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RATIONAL CURVES ON COMPACT KÄHLER
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Abstract

Mori’s theorem yields the existence of rational curves on pro-
jective manifolds such that the canonical bundle is not nef. In this
paper we study compact Kähler manifolds such that the canonical
bundle is pseudoeffective, but not nef. We present an inductive ar-
gument for the existence of rational curves that uses neither defor-
mation theory nor reduction to positive characteristic. The main
tool for this inductive strategy is a weak subadjunction formula for
log-canonical centres associated to certain big cohomology classes.

1. Introduction

1.1. Main results. Rational curves have played an important role in
the classification theory of projective manifolds ever since Mori showed
that they appear as a geometric obstruction to the nefness of the canon-
ical bundle.

Theorem 1.1 ([38, 39]). Let X be a complex projective manifold
such that the canonical bundle KX is not nef. Then there exists a ra-
tional curve C ⊂ X such that KX · C < 0.

This statement was recently generalised to compact Kähler manifolds
of dimension three [29], but the proof makes crucial use of results on
deformation theory of curves on threefolds which are not available in
higher dimension. Mori’s proof uses a reduction to positive character-
istic in an essential way and thus does not adapt to the more general
analytic setting. The aim of this paper is to develop a completely differ-
ent, inductive approach to the existence of rational curves. Our starting
point is the following

Conjecture 1.2. Let X be a compact Kähler manifold. Then the
canonical class KX is pseudoeffective if and only if X is not uniruled
(i.e. not covered by rational curves).

Key words and phrases. MMP, minimal model program, rational curves, Kähler
manifolds, relative adjoint classes, subadjunction.
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This conjecture is shown for projective manifolds in [37, 9] and it is
also known in dimension three by a theorem of Brunella [10] using his
theory of rank one foliations. Our main result is as follows:

Theorem 1.3. Let X be a compact Kähler manifold of dimension n.
Suppose that Conjecture 1.2 holds for all manifolds of dimension at most
n− 1. If KX is pseudoeffective but not nef, there exists a KX-negative
rational curve f : P1 → X.

Our statement is actually a bit more precise: the KX -negative ra-
tional curve has zero intersection with a cohomology class that is nef
and big, so the class of the curve lies in an extremal face of the (gener-
alised) Mori cone. Theorem 1.3 is thus a first step towards a cone and
contraction theorem for Kähler manifolds of arbitrary dimension.

In low dimension we can combine our theorem with Brunella’s result:

Corollary 1.4. Let X be a compact Kähler manifold of dimension
at most four. If KX is pseudoeffective but not nef, there exists a KX-
negative rational curve f : P1 → X.

1.2. The strategy. The idea of the proof is quite natural and inspired
by well-known results of the minimal model program: let X be a com-
pact Kähler manifold such that KX is pseudoeffective but not nef. We
choose a Kähler class ω such that α := KX + ω is nef and big but not
Kähler. If we suppose that X is projective and ω is an R-divisor class
we know by the base point free theorem [25, Thm. 7.1] that there exists
a morphism

µ : X → X ′

such that α = µ∗ω′ with ω′ an ample R-divisor class on X ′. Since α
is big the morphism µ is birational, and we denote by Z an irreducible
component of its exceptional locus. A general fibre of Z → µ(Z) has
positive dimension and is covered by rational curves, in particular Z
is uniruled. More precisely, denote by k ∈ N the dimension of µ(Z).
Since α = µ∗ω′ we have (α|Z)k+1 = 0 and (α|Z)k is represented by some
multiple of F where F is an irreducible component of a general fibre
of Z → µ(Z). Since F is an irreducible component of a µ-fibre the
conormal sheaf is “semipositive”, so we expect that

(1) KF ′ · π∗ω|dimZ−k−1
F ≤ π∗KX |F · π∗ω|dimZ−k−1

F ,

where π : F ′ → F is a desingularisation of F . Since α|F is trivial and
KX = α − ω we see that the right hand side is negative, in particular
KF ′ is not pseudoeffective. Thus we can apply [37, 9] to F ′ and obtain
that F is uniruled. Since F is general we obtain that Z is uniruled. The
key idea of our approach is to prove a numerical analogue of (1) that
does not assume the existence of the contraction.
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Indeed if X is Kähler we are far from knowing the existence of a
contraction. However, we can still consider the null-locus

Null(α) =
⋃

∫
Z α|

dimZ
Z =0

Z.

It is easy to see that if a contraction theorem holds also in the Kähler
setting, then the null-locus is exactly the exceptional locus of the bimero-
morphic contraction. We will prove that at least one of the irreducible
components Z ⊂ Null(α) is covered by α-trivial rational curves: let
π : Z ′ → Z be a desingularisation, and let k be the numerical dimen-
sion of π∗α|Z (cf. Definition 2.5). We will prove that

(2) KZ′ · π∗α|kZ · π∗ω|dimZ−k−1
Z ≤ π∗KX |Z · π∗α|kZ · π∗ω|dimZ−k−1

Z .

Note that the right hand side is negative, so Conjecture 1.2 yields the
existence of rational curves. Recall also that if the contraction µ ex-
ists, then π∗α|kZ is a multiple of a general fibre, so this inequality is a
refinement of (1). The inequality (2) follows from a more general weak
subadjunction formula for maximal lc centres (cf. Definition 4.4) of the
pair (X, cα) (for some real number c > 0) which we will explain in the
next section. The idea of seeing the irreducible components of the null
locus as an lc centre for a suitably chosen pair is already present in
Takayama’s uniruledness of stable base loci [46], in our case a recent
result of Collins and Tosatti [15, Thm. 1.1] and the work of Boucksom
[8] yield this property without too much effort.

While (2) and Conjecture 1.2 imply immediately that Z is uniruled
it is a priori not clear if we can choose the rational curves to be KX -
negative (or even α-trivial): for the simplicity of notation, let us suppose
that Z is smooth. If Z was projective and α|Z an R-divisor class we
could argue as in [29, Prop. 7.11] using Araujo’s description of the
mobile cone [2, Thm. 1.3]. In the Kähler case we need a new argument:
let Z → Y be the MRC-fibration (maximally rationally connected, see
[11, 33]) (cf. Remark 6.10) and let F be a general fibre. Arguing by
contradiction we suppose that F is not covered by α-trivial rational
curves. A positivity theorem for relative adjoint classes (Theorem 5.2)
shows that KZ/Y +α|Z is pseudoeffective if KF +α|F is pseudoeffective.
Since KY is pseudoeffective by Conjecture 1.2 this implies that KZ+α|Z
is pseudoeffective, a contradiction to (2).

Thus we are left to show that KF + α|F is pseudoeffective, at least
up to replacing α|F by λα|F for some λ� 0. Since α|F is not a rational
cohomology class this is a non-trivial property related to the Nakai-
Moishezon criterion for R-divisors by Campana and Peternell [13]. Us-
ing the minimal model program for the projective manifold F and Kawa-
mata’s bound on the length of extremal rays [31, Thm. 1] we overcome
this problem in Proposition 6.9.
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1.3. Weak subadjunction. Let X be a complex projective manifold,
and let ∆ be an effective Q-Cartier divisor on X such that the pair
(X,∆) is log-canonical. Then there is a finite number of log-canonical
centres associated to (X,∆) and if we choose Z ⊂ X an lc centre that
is minimal with respect to the inclusion, the Kawamata subadjunction
formula holds [32] [20, Thm. 1.2]: the centre Z is a normal variety and
there exists a boundary divisor ∆Z such that (Z,∆Z) is klt (kawamata
log-terminal, see [34]) and

KZ + ∆Z ∼Q (KX + ∆)|Z .
If the centre Z is not minimal the geometry is more complicated, how-
ever, we can still find an effective Q-divisor ∆Z̃ on the normalisation

ν : Z̃ → Z such that1

KZ̃ + ∆Z̃ ∼Q ν
∗(KX + ∆)|Z .

We prove a weak analogue of the subadjunction formula for cohomology
classes:

Theorem 1.5. Let X be a compact Kähler manifold, and let α be a
cohomology class on X that is a modified Kähler class (cf. Definition
4.1). Suppose that Z ⊂ X is a maximal lc centre of the pair (X,α), and

let ν : Z̃ → Z be the normalisation. Then we have

KZ̃ · ω1 · . . . · ωdimZ−1 ≤ ν∗(KX + α)|Z · ω1 · . . . · ωdimZ−1,

where ω1, . . . , ωdimZ−1 are arbitrary nef classes on Z̃.

Our proof follows the strategy of Kawamata in [32]: given a log-

resolution µ : X̃ → X and an lc place E1 dominating Z we want to
use a canonical bundle formula for the fibre space µ|E1 : E1 → Z̃ to
relate µ∗(KX + α)|E1 and KZ̃ . As in [32] the main ingredient for a
canonical bundle formula is the positivity theorem for relative adjoint
classes Theorem 3.4 which, together with Theorem 5.2, is the main
technical contribution of this paper. The main tool of the proofs of
Theorem 3.4 and Theorem 5.2 is the positivity of the fibrewise Bergman
kernel which is established in [4, 5]. Since we work with lc centres that
are not necessarily minimal the positivity result Theorem 3.4 has to be
stated for pairs which might not be (sub-)klt. This makes the setup of
the proof quite heavy, but similar to earlier arguments (cf. [5, 41] and
[21, 45] in the projective case).

The following elementary example illustrates Theorem 1.5 and shows
how it leads to Theorem 1.3:

Example 1.6. Let X ′ be a smooth projective threefold, and let

C ⊂ X ′

1This statement is well-known to experts, cf. [3, Lemma 3.1] for a proof.
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be a smooth curve such that the normal bundle NC/X′ is ample. Let
µ : X → X ′ be the blow-up of X ′ along C and let Z be the exceptional
divisor. Let D ⊂ X ′ be a smooth ample divisor containing the curve C,
and let D′ be the strict transform.

By the adjunction formula we have KZ = (KX + Z)|Z , in particular
it is not true that KZ · ω1 ≤ KX |Z · ω1 for every nef class ω1 on Z.
Indeed this would imply that −Z|Z is pseudoeffective, hence N∗C/X′ is

pseudoeffective in contradiction to the construction. However, if we set
α := µ∗c1(D), then α is nef and represented by µ∗D = D′+Z. Then the
pair (X,D′+Z) is log-canonical and Z is a maximal lc centre. Moreover
we have

KZ · ω1 = (KX + Z)|Z · ω1 ≤ (KX +D′ + Z)|Z · ω1 = (KX + α)|Z · ω1

since D′|Z is an effective divisor.
Now we set ω1 = α|Z , then α|Z · ω1 = α|2Z = 0 since it is a pull-back

from C. Since KX is anti-ample on the µ-fibres we have

KZ · α|Z = KX |Z · α|Z < 0.

Thus KZ is not pseudoeffective.

1.4. Relative adjoint classes. We now explain briefly the idea of the
proof of Theorem 3.4 and Theorem 5.2. In view of the main results in
[4] and [42], it is natural to ask the following question:

Question 1.7. Let f : X → Y be a fibration between two compact
Kähler manifolds, and let F be the general fiber of f . Let αX be a
Kähler class on X and let D be a klt Q-divisor on X such that

c1(KF ) + [(αX +D)|F ]

is a pseudoeffective class. Is c1(KX/Y ) + [αX +D] pseudoeffective?

