ? (y ? z)) = α((x ? y) ? z)

III ′ α(x) ? α(y ? z) = α(x ? y) ? α(z)

III ′′ α(x) ? (α(y) ? α(z)) = (α(x) ? α(y)) ? α(z)

In this paper, when we talk about a Hom-associative structure (V, ?, α) without specifying
anything else, we mean that (V, ?, α) is Hom-associative in the usual sense, i.e., the binary
operation satisfies the ordinary α-twisted associativity relation α(x) ? (y ? z) = (x? y) ?α(z).
Linearity of any of the maps is regularly implied only when a module structure is given on V .

For precision of terminology, we repeat from [4] the following general definition associated
with the Hom-associativity types. Here T denotes any of the types in the table quoted above.

Definition 2.1. A Hom-associative structure of type T is a triple (V, ?, α) consisting of a
set V equipped with a binary operation ? : V × V → V and a map α : V → V satisfying
the Hom-associativity condition corresponding to type T . Here, T is understood to be one
of the types in the table reproduced above.

Hom-rings and Hom-algebras are defined similarly, by imposing on α natural compatibility
conditions, more specifically compatibility with the abelian group structure (A,+) in the case
of Hom-rings and linearity in the case of Hom-algebras.

As observed in [4], without additional constraints these types of Hom-associative struc-
tures seem to not be closely linked to each other, i.e., as far as we know a structure may be
of any type without being of any other. But with additional constraints one gets a nontrivial
theory. In particular, as a possible constraint the property of having a unit element was
considered in [4]. Under this condition, a partial ordering of types was obtained with the
traditional type I1 ending up on top.

It should be noted however that in Hom-associative structures, several types of unitality
make sense as was observed in [3, 4, 5, 6]. Simultaneous investigation of the Hom-structures
with various types of unitality is important and relations between the types in [4] are far less
clear, e.g., in the case of weakly unital algebras.

In this paper we focus on the Hom-structures with the usual unitality condition, i.e., the
existence of an element 1 in V such that 1 ? x = x ? 1 = x for all x in V . In the rest of the
paper unless stated otherwise, we assume all Hom-structures to be unital in this usual sense.

We will now recall the definition of Hom-monoids and the short discussion of their relation
to Hom-algebras as they were given in [4]. Our main motivation is the use of Hom-monoids
in the construction of the counterexample of Section 5.

Definition 2.2. A Hom-monoid of type T is a Hom-associative structure of type T with
unit.

There is a canonical way to associate to a Hom-associative algebra a Hom-monoid and to
a Hom-monoid a Hom-associative algebra. We quote in this context the following example
and remark from [4].
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Example 2.3. Let (V, ?,+, α, 1) be a Hom-algebra of type T . Then the multiplicative struc-
ture (V, ?, α, 1) is a Hom-monoid also of type T .

Remark 2.4. Let k be a commutative ring and let (S, ?̃, α̃, 1) be a Hom-monoid of type
T . Let then V be the free k-module over S and define α : V → V and ? : V × V → V
by linear extension of α̃ : S → S, respectively, ?̃ : S × S → S to V . Then (V, ?, α, 1) is a
unital Hom-associative algebra of type T . We denote the Hom-algebra so constructed from
a Hom-monoid S by k[S].

3 Sufficient conditions for associativity and hierarchy on
types of unital Hom associative algebras

One of the first natural problems about Hom-associative algebras is to determine how close
they are to being associative. The simplest form of this problem is to determine conditions
under which a Hom-associative algebra is itself associative. This problem has been considered
in [5] for unital Hom-associative algebras in the usual sense. For some of the types considered
in [4], there exist obvious associativity criteria, sometimes even in the absence of unitality
constraints. But for many of the nonstandard types it is not obvious whether the known
answers for the ordinary type generalize.

The aim of this section is to give an overview of the answers known to this question in
the case of a Hom-associative algebra of type I1 and recall the hierarchy among the different
types, in order to motivate our subsequent investigations.

We recall first the following proposition providing sufficient conditions on the twisting
map for a Hom-associative algebra to be associative [5].

Proposition 3.1. Let (V, ?, α, 1) be a unital Hom-associative structure of type I1. Then the
following hold.

(i) (V, ?) is associative if α is surjective.
(ii) (V, ?) is associative if α is injective.

(iii) If α is surjective, then α is also injective.

