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MINIMAL HYPERSURFACES AND BOUNDARY
BEHAVIOR OF COMPACT MANIFOLDS

WITH NONNEGATIVE SCALAR CURVATURE

Siyuan Lu & Pengzi Miao†

Abstract

On a compact Riemannian manifold with boundary having pos-
itive mean curvature, a fundamental result of Shi and Tam states
that, if the manifold has nonnegative scalar curvature and if the
boundary is isometric to a strictly convex hypersurface in the Eu-
clidean space, then the total mean curvature of the boundary is
no greater than the total mean curvature of the corresponding Eu-
clidean hypersurface. In 3-dimension, Shi-Tam’s result is known
to be equivalent to the Riemannian positive mass theorem.

In this paper, we provide a supplement to Shi-Tam’s result by
including the boundary effect of minimal hypersurfaces. More
precisely, given a compact manifold Ω with nonnegative scalar
curvature, assuming its boundary consists of two parts, Σ

H
and

Σ
O

, where Σ
H

is the union of all closed minimal hypersurfaces
in Ω and Σ

O
is assumed to be isometric to a suitable 2-convex

hypersurface Σ in a spatial Schwarzschild manifold of mass m,
we establish an inequality relating m, the area of Σ

H
, and two

weighted total mean curvatures of Σ
O

and Σ.
In 3-dimension, our inequality has implications to isometric em-

bedding and quasi-local mass problems. In a relativistic context,
the result can be interpreted as a quasi-local mass type quantity
of Σ

O
being greater than or equal to the Hawking mass of Σ

H
. We

further analyze the limit of this quantity associated with suitably
chosen isometric embeddings of large spheres in an asymptotically
flat 3-manifold M into a spatial Schwarzschild manifold. We show
that the limit equals the ADM mass of M . It follows that our
result on the compact manifold Ω is equivalent to the Riemannian
Penrose inequality.

1. Introduction and statement of results

The main goal of this paper is to prove the following theorem:
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Theorem 1.1. Let (Ωn+1, ğ) be a compact, connected, orientable,
(n+ 1)-dimensional Riemannian manifold with nonnegative scalar cur-
vature, with boundary ∂Ω. Suppose ∂Ω is the disjoint union of two
pieces, ΣO and ΣH , where

(i) ΣO has positive mean curvature H; and
(ii) ΣH , if nonempty, is a minimal hypersurface (with one or more

components) and there are no other closed minimal hypersurfaces
in (Ω, ğ).

Let Mn+1
m denote an (n+1)-dimensional spatial Schwarzschild manifold,

outside the horizon, of mass m > 0. Suppose ΣO is isometric to a
closed, star-shaped, 2-convex hypersurface Σn ⊂ Mn+1

m with Ric(ν, ν) ≤
0, where Ric is the Ricci curvature of Mn+1

m and ν is the outward unit
normal to Σ.

If n < 7, then

(1.1) m+
1

nωn

∫
Σ
NHm dσ ≥

1

2

(
|ΣH |
ωn

)n−1
n

+
1

nωn

∫
Σ
O

NH dσ.

Here Hm is the mean curvature of Σ in Mn+1
m , dσ is the area element

on Σ and ΣO , ωn is the area of the standard unit sphere Sn, N is the
static potential function on Mn+1

m given by

N =
1− m

2 |x|
1−n

1 + m
2 |x|1−n

if one writes

Mn+1
m =

(
Rn+1 \

{
|x| <

(m
2

) 1
n−1

}
,
(

1 +
m

2
|x|1−n

) 4
n−1

gE

)
,

where gE is the Euclidean metric, N is also viewed as a function on ΣO

via the isometry between Σ and ΣO , |ΣH | denotes the area of ΣH , and
|ΣH | is taken to be 0 if ΣH = ∅.

Moreover, if equality in (1.1) holds, then

H = Hm and
1

2

(
|ΣH |
ωn

)n−1
n

= m.

In particular, ΣH must be nonempty in this case.