In the case c1(KF ) + [(αX + D)|F ] is a Kähler class on F , [42, 24]
confirm the above question by studying the variation of Kähler-Einstein
metrics (based on [44]). In our article, we confirm Question 1.7 in two
special cases: Theorem 3.4 and Theorem 5.2 by using the positivity
of the fibrewise Bergman kernel which is established in [4, 5]. Let us
compare our results to Păun’s result [42, Thm. 1.1] on relative adjoint
classes: while we make much weaker assumptions on the geometry of
pairs or the positivity of the involved cohomology classes we are always
in a situation where locally over the base we only have to deal with
R-divisor classes. Thus the transcendental character of the argument is
only apparent on the base, not along the general fibres.

More precisely, in Theorem 3.4, we add an additional condition that
c1(KX/Y + [αX +D]) is pull-back of a (1, 1)-class on Y (but we assume
that D is sub-boundary). Then we can take a Stein cover (Ui) of Y
such that (KX/Y + [αX + D])|f−1(Ui) is trivial on f−1(Ui). Therefore
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[αX+D]|f−1(Ui) is a R-line bundle on f−1(Ui). We assume for simplicity
that D is klt (the sub-boundary case is more complicated). We can thus
apply [5] to every pair (f−1(Ui),KX/Y + [αX +D]). Since the fibrewise

Bergman kernel metrics are defined fiber by fiber, by using ∂∂-lemma,
we can glue the metrics together and Theorem 3.4 is thus proved.

In Theorem 5.2, we add the condition that F is simply connected and
H0(F,Ω2

F ) = 02 . Then we can find a Zariski open set Y0 of Y such that
Rif∗(OX) = 0 on Y0 for every i = 1, 2. By using the same argument as
in Theorem 3.4, we can construct a quasi-psh function ϕ on f−1(Y0) such

that
√
−1

2π Θ(KX/Y )+αX +ddcϕ ≥ 0 on f−1(Y0). Now the main problem
is to extend ϕ to be a quasi-psh function on X. Since c1(KF +αX |F ) is
not necessary a Kähler class on F , we cannot use directly the method
in [42, 3.3]. Here we use the idea in [35]. In fact, thanks to [35, Part II,
Thm. 1.3], we can find an increasing sequence (km)m∈N and hermitian
line bundles (Fm, hm)m∈N (not necessarily holomorphic) on X such that

(3) ‖
√
−1

2π
Θhm(Fm)− km(

√
−1

2π
Θ(KX/Y ) + αX)‖C∞(X) → 0.

Let Xy be the fiber over y ∈ Y0. As we assume that H0(Xy,Ω
2
Xy

) = 0,

the hermitian bundle Fm|Xy can be equipped with a holomorphic struc-
ture JXy ,m. Therefore we can define the Bergman kernel metric associ-

ated to (Fm|Xy , JXy ,m, hm). Thanks to ∂∂-lemma, we can compare ϕ|Xy
and the Bergman kernel metric associated to (Fm|Xy , JXy ,m, hm). Note
that (3) implies that Fm is more and more holomorphic. Therefore,
by using standard Ohsawa-Takegoshi technique [5], we can well esti-
mate the Bergman kernel metric associated to Fm|Xy when y → Y \Y0.
Theorem 5.2 is thus proved by combining these two facts.

Acknowledgements. This work was partially supported by the A.N.R.
project CLASS3 and the A.N.R project “Convergence de Gromov-
Hausdorff en géométrie kählérienne” (ANR-GRACK).

2. Notation and terminology

For general definitions we refer to [27, 30, 16, 18]. Manifolds and
normal complex spaces will always be supposed to be irreducible. A fi-
bration is a proper surjective map with connected fibres ϕ : X → Y
between normal complex spaces.

Definition 2.1. Let X be a normal complex space, and let f : X →
Y be a proper surjective morphism. A Q-divisor D is f -vertical if
f(SuppD) ( Y . Given a Q-divisor D it admits a unique decompo-

2If F is rationally connected these two conditions are satisfied.
3ANR-10-JCJC-0111
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sition

D = Df -hor +Df -vert

such that Df -vert is f -vertical and every irreducible component E ⊂
SuppDf -hor surjects onto Y .

Definition 2.2. Let X be a complex manifold, and let F be a sheaf
of rank one on X that is locally free in codimension one. The bidual
F∗∗ is reflexive of rank one, so locally free, and we set c1(F) := c1(F∗∗).

Throughout this paper we will use positivity properties of real co-
homology classes of type (1, 1), that is elements of the vector space
H1,1(X) ∩ H2(X,R). The definitions can be adapted to the case of a
normal compact Kähler space X by using Bott-Chern cohomology for
(1, 1)-forms with local potentials [29]. In order to simplify the notation
we will use the notation

N1(X) := H1,1(X) ∩H2(X,R).

Note that for the purpose of this paper we will only use cohomology
classes that are pull-backs of nef classes on some smooth space, so it is
sufficient to give the definitions in the smooth case.

Definition 2.3 ([18, Defn. 6.16]). Let (X,ωX) be a compact Kähler
manifold, and let α ∈ N1(X). We say that α is nef if for every ε > 0,
there is a smooth (1, 1)-form αε in the same class of α such that αε ≥
−εωX .

We say that α is pseudoeffective if there exists a (1, 1)-current T ≥ 0
in the same class of α. We say that α is big if there exists a ε > 0 such
that α− εωX is pseudoeffective.

Definition 2.4. Let X be a compact Kähler manifold, and let α ∈
N1(X) be a nef and big cohomology class on X. The null-locus of α is
defined as

Null(α) =
⋃

∫
Z α|

dimZ
Z =0

Z.

Remark. A priori the null-locus is a countable union of proper sub-
varieties of X. However, by [15, Thm. 1.1] the null-locus coincides with
the non-Kähler locus EnK(α), in particular it is an analytic subvariety
of X.

Definition 2.5 ([18, Defn. 6.20]). Let X be a compact Kähler man-
ifold, and let α ∈ N1(X) be a nef class. We define the numerical
dimension of α by

nd(α) := max{k ∈ N | αk 6= 0 in H2k(X,R)}.

Remark 2.6. Thanks to [19, Thm. 0.5], a nef class α is big if and
only if

∫
X α

dimX > 0, which is of course equivalent to nd(α) = dimX.
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By [18, Prop. 6.21] the cohomology class αnd(α) can be represented
by a non-zero closed positive (nd(α), nd(α))-current T . Therefore∫

X
αnd(α) ∧ ωdimX−nd(α)

X > 0

for any Kähler class ωX .

Definition 2.7. Let X be a normal compact complex space of di-
mension n, and let ω1, . . . , ωn−1 ∈ N1(X) be cohomology classes. Let
F be a reflexive rank one sheaf on X, and let π : X ′ → X be a desin-
gularisation. We define the intersection number c1(F) · ω1 · . . . · ωn−1

by
c1((µ∗F)∗∗) · µ∗ω1 · . . . · µ∗ωn−1.

Remark. The definition above does not depend on the choice of the
resolution π: the sheaf F is reflexive of rank one, so locally free on
the smooth locus of X. Thus µ∗F is locally free in the complement
of the µ-exceptional locus. Thus π1 : X ′1 → X and π2 : X ′2 → X
are two resolutions and Γ is a manifold dominating X ′1 and X ′2 via
bimeromorphic morphisms q1 and q2, then q∗1π

∗
1F and q∗2π

∗
2F coincide

in the complement of the π1 ◦ q1 = π2 ◦ q2-exceptional locus. Thus their
biduals coincide in the complement of this locus. By the projection
formula their intersection with classes coming from X are the same.

3. Positivity of relative adjoint classes, part 1

Before the proof of the main theorem in this section, we first recall
the construction of fibrewise Bergman kernel metric and its important
property, which are established in the works [4, 5]. The original ver-
sion [5] concerns only the projective fibration. However, thanks to the
optimal extension theorem [7, 23] and an Ohsawa-Takegoshi extension
theorem for Kähler manifolds [47, 14], we know that it is also true for
the Kähler case:

Theorem 3.1 ([5, Thm. 0.1], [23, 3.5], [47, Thm. 1.1], [14, Thm.
1.2]). Let p : X → Y be a proper fibration between Kähler manifolds
of dimension m and n respectively, and let L be a line bundle endowed
with a metric hL such that:

1) The curvature current of the bundle (L, hL) is semipositive in the
sense of current, i.e.,

√
−1ΘhL(L) ≥ 0;

2) there exists a general point z ∈ Y and a non zero section u ∈
H0(Xz,mKXz + L) such that

(4)

∫
Xz

|u|
2
m
hL
< +∞.

Then the line bundle mKX/Y +L admits a metric with positive curvature
current. Moreover, this metric is equal to the fibrewise m-Bergman
kernel metric on the general fibre of p.
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Remark 3.2. Here are some remarks about the above theorem.

(1): Note first that as u ∈ H0(Xz,mKXz +L), |u|
2
m
hL

is a volume form

on Xz. Therefore the integral (4) is well defined.
(2): The fibrewise m-Bergman kernel metric is defined as follows:

Let x ∈ X be a point on a smooth fibre of p. We first define a hermitian
metric h on −(mKX/Y + L)x by

‖ξ‖2h := sup
|τ(x) · ξ|2

(
∫
Xp(x)

|τ |
2
m
hL

)m
,

where ξ is a basis of −(mKX/Y + L)x and the ‘sup’ is taken over all

sections τ ∈ H0(Xp(x),mKX/Y + L). The fibrewise m-Bergman kernel
metric on mKX/Y + L is defined to be the dual of h.

It will be useful to give a more explicit expression of the Bergman
kernel type metric. Let ωX and ωY be Kähler metrics on X and Y
respectively. Then ωX and ωY induce a natural metric hX/Y on KX/Y .
Let Y0 be a Zariski open set of Y such that p is smooth over Y0. Set
h0 := hmX/Y · hL be the induced metric on mKX/Y + L. Let ϕ be a

function on p−1(Y0) defined by

ϕ(x) = sup
τ∈A

1

m
ln |τ |h0(x),

where

A := {f | f ∈ H0(Xp(x),mKX/Y +L) and

∫
Xp(x)

|f |
2
m
h0

(ωmX/p
∗ωnY ) = 1}.

We can easily check that the metric h0 · e−2mϕ on mKX/Y +L coincides
with the fibrewise m-Bergman kernel metric defined above. In particu-
lar, h0 · e−2mϕ is independent of the choice of the metrics ωX and ωY .
Sometimes we call ϕ the fibrewise m-Bergman kernel metric.

(3): Note that, by construction, if we replace hL by f?c(y) · hL for
some smooth strictly positive function c(y) on Y , the corresponding
weight function ϕ in unchanged.

For readers’ convenience, we recall also the following version of the
Ohsawa-Takgoshi extension theorem which will be used in the article.

Proposition 3.3 ([5, Prop. 0.2]). Let p : X → ∆ be a fibration from
a Kähler manifold to the unit disc ∆ ∈ Cn. and let L be a line bundle
endowed with a possible singular metric hL such that

√
−1ΘhL(L) ≥ 0

in the sense of current. Let m ∈ N. We suppose that the center fiber
X0 is smooth and let f ∈ H0(X0,mKX0 + L) such that∫

X0

|f |
2
m
hL
< +∞.

Then there exists a F ∈ H0(X,mKX/Y + L) such that
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(i) F |X0 = f

(ii) The following L
2
m bound holds∫

X
|F |

2
m
hL
≤ C0

∫
X0

|f |
2
m
hL
,

where C0 is an absolute constant as in the standard Ohsawa-Take-
goshi theorem.