To finish our survey of results in this direction of associativity conditions for unital Hom-
associative structures, we remark that the condition of surjectivity can be relaxed for V
a Hom-algebra over a field by introducing conditions on the codimension of Im(α) in V . For
instance, dim(V/ Im(α)) = 1 is already sufficient to force associativity. For details, we refer
the reader to [5].

The hierarchy for the relations among Hom-associative types I and II can be summarized
in the following proposition taken verbatim from [4].

Proposition 3.2. Let (V, ?, 1, α) be unital structure, then one has the following relations
between the Hom-associativity types satisfied by (V, ?, 1, α):

(a) II1 ⇐ II ⇔ I1 ⇒ I3 ⇒ {I2, II2, II3 and II1},
(b) I2 ⇒ {II1 ⇔ II3}.

The point of recalling this hierarchy is that in a general theory for associativity conditions
similar to the ones surveyed in the original type we will expect counterexamples to appear
with greater likelihood in the lower levels of the hierarchy, since these are the least restricted.
On the other hand, if we can find counterexamples to certain conjectures in the higher levels
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of the hierarchy, we know immediately that the conjecture in question is wrong for all types
below. For instance, we will show in Section 5 that unital Hom-associative algebras of type
I3 are not necessarily associative if they have an injective twisting map. By this we will
immediately know that the same counterexample works for any types which in terms of the
hierarchy are more general.

The next section is devoted to the extension of Proposition 3.1 in a generalized framework
which encompasses all of these types. But one has to be very careful in which sense this
proposition is extended. For example, Proposition 3.1(ii) is false in the case of type I3 as is
shown by the counterexample given in the last section of this article.

4 Generalized Hom-associative structures and automatic
associativity conditions

In this section, we introduce generalized Hom-associative structures that are built using sev-
eral twisting maps and in particular include all types of Hom-associative structures discussed
so far. For unital generalized Hom-structures we obtain in Theorem 4.2 sufficient conditions
for associativity, generalizing Proposition 3.1.

Definition 4.1. A generalized Hom-associative structure is a tuple (V, ?, α1, α2, α3, α4, α5)
consisting of a set V , a binary operation ? : V × V → V and five maps αj : V → V ,
j = 1, . . . , 5, such that

α5

(
α1(x) ? α2

(
α3(y) ? α4(z)

))
= α5

(
α2

(
α4(x) ? α3(y)

)
? α1(z)

)
(4.1)

Theorem 4.2. If a generalized Hom-structure (V, ?, α1, α2, α3, α4, α5) has a unit element
and if α1, α3, α4 are surjective and α2, α5 are injective, then (V, ?) is associative.

The following corollary is one of the motivating applications of Theorem 4.2.

Corollary 4.3. If (V, ?) is a nonassociative unital algebra, then the α-twisted product

x ◦ y := α(x ? y)

cannot be Hom-associative if the twisting map α is bijective.

Proof of Corollary 4.3. Hom-associativity for ◦ rewritten in terms of ? is

α
(
α(x) ? α(y ? z)

)
= α

(
α(x ? y) ? α(z)

)
which coincides with (4.1) when α3 = α4 = idV and α1 = α2 = α5 = α. If α is bijective,
then equivalently it is both surjective and injective, and hence (V, ?) must be associative by
Theorem 4.2 in contradiction with the assumption of nonassociativity.

In particular, this shows that the octonions do not admit a bijective twisting into a Hom-
associative algebra since they are unital and nonassociative.

The proof of Theorem 4.2 is more complicated and is based on several lemmas. First of
all note that under the condition of injectivity of α5 in Theorem 4.2 the identity (4.1) can
be rewritten equivalently without α5 as

α1(x) ? α2

(
α3(y) ? α4(z)

)
= α2

(
α4(x) ? α3(y)

)
? α1(z) (4.2)
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In Theorem 4.2, the maps α1, α3, α4 are assumed to be surjective. In the sequel we choose
some right-inverses β1, β3, β4 of α1, α3, α4, respectively, (αj ◦ βj = idV ). Also, since α2 is
assumed to be injective, we can choose some left-inverse β2 of α2, that is, β2 ◦ α2 = idV .

Using α3 ◦ β3 = idV , the map α3 can be removed from the generalized Hom-associativity
axiom, which is thus equivalent to

α1(x) ? α2

(
y ? α4(z)

)
= α2

(
α4(x) ? y

)
? α1(z) (4.3)

The following direct consequence of generalized Hom-associativity (4.3) can be easily
proved using α1 ◦ β1 = idV .