Remark 1.1. Compact manifolds (Ω, ğ) satisfying conditions (i) and
(ii) in Theorem 1.1 exist widely. For instance, given any compact,

connected, orientable Riemannian manifold (Ω̃, ğ) with disconnected

boundary ∂Ω̃, if the mean curvature vector of ∂Ω̃ points inward at each
boundary component, then by minimizing area among all hypersurfaces
that bounds a domain with a chosen boundary component, one can al-
ways construct such an (Ω, ğ) (under the given dimension assumption).
In a relativistic context, a compact manifold (Ω, ğ) satisfying conditions
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(i) and (ii) represents a finite body surrounding the apparent horizon of
the black hole in a time-symmetric initial data set.

Remark 1.2. A hypersurface Σ ⊂ Mn+1
m is called 2-convex if σ1 > 0

and σ2 > 0, where σ1 and σ2 are the first and second elementary sym-
metric functions of the principal curvatures of Σ in Mn+1

m , respectively.

Remark 1.3. Let ΣS
H

= ∂Mn+1
m be the minimal hypersurface bound-

ary of Mn+1
m . Using the fact m = 1

2

(
|ΣS
H
|

ωn

)n−1
n

, we can write (1.1)

equivalently as
(1.2)

1

2

(
|ΣS

H
|

ωn

)n−1
n

+
1

nωn

∫
Σ
NHm dσ ≥

1

2

(
|ΣH |
ωn

)n−1
n

+
1

nωn

∫
Σ
O

NH dσ.

Such an inequality has the following variational interpretation. Let g
denote the induced metric on Σ from the Schwarzschild metric ḡ on
Mn+1
m . Let F̊(Σ,g) be the set of fill-ins of (Σ, g) with outermost horizon

inner boundary, i.e. F̊(Σ,g) consists of all compact, connected, orientable
manifolds (Ω, ğ) with nonnegative scalar curvature, with boundary sat-
isfying (i) and (ii) such that ΣO = Σ and ğ|Σ

O
= g, where ğ|Σ

O
is

the induced metric on ΣO from ğ. Let N be the function on ΣO = Σ,

which is the restriction of the static potential on Mn+1
m to Σ. On F̊(Σ,g),

consider the functional

(Ω, ğ) 7−→ 1

2

(
|ΣH |
ωn

)n−1
n

+
1

nωn

∫
Σ
O

NH dσ.

Inequality (1.2) asserts that this functional is maximized at (ΩS , ḡ),
where ΩS is the domain in Mn+1

m bounded by Σ and ΣS
H

. (Such an in-
terpretation of (1.2) in terms of fill-ins relates to the work of Mantoulidis
and the second author [30].)

Treating the assumption that ΣO is isometric to Σ ⊂ Mn+1
m as a

condition of having an isometric embedding of ΣO into Mn+1
m , we have

the following result.

Theorem 1.2. Let (M3, ğ) be an asymptotically flat 3-manifold. Let
Sr denote the coordinate sphere of coordinate radius r in a coordinate
chart defining the asymptotic flatness of (M3, ğ). Let gr be the induced
metric on Sr. Then, given any constant m > 0, there exists an isometric
embedding

Xr : (Sr, gr) −→M3
m

for each sufficiently large r, such that Σr = Xr(Sr) is a star-shaped,
convex surface in M3

m, with Ric(ν, ν) < 0 where ν is the outward unit
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normal to Σr; moreover,

(1.3) lim
r→∞

(
m+

1

8π

∫
Sr

N(Hm −H) dσ

)
= m,

and

(1.4) V (r)− Vm(r) = 2πr2(m−m) + o(r2), as r →∞.

Here m is the ADM mass of (M3, ğ), H is the mean curvature of Sr
in (M3, ğ) and Hm is the mean curvature of Σr in M3

m, N is the static
potential on M3

m, N and Hm are viewed as functions on Sr via the
embedding Xr, V (r) is the volume of the region enclosed by Sr in (M3, ğ)
and Vm(r) is the volume of the region enclosed by Σr in M3

m.