Moreover, thanks to [23], we can take C0 as the volume of the unit
disc ∆.

Here is the main theorem in this section.

Theorem 3.4. Let X and Y be two compact Kähler manifolds of
dimension m and n respectively, and let f : X → Y be a surjective
map with connected fibres. Let αX be a Kähler class on X. Let4 D =
k∑
j=2
−djDj be a Q-divisor on X such that the support has simple normal

crossings. Suppose that the following properties hold:

(a) If dj ≤ −1 then f(Dj) has codimension at least 2.
(b) The direct image sheaf f∗OX(d−De) has rank one. Moreover, if

D = Dh + Dv is the decomposition in a f -horizontal part Dh

(resp. f -vertical part Dv) then we have (f∗OX(d−Dve))∗∗ ' OY .
(c) c1(KX/Y + αX +D) = f∗β for some real class β ∈ H1,1(Y,R).

Let ω1, ω2, · · · , ωdimY−1 be nef classes on Y . Then we have

(5) β · ω1 · · ·ωdimY−1 ≥ 0.

Proof. Step 1: Preparation.
We start by interpreting the conditions (a) and (b) in a more analytic

language. We can write the divisor D as

D = B − F v − F h,
where B,F v, F h are effective Q-divisors and F v (resp. F h) is f -vertical
(resp. f -horizontal). We also decompose F v as

F v = F v1 + F v2

such that codimY f(F v2 ) ≥ 2 and codimY f(E) = 1 for every irreducible
component E ⊂ F v1 .

Let Xy be a general f -fibre. Since dj > −1 for every Dj map-

ping onto Y (cf. condition (a)), the divisors d−De and dF he coin-
cide over a non-empty Zariski open subset of Y . Thus the condition
rank f∗OX(d−De) = 1 implies that

h0(Xy, dF he|Xy) = 1.

4The somewhat awkward notation will be become clear in the proof of Theorem
1.5.
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Therefore, for any meromorphic function ζ on Xy, we have

(6) div(ζ) ≥ −dF he|Xy ⇒ ζ is constant.

Since dj > −1 for every Dj mapping onto a divisor in Y (cf. condition
(a)), the divisors d−Dve and dF ve coincide over a Zariski open subset
Y1 ⊂ Y such that codimY (Y \ Y1) ≥ 2. In particular the condition
(f∗OX(d−Dve))∗∗ ' OY implies that (f∗OX(d−Dve))|Y1 = OY1 . So for
every meromorphic function ζ on any small Stein open subset of U ⊂ Y1,
we have

(7) div(ζ ◦ f) ≥ −dF ve|f−1(U) ⇒ ζ is holomorphic.

Step 2: Stein cover.
Select a Stein cover (Ui)i∈I of Y such that H1,1(Ui,R) = 0 for every

i. Let θ be a smooth closed (1, 1)-form in the same class of c1(KX/Y +

αX +D + dF v + F he).
Thanks to (c), we have

c1(KX/Y + αX +D)|f−1(Ui) ∈ f
−1(H1,1(Ui,R)) = 0.

There exists thus a line bundle Li on f−1(Ui) such that

KX/Y + Li ' dF v + F he on f−1(Ui).

Moreover, we can find a smooth hermitian metric hi on KX/Y +Li over

f−1(Ui) such that

(8)

√
−1

2π
Θhi(KX/Y + Li) = θ on f−1(Ui).

Step 3: Local construction of metric.
We construct in this step a canonical function ϕi on f−1(Ui) such

that

(9) θ + ddcϕi ≥ dF v1 + F he over f−1(Ui) for every i.

The function is in fact just the potential of the fibrewise Bergman kernel
metric mentioned in Remark 3.2. A more explicit construction is as
follows:

Note first that c1(Li) = αX + D + dF v + F he, we can find a metric
hLi on Li such that
√
−1ΘhLi

= αX+[D]+dF v+F he = αX+[B]+(dF v+F he−[F v+F h]) ≥ 0

in the sense of current. Moreover, we can ask that hi/hLi is a global
metric on KX/Y , i.e., hi/hLi = hj/hLj on f−1(Ui ∩ Uj).

Thanks to the sub-klt condition (a) and the construction of the metric
hLi , we can find a Zariski open subset Ui,0 of Ui such that for every
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y ∈ Ui,0, f is smooth over y and there exists a sy ∈ H0(Xy,KX/Y +Li)
such that

(10)

∫
Xy

|sy|2hLi = 1.

Recall that |sy|2hLi is a volume forme on Xy (cf. Remark 3.2). Using

the fact that

(11) h0(Xy,KX/Y + Li) = h0(Xy, dF he) = 1 for every y ∈ Ui,0,

we know that sy is unique after multiplying by a unit norm complex
number. There exists thus a unique function ϕi on f−1(Ui,0) such that
its restriction on Xy equals to ln |sy|hi . We have the following key
property.

Claim. ϕi can be extended to be a quasi-psh function (we still denote
it as ϕi) on f−1(Ui), and satisfies (9).

The claim will be proved by using the methods in [4, Thm. 0.1]. We
postpone the proof of the claim later and first finish the proof of the
theorem. The properties (6) and (7) will be used in the proof of the
claim.

Step 4: Gluing process, final conclusion.
We first prove that

(12) ϕi = ϕj on f−1(Ui ∩ Uj).

Let y ∈ Ui,0 ∩ Uj,0. Thanks to

(KX/Y + Li)|Xy ' (KX/Y + Lj)|Xy ' dF v + F he|Xy ;

we have Li|Xy ' Lj |Xy . Under this isomorphism, the curvature condi-

tion (8) and ∂∂-lemma imply that

(13) hLi |Xy = hLj |Xy · e−cy for some constant cy on Xy,

where the constant cy depends on y ∈ Y . As hi/hLi is a metric on KX/Y

independent of i, we have

(14) hi|Xy = hj |Xy · e−cy on Xy.

By (11), there exist unique two sections sy,i ∈ H0(Xy,KX/Y + Li)

and sy,j ∈ H0(Xy,KX/Y + Lj) (after multiply by a unit norm complex
number) such that∫

Xy

|sy,i|2hLi = 1 and

∫
Xy

|sy,j |2hLj = 1.

Thanks to (13), we have (after multiply by a unit norm complex number)

sy,i = e
cy
2 · sy,j .
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Together with (14), we get

(15) ϕi|Xy = ln |sy,i|hi = ln |sy,j |hj = ϕj |Xy .

Since (15) is proved for every y ∈ Ui,0 ∩ Uj,0, we have ϕi = ϕj on
f−1(Ui,0 ∩ Uj,0). Combining this with the extension property of quasi-
psh functions, (12) is thus proved.

Thanks to (12), (ϕi)i∈I defines a global quasi-psh function onX which
we denote by ϕ. By (9), we have

θ + ddcϕ ≥ dF v1 + F he over f−1(Ui) for every i.

Therefore

θ + ddcϕ ≥ dF v1 + F he over X.

Then c1(KX/Y + αX + D + dF v2 e) is pseudoeffective on X. Together
with the fact codimY f∗(F

v
2 ) ≥ 2, the theorem is proved. q.e.d.

The rest part of this section is devoted to the proof of the claim
in Theorem 3.4. The main method is the Ohsawa-Takegoshi extension
techniques used in [5]. Before the proof of the claim, we need the fol-
lowing lemma which interprets the property (7) in terms of a condition
on the metric hi.

Lemma 3.5. Fix a Kähler metric ωX (resp. ωY ) on X (resp. Y ).
Let sB (resp. sF v , sFh) be the canonical section of the divisor B (resp.
F v and F h). Let ψ be the function of the form

(16) ψ = ln |sB| − ln |sF v | − ln |sFh |+ C∞,

where | · | is with respect to some smooth metric on the corresponding
line bundle. Let Y1 be the open set defined in Step 1 of the proof of
Theorem 3.4 and let Y0 ⊂ Y1 be a non-empty Zariski open set satisfying
the following conditions:

(a) f is smooth over Y0;
(b) f(Dv) ⊂ Y \ Y0;
(c) F h|Xy is SNC (simply normal crossings, see [34]) for every y ∈ Y0;
(d) The property (6) holds for every y ∈ Y0.

Then for any open set ∆ b Y1 ∩Ui (i.e., the closure of ∆ is in Y1 ∩Ui),
there exists some constant C(∆, Y1, Ui) > 0 depending only on ∆, Y1

and Ui, such that

(17)

∫
Xy

e−2ψωmX/f
∗ωnY ≥ C(∆, Y1, Ui) for every y ∈ ∆ ∩ Y0,

where m (resp. n) is the dimension of X (resp. Y ).

Remark 3.6. (17) means that, for any sequence (yi)i≥1 converging
to some point in Y1 \ Y0, the sequence (

∫
Xyi

e−2ψωmX/f
∗ωnY )i≥1 will not

tend to 0.
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Proof. Fix an open set ∆1 such that ∆ b ∆1 b Y1 ∩ Ui. Let y0 be a
point in ∆ ∩ Y0 and let cy0 be a constant such that

(18) |cy0 |2
∫
Xy0

e−2ψωmX/f
∗ωnY = 1.

Let sdF e be the canonical section of dF v+F he. By applying Proposition

3.3 to (f−1(∆1),KX + Li, hLi) and the section

cy0 ⊗ sdF e ∈ H0(Xy0 ,KX + Li),

we can find a holomorphic section τ ∈ H0(f−1(∆1),KX +Li) such that

τ |Xy0 = cy0 ⊗ sdF e
and

(19)

∫
f−1(∆1)

|τ |2hLi ≤ C1

∫
Xy0

|τ |2hLi = C1,

where C1 is a constant independent of y0 ∈ ∆ ∩ Y0.
Set τ̃ := τ

sdFe
. Then τ̃ can be extended to a meromorphic function

(we still denote it by τ̃) on f−1(∆1) and (19) implies that

(20)

∫
f−1(∆1)

|τ̃ |2e−2ψ ≤ C1

Therefore

(21) div(τ̃) ≥ −dF he − dF ve on f−1(∆1).

We now prove that τ̃ is in fact holomorphic on f−1(∆1). For every
point y ∈ ∆1 ∩ Y0, thanks to (b), F v ∩Xy = ∅. Together with (21) and
(c), we have

div(τ̃ |Xy) ≥ −dF h|Xye on Xy

for every y ∈ ∆1 ∩ Y0. Combining this with (d), τ̃ |Xy is constant for
every y ∈ ∆1 ∩ Y0. Therefore τ̃ comes from a meromorphic function on
∆1. Then τ̃ does not have poles along Supp(F h) and (21) implies that

div(τ̃) ≥ −dF ve.
Together with (7), we can find a holomorphic function ζ on ∆1 such
that τ̃ = ζ ◦ f .

We now prove the lemma. Let M ∈ N large enough such that the
Q-divisor 1

M−1F
v + 1

M−1F
h is klt. Thanks to (20) and the Hölder in-

equality, we have ∫
f−1(∆1)

|τ̃ |
2
M(22)

≤ (

∫
f−1(∆1)

|τ̃ |2e−2ψ)
1
M (

∫
f−1(∆1)

|sB|
2

M−1

|sF vsFh |
2

M−1

)
M−1
M ≤ C2
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for some uniform constant C2. Since τ̃ = ζ ◦ f and ζ is holomorphic on
∆1 and ∆ b ∆1, by applying maximal principal to ζ, (22) implies that

sup
z∈∆
|ζ|(z) ≤ C3 · (C2)M ,

where C3 is a constant depending only on ∆ and ∆1. In particular, the
norm of cy0 = τ |Xy0 = ζ(y0) is less than C3 · (C2)M . Combining this

with (18) and the fact that C2 and C3 are independent of the choice of
y0 ∈ ∆, the lemma is proved. q.e.d.