Lemma 4.4. Under conditions of Theorem 4.2, the following identity holds:

α1(x) ? α2

(
y ? α4

(
β1(z)

))
= α2

(
α4(x) ? y

)
? z (4.4)

By substitution of β1(x) in place of x, then using α1 ◦ β1 = idV and finally setting y = 1
and z = 1 in (4.4), we get the following corollary.

Corollary 4.5.

x ? α2

(
α4

(
β1(1)

))
= α2

(
α4

(
β1(x)

))
(4.5)

Lemma 4.6. Under conditions of Theorem 4.2, the following identity holds:

α4

(
β1

(
α1(x)

))
= α4(x) (4.6)

Proof. By Corollary 4.5 and Lemma 4.4 with y = z = 1, we have

α2

(
α4

(
β1

(
α1(x)

))) Corollary 4.5
= α1(x) ? α2

(
α4

(
β1(1)

))
Lemma 4.4= α2

(
α4(x)

)
which is equivalent to (4.6) by the assumption of injectivity of α2.

Lemma 4.7. Under conditions of Theorem 4.2, the following identity holds:

α2

(
α4

(
β1(x)

)
? y

)
? z = x ? α2

(
y ? α4

(
β1(z)

))
(4.7)

Proof. The proof is obtained using (r.inv) the existence of a right inverse α1 ◦β1 = idV and
generalized Hom-associativity as follows:

x ? α2

(
y ? α4

(
β1(z)

)) r.inv= α1

(
β1(x)

)
? α2

(
y ? α4

(
β1(z)

))
(4.3)
= α2

(
α4

(
β1(x)

)
? y

)
? α1

(
β1(z)

)
r.inv= α2

(
α4

(
β1(x)

)
? y

)
? z

Substitution of z = 1 into (4.7) leads to the following corollary.

Corollary 4.8. Under conditions of Theorem 4.2, the following identity holds:

x ? α2

(
y ? α4

(
β1(1)

))
= α2

(
α4

(
β1(x)

)
? y

)
(4.8)
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Putting x = 1 in (4.8) and then changing in the obtained identity letter y to letter x leads
to the following corollary.

Corollary 4.9. Under conditions of Theorem 4.2, the following identity holds:

α2

(
α4

(
β1(1)

)
? x

)
= α2

(
x ? α4

(
β1(1)

))
(4.9)

The assumption that α2 is injective can be now applied to (4.9) to show that α4(β1(1))
is in the center of (V, ?), that is, commutes with any other element in V .

Corollary 4.10. Under conditions of Theorem 4.2, the following identity holds:

x ? α4

(
β1(1)

)
= α4

(
β1(1)

)
? x (4.10)

Using (4.3) and α4 ◦ β4 = idV we get also the following lemma.

Lemma 4.11. Under conditions of Theorem 4.2, the following identity holds:

α1

(
β4(x)

)
? α2(y) = α2(x) ? α1

(
β4(y)

)
(4.11)

Proof. The proof is obtained using (4.3) and α4 ◦ β4 = idV :

α1

(
β4(x)

)
? α2(y) r.inv= α1

(
β4(x)

)
? α2

(
1 ? α4

(
β4(y)

))
(4.3)
= α2

(
α4

(
β4(x)

)
? 1

)
? α1

(
β4(y)

)
r.inv= α2(x) ? α1

(
β4(y)

)
Next lemma is obtained by combining (4.11), (4.9), (4.8), (4.6), and α4 ◦ β4 = idV .

Lemma 4.12. Under conditions of Theorem 4.2, the following identity holds:

α2(x) ? α1

(
β4

(
α4

(
β1(1)

)
? y

))
= α2(x ? y) (4.12)

Proof. The proof is as follows:

α2(x) ? α1

(
β4

(
α4

(
β1(1)

)
? y

)) (4.11)
= α1

(
β4(x)

)
? α2

(
α4

(
β1(1)

)
? y

)
(4.9)
= α1

(
β4(x)

)
? α2

(
y ? α4

(
β1(1)

))
(4.8)
= α2

(
α4

(
β1

(
α1

(
β4(x)

)))
? y

)
(4.6)
= α2

(
α4

(
β4(x)

)
? y

)
r.inv= α2(x ? y)

The next lemma follows using (4.11), the generalized Hom-associativity (4.3), and
α4 ◦ β4 = idV .