Now we prove the claim in the proof of Theorem 3.4.

Proof of the claim. Let Ui,0 be the open set defined in Step 3 of the
proof of Theorem 3.4. Thanks to Theorem 3.1, ϕi can be extended as
a quasi-psh function on f−1(Ui) and satisfying

(23) θ + ddcϕi ≥ 0 on f−1(Ui).

Let sdF e be the canonical section of dF v+F he. Then eϕi
sdFe

is well defined

on f−1(Ui,0) \ (F v + F h).

We next prove that eϕi
sdFe

is uniformly upper bounded near the generic

point of div(F v + F h). Let y be a generic point in Ui,0. By the con-

struction of sy and (6),
sy
sdFe

is a constant on Xy. Then eϕi
sdFe
|Xy =

|sy |hi
sdFe

is uniformly bounded on Xy. Therefore eϕi
sdFe

is uniformly bounded near

the generic point of div(F h).
For any ∆ b Y1 ∩ Ui, thanks to Lemma 3.5, there exists a constant

c > 0, such that∫
Xy

e−2ψ(ωmX/f
∗(ωY )n) ≥ c for every y ∈ ∆ ∩ Y0.

Together with the facts that∫
Xy

| sy
sdF e
|2e−2ψ =

∫
Xy

|sy|2hLi = 1

and
sy
sdFe

is constant on Xy, we see that eϕi
sdFe

is uniformly upper bounded

on f−1(∆∩Y0). Since codimY (Y \Y1) ≥ 2 and f∗(F
v
1 ) is of codimension

1 by assumption, the function eϕi
sdFe

is uniformly upper bounded near the

generic point of div(F v1 ).

Now we can prove the claim. Since eϕi
sdFe

is proved to be uniformly up-

per bounded near the generic point of div(F v1 +F h), the Lelong numbers
of ddcϕi at the generic points of div(F v1 +F h) is not less than the Lelong
numbers of the current dF v1 +F he at the generic points of div(F v1 +F h).
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Together with (23), we have

(24) θ + ddcϕi ≥ dF v1 + F he. on f−1(Ui),

and the claim is proved. q.e.d.

4. Weak subadjunction

Definition 4.1 ([8, Defn. 2.2]). Let X be a compact Kähler mani-
fold, and let α be a cohomology class on X. We say that α is a modified
Kähler class if it contains a Kähler current T such that the generic
Lelong number ν(T,D) is zero for every prime divisor D ⊂ X.

By [8, Prop. 2.3] a cohomology class is modified Kähler if and only if

there exists a modification µ : X̃ → X and a Kähler class α̃ on X̃ such
that µ∗α̃ = α. For our purpose we have to fix some more notation:

Definition 4.2. Let X be a compact Kähler manifold, and let α be
a modified Kähler class on X. A log-resolution of α is a bimeromorphic
morphism µ : X̃ → X from a compact Kähler manifold X̃ such that

the exceptional locus is a simple normal crossings divisor
∑k

j=1Ej and

there exists a Kähler class α̃ on X̃ such that µ∗α̃ = α.

The definition can easily be extended to arbitrary big classes by using
the Boucksom’s Zariski decomposition [8, Thm. 3.12].

Remark 4.3. If µ : X̃ → X is a log-resolution of α one can write

µ∗α = α̃+
k∑
j=1

rjEj

and rj > 0 for all j ∈ {1, . . . , k}. For R-divisors this is known as the
negativity lemma [6, 3.6.2], in the analytic setting we proceed as follows:
let T ∈ α be a current with analytic singularities such that the generic
Lelong ν(T,D) is zero for every prime divisor D ⊂ X. Resolving the
ideal sheaf defining T and pulling back we obtain

µ∗α = α′ +
k∑
j=1

r′jEj ≥ µ∗ω,

where ω is a Kähler form, r′j > 0 for all j ∈ {1, . . . , k} and α′ is semi-

positive with null locus equal to ∪kj=1Ej . For 0 < εj � 1, the class

α̃ := α′ −
k∑
j=1

εjEj

is Kähler, so the statement holds by setting rj := r′j + εj .

Definition 4.4. Let X be a compact Kähler manifold, and let α be
a modified Kähler class on X. A subvariety Z ⊂ X is a maximal lc (log-
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canonical, see [34]) centre if there exists a log-resolution µ : X̃ → X of

α with exceptional locus
∑k

j=1Ej such that the following holds:

• Z is an irreducible component of µ(Supp
∑k

j=1Ej);
• if we write

KX̃ + α̃ = µ∗(KX + α) +

k∑
j=1

djEj ,

then dj ≥ −1 for every Ej mapping onto Z and (up to renumbering)
we have µ(E1) = Z and d1 = −1.

Following the terminology for singularities of pairs we call the co-
efficients dj the discrepancies of (X,α). Note that this terminology is
somewhat abusive since dj is not determined by the class α but depends
on the choice of α̃ (hence implicitly on the choice of a Kähler current
T in α that is used to construct the log-resolution). Similarly it would
be more appropriate to define Z as an lc centre of the pair (X,T ) with
[T ] ∈ α. Since most of the time we will only work with the cohomology
class we have chosen to use this more convenient terminology.

We can now prove the weak subadjunction formula:

Proof of Theorem 1.5. Step 1. Geometric setup. Since Z ⊂ X is a max-
imal lc centre of (X,α) there exists a log-resolution µ : X̃ → X of α

with exceptional locus
∑k

j=1Ej such that Z is an irreducible component

of µ(Supp
∑k

j=1Ej) and

(25) KX̃ + α̃ = µ∗(KX + α) +
k∑
j=1

djEj ,

satisfies dj ≥ −1 for every Ej mapping onto Z and (up to renumbering)
we have µ(E1) = Z and d1 = −1. Let π : X ′ → X be an embedded

resolution of Z, then (up to blowing up further X̃) we can suppose that

there exists a factorisation ψ : X̃ → X ′. Let Z ′ ⊂ X ′ be the strict
transform of Z. Since π is an isomorphism in the generic point of Z ′,
the divisors Ej mapping onto Z ′ via ψ are exactly those mapping onto Z
via µ. Denote by Ql ⊂ Z ′ the prime divisors that are images of divisors
E1 ∩ Ej via ψ|E1 . Then we can suppose (up to blowing up further X̃)
that the divisor ∑

l

(ψ|E1)∗Ql +
k∑
j=2

E1 ∩ Ej

has a support with simple normal crossings. We set

f := ψ|E1 , and D = −
k∑
j=2

djDj ,
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where Dj := Ej ∩ E1. Note also that the desingularisation π|Z′ factors

through the normalisation ν : Z̃ → Z, so we have a bimeromorphic
morphism τ : Z ′ → Z̃ such that π|Z′ = ν ◦ τ . We summarise the
construction in a commutative diagram:

E1

f :=ψ|E1

~~ ��

� _

��
X̃

ψ

~~

µ

  
Z ′ �
� //

τ
((

X ′
π // X Z? _oo

Z̃

ν

77

A priori there might be more than one divisor with discrepancy −1
mapping onto Z, but we can use the tie-breaking technique which is
well-known in the context of singularities of pairs: recall that the class
α̃ is Kähler which is an open property. Thus we can choose 0 < εj � 1

for all j ∈ {2, . . . , k} such that the class α̃+
∑k

j=2 εjEj is Kähler. The
decomposition

KX̃ + (α̃+
k∑
j=2

εjEj) = µ∗(KX + α)− E1 +
k∑
j=2

(dj + εj)Ej

still satisfies the properties in Definition 4.4 and E1 is now the unique
divisor with discrepancy −1 mapping onto Z. Note that up to perturb-
ing εj we can suppose that dj+εj is rational for every j ∈ {1, . . . , k}. In
order to simplify the notation we will suppose without loss of generality,
that these properties already holds for the decomposition (25).

Outline of the strategy. The geometric setup above is analogous to
the proof of Kawamata’s subadjunction formula [32, Thm. 1] and as
in Kawamata’s proof our aim is now to apply the positivity theorem
3.4 to f to relate KZ′ and (π|Z′)∗(KX + α)|Z . However, since we deal
with an lc centre that is not minimal we encounter some additional
problems: the pair (E1, D) is not necessarily (sub-)klt and the centre
Z might not be regular in codimension one. In the end this will not
change the relation between KZ′ and (π|Z′)∗(KX + α)|Z , but it leads
to some technical computations which will be carried out in the Steps
3 and 4.

Step 2. Relative vanishing. Note that the Q-divisor −KX̃ − E1 +∑k
j=2 djEj is µ-ample since its class is equal to α̃ on the µ-fibres. Thus

we can apply the relative Kawamata-Viehweg theorem (in its analytic
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version [1, Thm. 2.3] [40]) to obtain that

R1µ∗OX̃(−E1 +
k∑
j=2

ddjeEj) = 0.

Pushing the exact sequence

0→ OX̃(−E1 +

k∑
j=2

ddjeEj)→ OX̃(

k∑
j=2

ddjeEj)→ OE1(d−De)→ 0

down to X, the vanishing of R1 yields a surjective map

(26) µ∗(OX̃(
k∑
j=2

ddjeEj))→ (µ|E1)∗(OE1(d−De)).

Since all the divisors Ej are µ-exceptional, we see that

µ∗(OX̃(

k∑
j=2

ddjeEj))

is an ideal sheaf I. Moreover, since dj > −1 for all Ej mapping onto Z
the sheaf I is isomorphic to the structure sheaf in the generic point of
Z. In particular (µ|E1)∗(OE1(d−De)) has rank one.

Step 3. Application of the positivity result. By the adjunction formula
we have

(27) KE1 + α̃|E1 −
k∑
j=2

dj(Ej ∩ E1) = f∗(π|Z′)∗(KX + α)|Z .

Since f coincides with µ|E1 over the generic point of Z ′, we know by
Step 2 that the direct image sheaf f∗(OE1(d−De)) has rank one. In
particular f has connected fibres.

In general the boundary D does not satisfy the conditions a) and b) in
Theorem 3.4, however, we can still obtain some important information
by applying Theorem 3.4 for a slightly modified boundary: note first
that the fibration f is equidimensional over the complement of a codi-
mension two set. In particular the direct image sheaf f∗(OE1(d−De))
is reflexive [28, Cor. 1.7], hence locally free, on the complement of
a codimension two set. Thus we can consider the first Chern class
c1(f∗(OE1(d−De))) (cf. Definition 2.2). Set

L := (π|Z′)∗(KX + α)|Z −KZ′ ,

then we claim that

(28) (L+ c1(f∗(OE1(d−De)))) · ω′1 · . . . · ω′dimZ−1 ≥ 0

for any collection of nef classes ω′j on Z ′.
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Proof of the inequality (28). In the complement of a codimension two
subset B ⊂ Z ′ the fibration f |f−1(Z′\B) is equidimensional, so the direct
image sheaf OE1(d−Dve) is reflexive. Since it has rank one we thus can
write

f∗(OE1(d−Dve))⊗OZ′\B = OZ′\B(
∑

elQl),

where el ∈ Z and Ql ⊂ Z ′ are the prime divisors introduced in the
geometric setup. If el > 0 then el is the largest integer such that

(f |f−1(Z′\B))
∗(elQl) ⊂ d−Dve.

In particular if Dj maps onto Ql, then dj > −1. If el < 0 there exists a
divisor Dj that maps onto Ql such that dj ≤ −1. Moreover if wj is the
coefficient of Dj in the pull-back (f |f−1(Z′\B))

∗Ql, then el is the largest
integer such that dj − elwj > −1 for every divisor Dj mapping onto Ql.
Thus if we set

D̃ := D +
∑

elf
∗Ql,

then D̃ has normal crossings support (cf. Step 1) and satisfies the

condition a) in Theorem 3.4. Moreover if we denote by D̃ = D̃h + D̃v

the decomposition in horizontal and vertical part, then D̃h = Dh and
D̃v = Dv +

∑
elf
∗Ql. Since we did not change the horizontal part, the

direct image f∗(OE1(d−D̃e)) has rank one. Since
∑
elf
∗Ql has integral

coefficients, the projection formula shows that

(f∗(OE1(d−D̃ve)))∗∗ ' (f∗(OE1(d−Dve)))∗∗ ⊗OZ′(−
∑

elQl) ' OZ′ .

Thus we satisfy the condition b) in Theorem 3.4. Finally note that

KE1/Z + α̃|E1 + D̃ = f∗(L+
∑

elQl).

So if we set L̃ := L+
∑
elQl, then

(29) L̃+ c1(f∗(OE1(d−D̃e))) = L+ c1(f∗(OE1(d−De))).

Now we apply Theorem 3.4 and obtain

L̃ · ω′1 · . . . · ω′dimZ′−1 ≥ 0.

Yet by the conditions a) and b) there exists an ideal sheaf I on Z ′ that
has cosupport of codimension at least two and

f∗(OE1(d−D̃e)) ' I ⊗OZ′(B)

with B an effective divisor on Z ′. Thus c1(f∗(OE1(d−D̃e))) is repre-
sented by the effective divisor B and (28) follows from (29).

Step 4. Final computation. In view of our definition of the intersec-
tion product on Z̃ (cf. Definition 2.7) we are done if we prove that

L · τ∗ω1 · . . . · τ∗ωdimZ−1 ≥ 0,
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where the ωj are the nef cohomology classes from the statement of
Theorem 1.5. We claim that

(30) c1(f∗(OE1(d−De))) = −∆1 + ∆2,

where ∆1 is an effective divisor and ∆2 is a divisor such that

π|Z′(Supp ∆2)

has codimension at least two in Z. Assuming this claim for the time
being let us see how to conclude: by (28) we have

(31) (L+ c1(f∗(OE1(d−De)))) · τ∗ω1 · . . . · τ∗ωdimZ−1 ≥ 0.

Since the normalisation ν is finite and π|Z′(Supp ∆2) has codimension
at least two in Z, we see that τ(Supp ∆2) has codimension at least two

in Z̃. Thus we have

c1(f∗(OE1(d−De))) ·τ∗ω1 · . . . ·τ∗ωdimZ−1 = −∆1 ·τ∗ω1 · . . . ·τ∗ωdimZ−1,

which is negative. Hence the statement follows from (31).

Proof of the equality (30). Applying as in Step 2 the relative Kawamata-
Viehweg vanishing theorem to the morphism ψ we obtain a surjection

ψ∗(OX̃(
k∑
j=2

ddjeEj))→ (ψ|E1)∗(OE1(d−De)).

In order to verify (30) note first that some of the divisors Ej might

not be ψ-exceptional, so it is not clear if ψ∗(OX̃(
∑k

j=2ddjeEj)) is an

ideal sheaf. However, if we restrict the surjection (26) to Z we obtain a
surjective map

(32) I ⊗OX OZ → (π|Z′)∗(f∗(OE1(d−De))),
where I is the ideal sheaf introduced in Step 2. There exists an analytic
set B ⊂ Z of codimension at least two such that

Z ′ \ π−1(B)→ Z \B
is isomorphic to the normalisation of Z \B. In particular the restriction
of π to Z ′ \ π−1(B) is finite, so the natural map

(π|Z′)∗(π|Z′)∗(f∗(OE1(d−De)))→ f∗(OE1(d−De))
is surjective on Z ′ \ π−1(B). Pulling back is right exact, so com-
posing with the surjective map (32) we obtain a map from an ideal
sheaf to f∗(OE1(d−De)) that is surjective on Z ′ \ π−1(B). An ideal
sheaf is torsion-free, so this map is an isomorphism onto its image
in J ⊂ f∗(OE1(d−De)). In the complement of a codimension two
set the sheaf J corresponds to an antieffective divisor −∆′1. Since
the inclusion J ⊂ f∗(OE1(d−De)) is an isomorphism on Z ′ \ π−1(B),
there exists an effective divisor ∆′2 with support in π−1(B) such that
c1(f∗(OE1(d−De))) = −∆′1+∆′2. We denote by ∆1 the part of ∆′1 whose
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support is not mapped into B (hence maps into the non-normal locus of
Z\B) and set ∆2 := ∆′2+∆1−∆′1. Then we have c1(f∗(OE1(d−De))) =
−∆1 +∆2 and the support of ∆2 maps into B. Since B has codimension
at least two this proves the equality (30). q.e.d.

Remark 4.5. In Step 3 of the proof of Theorem 1.5 above we intro-
duce a “boundary” c1(f∗(OM (d−De))) so that we can apply Theorem
3.4. One should note that this divisor is fundamentally different from
the divisor ∆ appearing in [32, Thm. 1, Thm. 2]. In fact for a minimal
lc centre Kawamata’s arguments show that c1(f∗(OM (d−De))) = 0, his
boundary divisor ∆ is defined in order to obtain the stronger result that
L −∆ is nef. We have to introduce c1(f∗(OM (d−De))) since we want
to deal with non-minimal centres.

5. Positivity of relative adjoint classes, part 2

Convention. In this section, we use the following convention. Let
U be a open set and (fm)m∈N be a sequence of smooth functions on U .
We say that

‖fm‖C∞(U) → 0,

if for every open subset V b U and every index α, we have

‖∂αfm‖C0(V ) → 0.

Similarly, in the case (fm)m∈N are smooth formes, we say that

‖fm‖C∞(U) → 0

if every component tends to 0 in the above sense.

Before giving the main theorem of this section, we need the following
lemma proved in [35, Part II, Thm. 1.3]:

Lemma 5.1 ([35, Part II, Thm. 1.3]). Let X be a compact Kähler
manifold and let α be a closed smooth real 2-form on X. Then we can
find a strictly increasing sequence of integers (sm)m≥1 and a sequence of
hermitian line bundles (not necessary holomorphic) (Fm, DFm , hFm)m≥1

on X such that

(33) lim
m→+∞

‖
√
−1

2π
ΘhFm

(Fm)− smα‖C∞(X) = 0.

Here DFm is a hermitian connection with respect to the smooth hermit-
ian metric hFm and ΘhFm

(Fm) = DFm ◦DFm.
Moreover, let (Wj) be a small Stein cover of X. Then for every j,

we can find an orthonomal frame eFm,j of Fm|Wj , i.e., ‖eFm,j‖hm = 1
such that under the basis eFm,j, the (0, 1)-connection D′′Fm of DFm can
be written as

D′′Fm = ∂ + β0,1
m,j ,
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and

(34) ‖ 1

sm
β0,1
m,j‖C∞(Wj) ≤ C‖α‖C∞(X),

where C is a uniform constant independent of j and m.

Proof. Thanks to [35, Part II, Thm. 1.3], we can find a strictly in-
creasing integer sequence (sm)m≥1 and closed smooth 2-forms (αm)m≥1

on X, such that

lim
m→+∞

‖αm − smα‖C∞(X) = 0 and αm ∈ H2(X,Z).

Since (Wj) are small Stein open sets, we can find some smooth 1-forms
βm,j on Wj such that

(35)
1

2π
· dβm,j = αm on Wj , and ‖ 1

sm
βm,j‖C∞(Wj) ≤ C‖α‖C∞(X)

for a constant C independent of m and j.
By using the standard construction (cf. for example [17, V, Thm.

9.5]), the form (βm,j)j induces a hermitian line bundle (Fm, Dm, hFm)

on X such that Dm|Wj = d +
√
−1

2π βm,j with respect to an orthonomal
frame eFm,j of Fm|Wj . Then

‖
√
−1

2π
ΘhFm

(Fm)− smα‖C∞(X) = ‖αm − smα‖C∞(X) → 0.

Let β0,1
m,j be the (0, 1)-part of βm,j . Then (35) implies (34). q.e.d.

Now we can prove the main theorem of this section.

Theorem 5.2. Let X and Y be two compact Kähler manifolds and
let f : X → Y be a surjective map with connected fibres such that the
general fibre F is simply connected and

H0(F,Ω2
F ) = 0.

Let ω be a Kähler form on X such that c1(KF )+[ω|F ] is a pseudoeffective
class. Then c1(KX/Y ) + [ω] is pseudoeffective.

Proof. Being pseudoeffective is a closed property, so we can assume
without loss of generality that c1(KF ) + [ω|F ] is big on F .

Step 1: Preparation, Stein Cover.
Fix two Kähler metrics ωX , ωY on X and Y respectively. Let h be

the smooth hermitian metric on KX/Y induced by ωX and ωY . Now we

set α :=
√
−1

2π Θh(KX/Y ). Thanks to Lemma 5.1, there exist a strictly
increasing sequence of integers (sm)m≥1 and a sequence of hermitian
line bundles (not necessary holomorphic) (Fm, DFm , hFm)m≥1 on X such
that

(36) ‖
√
−1

2π
ΘhFm

(Fm)− sm(α+ ω)‖C∞(X) → 0.
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By our assumption on F we can find a non empty Zariski open subset
Y0 of Y such that f is smooth over Y0 and Rif∗OX = 0 on Y0 for every
i = 1, 2. Let (Ui)i∈I be a Stein cover of Y0. Therefore

(37) H0,2(f−1(Ui),R) = 0 for every i ∈ I.

Step 2: Construction of the approximate holomorphic line bundles.

Let Θ
(0,2)
hFm

(Fm) be the (0, 2)-part of ΘhFm
(Fm). Thanks to (37) and

(36), Θ
(0,2)
hFm

(Fm) is ∂-exact on f−1(Ui) and

(38) ‖Θ(0,2)
hFm

(Fm)‖C∞(f−1(Ui)) → 0.

We first construct a sequence of (0, 1)-formes βm on f−1(Ui) such
that

(39) Θ
(0,2)
hFm

(Fm) = ∂βm and ‖βm‖C∞(f−1(Ui)) → 0.

In fact, for every y ∈ Ui, as Xy is compact and H0,2(Xy) = 0, we can
find smooth (0, 1)-forms θm on f−1(Ui) such that for every y ∈ Ui

(40) (Θ
(0,2)
hFm

(Fm)− ∂θm)|Xy = 0 and ‖θm‖C∞(f−1(Ui)) → 0.