Lemma 4.13. Under conditions of Theorem 4.2, the following identity holds:

α2(x ? y) ? α1

(
β4(z)

)
= α2(x) ? α1

(
β4(y ? z)

)
(4.13)
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Proof. First of all,

α2(x) ? α1

(
β4

(
y ? α4(z)

))
= α2(x ? y) ? α1(z) (4.14)

which is proved as follows:

α2(x ? y)α1(z) r.inv= α2

(
α4

(
β4(x)

)
? y

)
? α1(z)

(4.3)
= α1

(
β4(x)

)
? α2

(
y ? α4(z)

)
(4.11)

= α2(x) ? α1

(
β4

(
y ? α4(z)

))
Substituting β4(z) in place of z in (4.14) we get

α2(x ? y) ? α1

(
β4(z)

) (4.14)
= α2(x) ? α1

(
β4

(
y ? α4

(
β4(z)

)))
r.inv= α2(x) ? α1

(
β4(y ? z)

)
Lemma 4.14. Under conditions of Theorem 4.2, the following identity holds:(

x ? α4

(
β1(1)

))
? y = x ?

(
α4

(
β1(1)

)
? y

)
(4.15)

Proof. The identity

α2

(
x ? α4

(
β1(1)

))
? y = α2

(
x ? α4

(
β1(y)

))
(4.16)

can be proved as follows. Multiplying (4.9) on the right by y and then using the identity
obtained by substituting (x, y, z) by (β1(1), x, y) in (4.4), one gets

α2

(
x ? α4

(
β1(1)

))
? y = α2

(
α4

(
β1(1)

)
? x

)
? y

(4.4)
= α1

(
β1(1)

)
? α2

(
x ? α4

(
β1(y)

))
r.inv= α2

(
x ? α4

(
β1(y)

))
The proof can now be completed along the following lines:

α2

((
x ? α4

(
β1(1)

))
? y

) (4.12)
= α2

(
x ? α4

(
β1(1)

))
? α1

(
β4

(
α4

(
β1(1)

)
? y

))
(4.16)

= α2

(
x ? α4

(
β1

(
α1

(
β4

(
α4

(
β1(1)

)
? y

)))))
(4.6)
= α2

(
x ? α4

(
β4

(
α4

(
β1(1)

)
? y

)))
r.inv= α2

(
x ?

(
α4

(
β1(1)

)
? y

))
Finally, we are ready to proceed with the proof of the main Theorem 4.2.

Proof of Theorem 4.2. It suffices, by injectivity of α2, to prove that

α2

(
(x ? y) ? z

)
= α2

(
x ? (y ? z)

)
Let us start by replacing x by x ? y in (4.12):

α2

(
(x ? y) ? z

)
= α2(x ? y) ? α1

(
β4

(
α4

(
β1(1)

)
? z

))
(4.17)
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Thus, we get

α2

(
(x ? y) ? z

) (4.14)and(4.17)
= α2(x) ? α1

(
β4

(
y ? α4

(
β4

(
α4

(
β1(1)

)
? z

))))
(4.15)and(4.10)

= α2(x) ? α1

(
β4

(
α4

(
β1(1)

))
? (y ? z)

)
(4.12)

= α2

(
x ? (y ? z)

)
for the last equality we replaced y by y?z in (4.12). By injectivity of α2 our result is equivalent
to associativity.

5 Counterexample

We have seen that the observation that unital Hom-associative structures with surjective
twisting map are associative has with Theorem 4.2 a counterpart in the generalized Hom-
associative setting. Looking at Theorem 4.2, it is natural to ask whether the surjectivity or
injectivity assumptions on the αi may be varied. Can we possibly reach the same conclusions,
for example, by assuming that α4 is injective and the other twisting maps are as in the
theorem?

In this section, we will answer this question in the negative. To understand why we
take α4 instead of α1 for our first study of this kind of question, one should go back to
the hierarchy of Hom-associative algebra types discussed in [4] and repeated in Section 2.
Under the partial ordering of Hom-associativity conditions discussed there, in some sense the
strongest condition apart from the original one was the type I3 condition. By Theorem 4.2,
we know immediately that a unital type I3 Hom-associative structure is associative if the
twisting map is surjective. We also know that in type I1 the condition of surjectivity of α can
be replaced by injectivity. This makes it natural to ask if some similar replacement is possible
in type I3. The rest of the section is devoted to the construction of a type I3 Hom-monoid
which serves as a counterexample.