Therefore Θ
(0,2)
hFm

(Fm)− ∂θm =
∑

j f
?(dtj) ∧ γm,j , where (dtj) is a basis

of ∧0,1(Ui) and ‖γm,j‖C∞(f−1(Ui)) → 0. Note that Θ
(0,2)
hFm

(Fm) − ∂θm is

∂-closed. Then ∂γm,j |Xy = 0. As H0,1(Xy) = 0, we can find θ′m,j on

f−1(Uj) such that (γm,j −∂θ′m,j)|Xy = 0 and ‖θ′m,j‖C∞(f−1(Ui)) → 0. As
a consequence,

Θ
(0,2)
hFm

(Fm)− ∂(θm +
∑
j

f?(dtj) ∧ θ′m,j) = f?γ

for some closed (0, 2)-form γ on Ui and ‖γ‖C∞(Ui) → 0. Together with
the fact that Ui is Stein, we can thus find βm satisfies (39).

Thanks to (39), we can find holomorphic line bundles Li,m on f−1(Ui)
equipped with smooth hermitian metrics hi,m such that

(41) ‖
√
−1

2π
ΘhFm

(Fm)−
√
−1

2π
Θhi,m(Li,m)‖C∞(f−1(Ui)) → 0.

By construction, we have
√
−1

2π
Θhi,m(Li,m)− sm

√
−1

2π
Θh(KX/Y ) =

√
−1

2π
Θhi,m(Li,m)− smα

= (

√
−1

2π
Θhi,m(Li,m)−

√
−1

2π
ΘhFm

(Fm))

+(

√
−1

2π
ΘhFm

(Fm)− sm(α+ ω)) + smω.
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Thanks to the estimates (36) and (41), the first two terms of the right-
hand side of the above equality tends to 0. Therefore we can find a
sequence of open sets Ui,m b Ui, such that ∪m≥1Ui,m = Ui, Ui,m b
Ui,m+1 for every m ∈ N, and

(42)

√
−1

2π
Θhi,m(Li,m)− sm

√
−1

2π
Θh(KX/Y ) ≥ 0 on f−1(Ui,m).

Step 3: Construction of Bergman kernel type metrics.
Let ϕi,m be the sm-Bergman kernel associated to the pair (cf. Remark

3.2)

(43) (Li,m = smKX/Y + (Li,m − smKX/Y ), hi,m)

i.e., ϕi,m(x) := sup
g∈A

1
sm

ln |g|hi,m(x), where

(44) A := {g | g ∈ H0(Xf(x), Li,m),

∫
Xf(x)

|g|
2
sm
hi,m

ωdimX
X /f∗ωdimY

Y = 1}.

Thanks to (42), we can apply Theorem 3.1 to the pair (43) over
f−1(Ui,m). In particular, we have

(45) (α+ ω) + ddcϕi,m ≥ 0 on f−1(Ui,m).

We recall that ϕi,m is invariant after a normalisation of hi,m, namely,
if we replace the metric hi,m|Xy by c·hi,m|Xy for some constant c > 0, the
associated Bergman kernel function ϕi,m|Xy is unchanged cf. Remark
3.2 (3).

Let y ∈ Ui be a generic point. Thanks to the above remark and (41),
after multiplying by some constants, we can assume that

cy ≤ hi,m|Xy ≤ c−1
y

for some constant cy > 0 independent of m. Therefore, by applying
mean value inequality to (44), ϕi,m|Xy is uniformly upper bounded.
Therefore we can define

ϕi := lim
k→+∞

(sup
m≥k

ϕi,m)?,

where ? is the u.s.c regularization. Thanks to (44), ϕi cannot be identi-
cally −∞. Therefore ϕi is a quasi-psh. As ∪m≥1Ui,m = Ui, (45) implies

(46) α+ ω + ddcϕi ≥ 0 on f−1(Ui) in the sense of currents.

Step 4: Final conclusion.
We claim that

Claim 1. ϕi = ϕj on f−1(Ui ∩ Uj) for every i, j.
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Claim 2. For every small Stein open set V in X, we can find a
constant CV depending only on V such that

ϕi(x) ≤ CV for every i and x ∈ V ∩ f−1(Ui).

We postpone the proof of these two claims and finish first the proof
of the theorem.

Thanks to Claim 1, (ϕi)i∈I defines a global quasi-psh function ϕ on
f−1(Y0) and (46) implies that

α+ ω + ddcϕ ≥ 0 on f−1(Y0).

Thanks to Claim 2, we have ϕ ≤ CV on V ∩ f−1(Y0). Therefore ϕ can
be extended as a quasi-psh function on V . Since Claim 2 is true for
every small Stein open set V , ϕ can be extended as a quasi-psh function
on X and satisfies

α+ ω + ddcϕ ≥ 0 on X.

As a consequence, c1(KX/Y ) + [ω] is pseudoeffective and the theorem is
proved. q.e.d.

We are left to prove the two claims in the proof of the theorem.

Lemma 5.3. The claim 1 holds, i.e., ϕi = ϕj on f−1(Ui ∩ Uj) for
every i, j.

Proof. Let y ∈ Ui ∩ Uj be a generic point. Thanks to (41), we have

(47) lim
m→+∞

‖
√
−1

2π
Θhi,m(Li,m)|Xy −

√
−1

2π
Θhj,m(Lj,m)|Xy‖C∞(Xy) = 0.

When m is large enough, (47) implies that

c1(Li,m|Xy) = c1(Lj,m|Xy) ∈ H1,1(Xy) ∩H2(Xy,Z).

As π1(Xy) = 1, we have Pic0(Xy) = 0. Therefore

(48) Li,m|Xy = Lj,m|Xy for m� 1.

Under the isomorphism of (48), by applying ∂∂-lemma, (47) imply the
existence of constants cm ∈ R and smooth functions τm ∈ C∞(Xy) such
that

hi,m = hj,me
cm+τm on Xy and lim

m→+∞
‖τm‖C∞(Xy) = 0.

Combining with the construction of ϕi,m and ϕj,m, we know that

‖ϕi,m − ϕj,m‖C0(Xy) ≤ ‖τm‖C0(Xy) → 0.

Therefore

(49) ϕi|Xy = ϕj |Xy .
As (49) is proved for every generic point y ∈ Ui ∩ Uj , we have

ϕi = ϕj on f−1(Ui ∩ Uj).
The lemma is proved. q.e.d.
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It remains to prove the claim 2. The idea is as follows. Note that
(Li,m, hi,m) is defined only on f−1(Ui), we can not directly apply Propo-
sition 3.3 to (Li,m, hi,m). The idea of the proof is as follows. Thanks

to the construction of Fm and Li,m, by using ∂∂-lemma, we can prove
that, after multiplying by a constant (which depends on f(x) ∈ Y ), the
difference between hFm |Xf(x) and hi,m|Xf(x) is uniformly controlled for

m � 15 . Therefore (Fm|Xf(x) , hFm) is not far from (Li,m|Xf(x) , hi,m).

Note that, using again (36), Fm|V is not far from a holomorphic line
bundle over V . Combining Proposition 3.3 with these two facts, we can
finally prove the claim 2. More precisely, we have

Lemma 5.4. The claim 2 holds, i.e., for every small Stein open set
V in X, we can find a constant CV depending only on V such that

ϕi(x) ≤ CV for every i and x ∈ V ∩ f−1(Ui).

Proof. Step 1: Global approximation.
Fix a small Stein cover (Wj)

N
j=1 of X. Without loss of generality,

we can assume that V bW1. Let (Fm, DFm , hFm)m≥1 be the hermitian
line bundles (not necessary holomorphic) constructed in the step 1 of the
proof of Theorem 5.2. Thanks to Lemma 5.1, we can find an orthonomal
frame eFm of Fm|W1 such that, under the basis eFm , the (0, 1)-part D′′Fm
of DFm |W1 is of the form

D′′Fm = ∂ + β0,1
m ,

where β0,1
m is a smooth (0, 1)-form on W1 satisfying

(50) ‖ 1

sm
β0,1
m ‖C∞(W1) ≤ C1‖α+ ω‖C∞(X)

for a uniform constant C1 independent of m.

Step 2: Local estimation near V .
Thanks to (36), we know that Fm is not far from a holomorphic line

bundle. In this step, we would like to give a more precise description of
this on W1.

Since W1 is a small Stein open set, thanks to (36), we can find the

(0, 1)-formes {σ0,1
m }m≥1 on W1 such that

∂σ0,1
m = −Θ

(0,2)
hFm

(Fm) and lim
m→+∞

‖σ0,1
m ‖C∞(W1) = 0.

Then we have

(51) (D′′F,m + σ0,1
m )2 = 0 on W1,

and

‖
√
−1

2π
Θ
hFm ,D

′′
F,m+σ0,1

m
(Fm)− sm(α+ ω)‖C∞(X) → 0,

5The bigness of m� 1 depends on f(x).
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where Θ
hFm ,D

′′
F,m+σ0,1

m
(Fm) is the curvature for the Chern connection on

Fm with respect to complex structure D′′F,m + σ0,1
m and the metric hFm .

Note that
√
−1

2π Θ
hFm ,D

′′
F,m+σ0,1

m
(Fm) is a closed (1, 1)-form on W1. By

∂∂-lemma, we can find smooth functions {ψm}m≥1 on W1 such that

(i)
√
−1

2π Θ
hFme

−ψm ,D′′F,m+σ0,1
m

(Fm) = sm(α+ ω) on W1 for each m ∈ N6

(ii) lim
m→+∞

(‖σ0,1
m ‖C∞(W1) + ‖ψm‖C∞(W1)) = 0.

Thanks to (51), β0,1
m +σ0,1

m is ∂-closed. Applying standard L2-estimate,
by restricting on some a little bit smaller open subset of W1 (we still
denote it by W1 for simplicity), there exists a smooth function ηm on
W1 such that

(52) ∂ηm = β0,1
m + σ0,1

m on W1

and
1

sm
‖ηm‖C∞(W1) ≤

C2

sm
‖β0,1

m + σ0,1
m ‖C∞(W1)

for a constant C2 independent of m. Combining this with (50) and (ii),
we get

(53) limm→+∞
1

sm
‖ηm‖C∞(W1) ≤ C1 · C2.

By (52), e−ηm · eFm is a holomorphic basis of (W1, Fm, D
′′
Fm

+ σ0,1
m ).

Step 3: Final conclusion.
Let x ∈ V ∩ f−1(Ui) and set y := f(x).

Claim. For m large enough, there exists a

ĝ ∈ H0(Xy ∩W1, Fm, D
′′
Fm + σ0,1

m ),

such that

(54)

∫
Xy∩W1

|ĝ|
2
sm
hFm

ωdimX
X /ωdimY

Y ≤ 2

and

(55) ϕi,m(x) ≤ 1

sm
ln |ĝ|hFm (x) + 2.

We postpone the proof of the claim later and first finish the proof of
our lemma.

As e−ηm ·eFm is a holomorphic basis of (W1, Fm, D
′′
Fm

+σ0,1
m ), we have

ĝ = f · e−ηm · eFm
6Here Θ

hFme
−ψm ,D′′

F,m
+σ

0,1
m

(Fm) is the curvature for the Chern connection on Fm

with respect to complex structure D′′F,m + σ0,1
m and the metric hFm · e−ψm .
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for some holomorphic function f on W1 ∩Xy. Thanks to (53), we can
find a uniform constant C3 > 0 independent of m such that

(56) C−1
3 ≤ |e−ηm · eFm |

2
sm
hFm
≤ C3 on W1.

Together with (54), we have∫
Xy∩W1

|f |
2
sm ωdimX

X /ωdimY
Y ≤ 2C3.

By applying the Ohsawa-Takegoshi extension theorem [5, Prop. 0.2], we

know that |f |
2
sm is uniformly controled. Together with (56),

1
sm

ln |ĝ|hFm (x) is controled by a uniform constant C4. Combining this

with (55), the lemma is proved. q.e.d.

It remains to prove the claim in Lemma 5.4.

Proof of the claim in Lemma 5.4. By (36) and Pic0(Xy) = 0, when m

is large enough, we can find a smooth (0, 1)-forms τ0,1
m on Xy such that

(57) lim
m→+∞

‖τ0,1
m ‖C∞(Xy) = 0 and (Fm, D

′′
Fm + τ0,1

m )|Xy ' Li,m|Xy .

Let Θ
hFm ,τ

0,1
m

(Fm|Xy) be the curvature calculated for the Chern connec-

tion with respect to hFm and the complex structure D′′Fm + τ0,1
m for the

line bundle Fm|Xy . Thanks (36) and (57) imply that

(58) lim
m→+∞

‖Θ
hFm ,τ

0,1
m

(Fm|Xy)−Θhi,m(Li,m|Xy)‖C∞(Xy) = 0.

By using ∂∂-lemma over Xy, under the holomorphic isomorphism of
(57), (58) implies the existence of a constant cm,y and a smooth function

ψ̃m on Xy such that

(59) hFm · e−ψ̃m = hi,m · e−cm,y on Xy,

and

(60) lim
m→+∞

‖ψ̃m‖C∞(Xy) = 0.

Here cm,y is a constant on Xy which depends only on m and y.

By the definition of ϕi,m, there exists a g ∈ H0(Xy, Li,m) such that

(61) ϕi,m(x) =
1

sm
ln |g|hi,m(x) and

∫
Xy

|g|
2
sm
hi,m

ωdimX
X /ωdimY

Y = 1.

Using the holomorphic isomorphism (57) and the metric estimations

(60) and (59), we can thus find a g̃ ∈ H0(Xy, Fm, D
′′
Fm

+ τ0,1
m )7 such

7It means that g̃ is a holomorphic section of Fm on Xy with respect to the complex
structure D′′Fm + τ0,1m .
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that

(62)

∫
Xy

|g̃|
2
sm
hFm

ωdimX
X /ωdimY

Y = 1 and ϕi,m(x) ≤ 1

sm
ln |g̃|hFm (x) + 1,

where m is large enough. Here we use Remark 3.2 (3) and the fact that
cm,y is constant on Xy (although it might be very large).

Now we prove the claim. Thanks to (57) and the fact that τ0,1
m −σ0,1

m

is ∂-exact on the Stein open set Xy ∩ W1, there exists some smooth
functions ζm on Xy ∩W1, such that

∂ζm = τ0,1
m − σ0,1

m on Xy ∩W1

and

lim
m→+∞

1

sm
‖ζm‖C∞(Xy∩W1)(63)

≤ lim
m→+∞

Cy
sm
‖τ0,1
m − σ0,1

m ‖C∞(Xy∩W1) = 0,

for a constant Cy independent of m, but depending on y.

Set ĝ := eζm · g̃. Then ĝ ∈ H0(Xy ∩W1, Fm, D
′′
Fm

+ σ0,1
m ). Thanks to

(63) and (62), when m is large enough, we have

(64)

∫
Xy∩W1

|ĝ|
2
sm
hFm

ωdimX
X /ωdimY

Y ≤ 2

and

(65) ϕi,m(x) ≤ 1

sm
ln |ĝ|hFm (x) + 2.

The claim is proved. q.e.d.

6. Proof of the main theorem

We start with an easy, but important lemma relating null locus and
lc centres.

Lemma 6.1. Let X be a compact Kähler manifold, and let α be
a nef and big class such that the null locus Null(α) has no divisorial
components. Let Z ⊂ X be an irreducible component of Null(α). Then
there exists a positive real number c such that Z is a maximal lc centre
for (X, cα).

Remark. The coefficient c depends on the choice of Z, so in general
the other irreducible components of Null(α) will not be lc centres for
(X, cα).

Proof. By a theorem of Collins of Tosatti [15, Thm. 1.1] the non-
Kähler locus EnK(α) coincides with the null-locus of Null(α). Moreover
by [8, Thm. 3.17] there exists a Kähler current T with analytic singu-
larities in the class α such that the Lelong set coincides with EnK(α).
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Since the non-Kähler locus has no divisorial components the class α is
a modified Kähler class [8, Defn. 2.2]. By [8, Prop. 2.3] the class α

has a log-resolution µ : X̃ → X such that µ∗α̃ = α. In fact the proof
proceeds by desingularising a Kähler current with analytic singularities
in the class α, so, using the current T defined above, we see that the µ-
exceptional locus maps exactly onto Null(α). Up to blowing up further
the exceptional locus is a SNC divisor. By Remark 4.3 we have

µ∗α = α̃+
k∑
j=1

rjDj ,

with rj > 0 for all j ∈ {1, . . . , k}. Since α is nef and big, the class α̃ +
mµ∗α is Kähler for all m > 0. Thus up to replacing the decomposition
above by

µ∗α =
α̃+mµ∗α

m+ 1
+

k∑
j=1

rj
m+ 1

Dj

for m� 0 we can suppose that rj < 1 for all j ∈ {1, . . . , k}. Since X is

smooth we have KX̃ = µ∗KX +
∑k

j=1 ajEj with aj a positive integer.
Since rj < 1 we have aj − rj > −1 for all Ej mapping onto Z. Thus we
can choose a c ∈ R+ such that aj − crj ≥ −1 for all Ej mapping onto
Z and equality holds for at least one divisor. q.e.d.

As a first step toward Theorem 1.3 we can now prove the following:

Theorem 6.2. Let X be a compact Kähler manifold of dimension
n. Suppose that Conjecture 1.2 holds for all manifolds of dimension at
most n − 1. Suppose that KX is pseudoeffective but not nef, and let ω
be a Kähler class on X such that α := KX + ω is nef and big but not
Kähler.

Let Z ⊂ X be an irreducible component of maximal dimension of
the null-locus Null(α), and let π : Z ′ → Z be the composition of the
normalisation and a resolution of singularities. Let k be the numerical
dimension of π∗α|Z (cf. Definition 2.5). Then we have

KZ′ · π∗α|kZ · π∗ω|dimZ−k−1
Z < 0.

In particular Z ′ is uniruled.

Proof of Theorem 6.2. Since α = KX + ω and π∗α|k+1
Z = 0 we have

π∗KX |Z · π∗α|kZ = −π∗ω|Z · π∗α|kZ .
By hypothesis k < dimZ so dimZ − k− 1 is non-negative. Since π∗α|kZ
is a non-zero nef class and ω is Kähler this implies by Remark 2.6 that

(66) π∗KX |Z · π∗α|kZ · π∗ω|dimZ−k−1
Z = −π∗ω|dimZ−k

Z · π∗α|kZ < 0.

Our goal will be to prove that

KZ′ · π∗α|kZ · π∗ω|dimZ−k−1
Z < 0.
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This inequality implies the statement: since KZ′ is not pseudoeffective
and Conjecture 1.2 holds in dimension at most n−1 ≥ dimZ ′ we obtain
that Z ′ is uniruled.

We will make a case distinction:

Step 1. The null-locus of α contains an irreducible divisor. Since Z
has maximal dimension, it is a divisor. Since KX is pseudoeffective we
can consider the divisorial Zariski decomposition [8, Defn. 3.7]

c1(KX) =
∑

eiZi + P (KX),

where ei ≥ 0, the Zi ⊂ X are prime divisors and P (KX) is a modified
nef class [8, Defn. 2.2]. Arguing as in [29, Lemma 4.1] we see that the
inequality (66) implies (up to renumbering) that Z1 = Z and

(67) π∗(c1(OZ(Z))) · π∗α|kZ · π∗ω|n−k−2
Z < 0.

Thus the normal bundle NZ/X ' OZ(Z) is negative with respect to
these nef classes. Moreover there exist effective Q-divisors on D1 and
D2 on Z ′ such that

KZ′ = π∗(KX + Z) +D1 −D2

and π(D1) has codimension at least two in Z (cf. [43, Prop. 2.3]). Thus
we have

KZ′ · π∗α|kZ · π∗ω|n−k−2
Z ≤ π∗(KX + Z) · π∗α|kZ · π∗ω|n−k−2

Z .

Combining (66) and (67) we obtain that the right hand side is negative.

Step 2. The null-locus of α has no divisorial components. In this
case we know by Lemma 6.1 that there exists a c > 0 such that Z is a
maximal lc centre for (X, cα). The classes π∗α|Z and π∗ω|Z are nef, so
by Theorem 1.5 we have

KZ′ · π∗α|kZ · π∗ω|dimZ−k−1
Z ≤ π∗(KX + cα)|Z · π∗α|kZ · π∗ω|dimZ−k−1

Z .

Since k is the numerical dimension of π∗α|Z we have c π∗α|k+1
Z ·

π∗ω|dimZ−k−1
Z = 0. Thus (66) yields the claim. q.e.d.

Remark 6.3. We used the hypothesis that Z has maximal dimension
only in Step 1, so our proof actually yields a more precise statement:
Null(α) contains a uniruled divisor or all the components of Null(α) are
uniruled.

We come now to the technical problem mentioned in the introduction:

Problem 6.4. Let X be a compact Kähler manifold, and let α ∈
N1(X) be a nef cohomology class. Does there exist a real number b > 0
such that for every (rational) curve C ⊂ X we have either α · C = 0 or
α · C ≥ b?
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Remark 6.5. If α is the class of a nef Q-divisor, the answer is ob-
viously yes: some positive multiple mα is integral, so we can choose
b := 1

m . If α is a Kähler class the answer is also yes: by Bishop’s theo-
rem there are only finitely many deformation families of curves C such
that α ·C ≤ 1, so α ·C takes only finitely many values in ]0, 1[. However,
even for the class of an R-divisor on a projective manifold X it seems
possible that the values α ·C accumulate at 0 [36, Rem. 1.3.12]. In the
proof of Theorem 1.3 we will use that α is an adjoint class to obtain the
existence of the lower bound b.

The problem 6.4 is invariant under certain birational morphisms:

Lemma 6.6. Let π : X → X ′ be a holomorphic map between normal
projective varieties X and X ′. Let α′ be a nef R-divisor class on X ′ and
set α := π∗α′.

a) Suppose that there exists a real number b > 0 such that for every
(rational) curve C ′ ⊂ X ′ we have α′ · C ′ = 0 or α′ · C ′ ≥ b. Then for
every (rational) curve C ⊂ X we have α · C = 0 or α · C ≥ b.

b) Suppose that there exists a real number b > 0 such that for every
(rational) curve C ⊂ X we have α · C = 0 or α · C ≥ b. Suppose
also that X has klt singularities and π is the contraction of a KX-
negative extremal ray. Then for every (rational) curve C ′ ⊂ X ′ we have
α′ · C ′ = 0 or α′ · C ′ ≥ b.
Proof of a). Let C ⊂ X be a (rational) curve such that α · C 6= 0. the
image C ′ := π(C) ⊂ X ′ is a (rational) curve and the induced map
C → C ′ has degree d ≥ 1. Thus the projection formula yields

α · C = π∗α′ · C = α′ · π∗(C) = dα′ · C ′ ≥ db ≥ b.