Let S be a set and let M̃ be the free magma with unit over S. Recall that M̃ can be realized
by inductively defining in a first step a set S̃ consisting of the empty pair e, of pairs of elements
in S, and finally of arbitrary pairs of elements of S̃ itself. In a second step, one introduces
on this set an equivalence relationship generated by the relations (x, e) ∼ (e, x) ∼ x for
all x ∈ S̃. The set so obtained we call M̃ . Taking as magma multiplication then the pair-
forming operation, or more precisely to the operation induced by pair-forming on the level of
equivalence classes of elements of S̃, M̃ becomes the free magma with unit over S. Choosing
then some c ∈ S, we can define a type I3 Hom-monoid by identifying also pairs in M̃ which
can be transformed into each other by a chain of relations of the form (x, c) ∼ (c, x) for any
x ∈ M̃ and (x, (y, z)) ∼ ((x, y), z) for x, y, z ∈ M̃ and y a term containing c in at least one
place. It is clear that the partition into equivalence classes induced by these relations on M̃
is compatible with pairing as product. We will denote by M the magma given by the set of
equivalence classes on M̃ with the multiplication induced by pairing, i.e., x · y := (x, y) for
all x, y ∈M . Define α : M →M by α(x) := (c, x). Then (M, ·, α) is a Hom-I3-monoid1.

Suppose now that S is a set with at least two elements. Then we can choose an s ∈ S
such that s 6= c. None of the elementary transformations that we defined on M̃ to obtain M

1Note however that M as defined is not the free I3-associative monoid over S. For instance, the relation
x(((cx)x)x) = (x((cx)x))x, by definition valid in M for all x ∈ M , is not generally valid in I3-monoids and
therefore not in general in the free I3-monoid. Why we do not use the free I3-monoid over S should become
apparent when we prove that α as defined is injective.
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can be applied to (s, (s, s)) and ((s, s), s), respectively, showing that these two elements are
different in M and that therefore M is not associative.

If M is to supply a counterexample to the conjecture that for a Hom-monoid of type I3
injectivity of α implies associativity, we still need to prove that α, i.e., multiplication by c,
is indeed injective on M .

To do this, we will first introduce some notation. For x ∈ M we say that x is c-free if c
does not appear in x. It is clear that this is independent of choice of representative of x in
S̃. Also, we note that powers of c are well defined and therefore write cn to denote an n-fold
product of c with itself irrespective of parenthesizing. Next, we realize that any x ∈ M can
be written in the form((

. . .
((
cn, x1

)
, x2

)
. . . xm−1

)
, xm

)
with c-free xi. This is proven by induction on term structure. The base case, terms which
are elements of S, is obvious. Now if we have (x, y) ∈ M̃ , we can by assumption find repre-
sentations of x and y in the form

x ∼
((
. . .

((
cn, x1

)
, x2

)
, . . . xm−1

)
, xm

)
and

y ∼
((
. . .

((
cr, y1

)
, y2

)
, . . . ys−1

)
, ys

)
with c-free xi and yi. Now if r = 0, we see that (x, y) itself is already in the claimed form. If
on the other hand r 6= 0, we can use the fact that we have (uv)w = u(vw) whenever v is a
term containing cr to see that

(x, y) ∼
((((((

. . .
((
cn, x1

)
, x2

)
. . . xm−1

)
, xm

)
,
(
cr, y1

))
, y2

)
, . . . ys−1

)
, ys

)
Here, cr can still be drawn into the part of term corresponding to x. Since cr commutes with
the xi, we can iterate this process until we reach the form

(x, y) ∼
(((((

. . .
(
cn+r, x1

)
, x2

)
, . . . xm−1

)
, xm

)
, y1

)
, . . . ys

)
We see now that this “normal form” is completely characterized by the exponent of c inside
and the sequence x1, . . . xm, y1, . . . , ys of c-free terms appearing afterwards. Noting that none
of the admissible term rewriting rules allow one to change c-free subterms of a term, the order
inside a term of c-free subterms, or the number of occurrences of c in the whole term, we
conclude that this normal form is uniquely defined for each x ∈ M . But, the only effect of
multiplication by c on the normal form of an element of M is to raise the inner exponent by
one. This is clearly a reversible operation, hence proving injectivity of multiplication by c.
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