Proof of b). Let C ′ ⊂ X ′ be an arbitrary (rational) curve such that
α′ · C ′ 6= 0. By [26, Cor. 1.7(2)] the natural map π−1(C ′) → C ′ has
a section, so there exists a (rational) curve C ⊂ X such that the map
π|C : C → C ′ has degree one. Thus the projection formula yields

α′ · C ′ = α′ · π∗(C) = π∗α · C ≥ b.
q.e.d.

Remark 6.7. It is easy to see that statement a) also holds when X
and X ′ are compact Kähler manifolds and α′ is a nef cohomology class
on X ′.

Corollary 6.8. Let X be a normal projective Q-factorial variety with
klt singularities, and let α be a nef R-divisor class on X. Suppose that
there exists a real number b > 0 such that for every (rational) curve
C ⊂ X we have α · C = 0 or α · C ≥ b. Let µ : X 99K X ′ be the
divisorial contraction or flip of a KX-negative extremal ray Γ such that
α · Γ = 0. Set α′ := µ∗(α). Then α′ is a nef R-divisor class on X ′ and
for every (rational) curve C ⊂ X we have α · C = 0 or α · C ≥ b.
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Proof. If µ is divisorial the condition α · Γ = 0 implies that α = µ∗α′

[34, Cor. 3.17]. Thus Lemma 6.6, b) applies. If µ is a flip, let f : X → Y
be the contraction of the extremal ray and f ′ : X ′ → Y the flipping
map. Since α · Γ = 0 there exists an R-divisor class αY on Y such that
α = f∗αY [34, Cor. 3.17]. Moreover we have α′ = (f ′)∗αY since they
coincide in the complement of the flipped locus. Thus we conclude by
applying Lemma 6.6,b) to f and Lemma 6.6,a) to f ′. q.e.d.

Proposition 6.9. Let F be a projective manifold, and let α be a nef
R-divisor class on F . Suppose that there exists a real number b > 0 such
that for every rational curve C ⊂ F such that α · C 6= 0 we have

(68) α · C > b.

Then one of the following holds

• F is dominated by rational curves C ⊂ F such that α · C = 0; or
• the class KF + 2 dimF

b α is pseudoeffective.

Proof. Note that, up to replacing α by 2 dimF
b α, we can suppose that

(69) α · C > 2 dimF

for every rational curve C ⊂ F that is not α-trivial. Suppose thatKF+α
is not pseudoeffective, then our goal is to show that F is covered by α-
trivial rational curves. Since KF +α is not pseudoeffective, there exists
an ample R-divisor H such that KF +α+H is not pseudoeffective. Since
H and α + H are ample we can choose effective R-divisors ∆H ∼R H
and ∆ ∼R α+H such that the pairs (F,∆H) and (F,∆) are klt. By [6,
Cor. 1.3.3] we can run a KF + ∆-MMP

(F,∆) =: (F0,∆0)
µ0
99K (F1,∆1)

µ1
99K . . .

µk
99K (Fk,∆k),

that is for every i ∈ {0, . . . , k − 1} the map µi : Fi 99K Fi+1 is either
a divisorial Mori contraction of a KFi + ∆i-negative extremal ray Γi
in NE(Xi) or the flip of a small contraction of such an extremal ray.
Note that for every i ∈ {0, . . . , k} the variety Fi is normal Q-factorial
and the pair (Fi,∆i) is klt. Moreover Fk admits a Mori contraction
of fibre type ψ : Fk → Y contracting an extremal ray Γk such that
(KFk + ∆k) · Γk < 0.

Set ∆H,0 := ∆H , α0 := α and for all i ∈ {0, . . . , k − 1} we define
inductively

∆H,i+1 := (µi)∗(∆H,i), αi+1 := (µi)∗(αi).

Note that for all i ∈ {0, . . . , k} we have

(70) KFi + ∆i ≡ KFi + ∆H,i + αi.

We claim that for all i ∈ {0, . . . , k} the R-divisor class αi is nef and
αi · Γi = 0. Moreover the pairs (Xi,∆H,i) are klt. Assuming this for
the time being, let us see how to conclude: since ψ : Fk → Y is a
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Mori fibre space and the extremal ray Γk is αk-trivial, we see that Fk is
dominated by αk-trivial rational curves (Ct)t∈T . A general member of
this family of rational curves is not contained in the exceptional locus of
F0 99K Fk, so the strict transforms define a dominant family of rational
curves (C ′t)t∈T of F0. Since all the birational contractions in the MMP
F0 99K Fk are α•-trivial, we easily see (cf. the proof of Corollary 6.8)
that

α · C ′t = αk · Ct = 0.

Proof of the claim. Since α0 is nef, we have

0 > (KF0 + ∆0) · Γ0 = (KF0 + ∆H,0 + α0) · Γ0 ≥ (KF0 + ∆H,0) · Γ0.

Thus the extremal ray Γ0 is KF0 + ∆H,0-negative, in particular the pair
(F1,∆1) is klt [34, Cor. 3.42, 3.43]. Moreover there exists by [31, Thm.
1] a rational curve [C0] ∈ Γ0 such that (KF0 + ∆H,0) · C0 ≥ −2 dimF .
Thus if α0 · C0 6= 0, the inequality (69) implies that

(KF0 + ∆0) · C0 = (KF0 + ∆H,0) · C0 + α0 · C0 > 0.

In particular the extremal ray Γ0 is not KF0 + ∆0-negative, a contra-
diction to our assumption. Thus we have α0 ·C0 = 0. By Corollary 6.8
this implies that α1 is nef and satisfies the inequality (69). The claim
now follows by induction on i. q.e.d.

Remark 6.10. For the proof of Theorem 1.3 we will use the MRC
fibration of a uniruled manifold. Since the original papers [33, 11] are
formulated for projective manifolds, let us recall that for a compact
Kähler manifold M that is uniruled the MRC fibration is defined as
an almost holomorphic map f : M 99K N such that the general fibre
F is rationally connected and the dimension of F is maximal among
all the fibrations of this type. The existence of the MRC fibration
follows, as in the projective case, from the existence of a quotient map
for covering families [12]. The base N is not uniruled: arguing by
contradiction we consider a dominating family (Ct)t∈T of rational curves
on N . Let Mt be a desingularisation of f−1(Ct) for a general Ct, then
Mt is a compact Kähler manifold with a fibration onto a curve Mt →
Ct such that the general fibre is rationally connected. In particular
H0(Mt,Ω

2
Mt

) = 0 so Mt is projective by Kodaira’s criterion. Thus
we can apply the Graber-Harris-Starr theorem [22] to see that Mt is
rationally connected, a contradiction.

Proof of Theorem 1.3. Let ω be a Kähler class such that α := KX+ω is
nef and big, but not Kähler. By Theorem 6.2 there exists a subvariety
Z ⊂ X contained in the null-locus Null(α) that is uniruled. More
precisely let π : Z ′ → Z be a desingularisation, and denote by k the
numerical dimension of α′ := π∗α|Z . Then we know by Theorem 6.2
that

KZ′ · α′ k · π∗ω|dimZ−k−1
Z < 0.
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Since α′ k+1 = 0 this actually implies that

(71) (KZ′ + λα′) · α′ k · π∗ω|dimZ−k−1
Z < 0 ∀ λ > 0.

Our goal is to prove that this implies that Z contains a KX -negative
rational curve. Arguing by contradiction we suppose that KX · C ≥ 0
for every rational curve C ⊂ Z. Since ω is a Kähler class this implies by
Remark 6.5 that there exists a b > 0 such that for every rational curve
C ⊂ Z we have

(72) α · C = (KX + ω) · C ≥ ω · C ≥ b.

By Lemma 6.6a) and Remark 6.7 this implies that for every rational
curve C ′ ⊂ Z ′ we have α′ · C ′ = 0 or α′ · C ′ ≥ b.

Since Z ′ is uniruled we can consider the MRC-fibration f : Z ′ 99K Y
(cf. Remark 6.10). The general fibre F is rationally connected, in par-
ticular we can consider α′|F as a nef R-divisor class. Moreover the
inequality above shows that α′|F satisfies the condition (68) in Propo-
sition 6.9. If F is dominated by α′|F -trivial rational curves, then Z ′ is
dominated by α′-trivial rational curves. A general member of this dom-
inating family is not contracted by π, so Z is dominated by α-trivial
rational curves. This possibility is excluded by (72), so Proposition 6.9
shows that there exists a λ > 0 such that KF +λα′|F is pseudoeffective.

We will now prove that KZ′ + λα is pseudoeffective, which clearly
contradicts (71). If ν : Z ′′ → Z is a resolution of the indetermina-
cies of f such that KZ′′ + ν∗(λα) is pseudoeffective, then KZ′ + λα =
(ν)∗(KZ′′ + ν∗(λα)) is pseudoeffective. Thus we can assume without
loss of generality that the MRC-fibration f is a holomorphic map. Let
ω′ be a Kähler class on Z ′, then for every ε > 0 the class λα′ + εω is
Kähler and KF + (λα + εω)|F is pseudoeffective. Thus we can apply
Theorem 5.2 to f : Z ′ → Y to see that

KZ′/Y + λα+ εω

is pseudoeffective. Note now that Y has dimension at most dimX − 2
and is not uniruled (Remark 6.10) Since we assume that Conjecture 1.2
holds in dimension up to dimX − 1, we obtain that KY is pseudoeffec-
tive. Thus we see that KZ′ + λα + εω is pseudoeffective for all ε > 0.
The statement follows by taking the limit ε→ 0. q.e.d.
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[23] Qi’an Guan and Xiangyu Zhou, A solution of an L2 extension problem with an
optimal estimate and applications, Ann. of Math. (2) 181 (2015), no. 3, 1139–
1208. MR3296822

[24] Henri Guenancia, Families of conic Kähler-Einstein metrics, ArXiv e-prints
(2016).

[25] Christopher Hacon and James McKernan, On the existence of flips, arXiv
preprint math/0507597 (2005).

[26] Christopher Hacon and James Mckernan, On Shokurov’s rational connectedness
conjecture, Duke J. 138 (2007), no. 1, 119–136. MR2309156 (2008f:14030)

[27] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977, Grad-
uate Texts in Mathematics, No. 52. MR0463157 (57 #3116)

[28] Robin Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980), no. 2, 121–
176. MR597077
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Geometry: In Honor of Professor Yujiro Kawamata’s 60th Birthday, Advanced
Studies in Pure Mathematics, vol. 74, 2017, pp. 335–356.

[43] Miles Reid, Nonnormal del Pezzo surfaces, Publ. Res. Inst. Math. Sci. 30 (1994),
no. 5, 695–727. MR1311389 (96a:14042)

[44] Georg Schumacher, Positivity of relative canonical bundles and applications, In-
vent. Math. 190 (2012), no. 1, 1–56. MR2969273

[45] Shigeharu Takayama, Pluricanonical systems on algebraic varieties of general
type, Invent. Math. 165 (2006), no. 3, 551–587. MR2242627 (2007m:14014)

[46] Shigeharu Takayama, On the uniruledness of stable base loci, J. Differential
Geom. 78 (2008), no. 3, 521–541. MR2396253 (2009b:14027)

[47] Li Yi, An Ohsawa-Takegoshi theorem on compact Kähler manifolds, Sci. China
Math. 57 (2014), no. 1, 9–30. MR3146512
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