Now we explain the motivations to and the implications of Theorem
1.1. Our first motivation to Theorem 1.1 is the following theorem of Shi
and Tam [41].

Theorem 1.3 ([41]). Let (Ω̃n+1, ğ) be a compact, Riemannian spin

manifold with nonnegative scalar curvature, with boundary ∂Ω̃. Let Σi,
1 ≤ i ≤ k, be the connected components of ∂Ω̃. Suppose each Σi has
positive mean curvature and each Σi is isomeric to a strictly convex
hypersurface Σ̂i ⊂ Rn+1. Then

(1.5)

∫
Σ̂i

H0 dσ ≥
∫

Σi

H dσ,

where H0 is the mean curvature of Σ̂i in Rn+1 and H is the mean
curvature of Σi in (Ω̃, ğ). Moreover, if equality holds for some i, then

k = 1 and (Ω̃, ğ) is isometric to a domain in Rn+1.

Theorem 1.3 is a fundamental result on compact manifolds with non-
negative scalar curvature with boundary, obtained via the Riemannian
positive mass theorem [42, 46]. For the purpose of later explaining the
proof of Theorem 1.1, we outline the proof of Theorem 1.3 from [41] as
follows. For simplicity, we assume k = 1 and denote Σ1 by Σ. Iden-
tifying Σ with its isometric image in Rn+1 and using the assumption
that Σ is convex in Rn+1, one can write the Euclidean metric gE on E,
the exterior of Σ, as gE = dt2 + gt, where gt is the induced metric on
the hypersurface Σt that has a fixed Euclidean distance t to Σ. Given
the mean curvature function H > 0 on Σ, one shows that there exists
a function u > 0 on E such that gu = u2dt2 + gt has zero scalar curva-
ture, (E, gu) is asymptotically flat, and the mean curvature Hu of Σt in
(E, gu) satisfies Hu = H at Σ0 = Σ. A key feature of such an (E, gu) is
that the integral

(1.6)
1

nωn

∫
Σt

(H0 −Hu) dσ
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is monotone nonincreasing and it converges to m(gu), where m(gu) is

the ADM mass [1] of (E, gu). By gluing (Ω̃, ğ) and (E, gu) along their
common boundary Σ and applying the Riemannian positive mass the-
orem, which is still valid under the condition that the mean curvatures
of Σ in (Ω̃, ğ) and (E, gu) agree (see [41, 33]), one concludes that

(1.7)
1

nωn

∫
Σ

(H0 −H) dσ ≥ lim
t→∞

1

nωn

∫
Σt

(H0 −H) dσ = m(gu) ≥ 0,

which proves (1.5).
One of the most important features of Theorem 1.3 is that, when

n = 2, by the solution to the Weyl embedding problem ([38, 39]),
Theorem 1.3 implies the positivity of the Brown-York quasi-local mass
([9, 10]) of ∂Ω̃, under the assumption that ∂Ω̃ is a topological 2-sphere
with positive Gauss curvature.

Remark 1.4. When n > 2, Eichmair, Wang and the second author
[17] proved that Theorem 1.3 remains valid if each component Σi is
isometric to a star-shaped hypersurface with positive scalar curvature
in Rn+1. It was also noted in [17] that the spin assumption therein can
be dropped when n < 7. Recently, Schoen and Yau [43] proved that
the Riemannian positive mass theorem holds in all dimensions without a
spin assumption. Therefore, by the argument in [17], results in [41, 17]
also hold in all dimensions without a spin assumption.

To motivate Theorem 1.1 from Theorem 1.3, one may consider the
setting k > 1 of Theorem 1.3. In this case, given any boundary compo-
nent Σi, there exists a minimal hypersurface Si, possibly disconnected,
in the interior of (Ω̃, ğ) such that Si and Σi bounds a domain Ω satisfying
conditions (i) and (ii) in Theorem 1.1. Thus, besides the nonnegative
scalar curvature, one wants to understand the influence of Si on Σi.
This is indeed related to the following Riemannian Penrose inequality,
which is our second motivation to Theorem 1.1.

Theorem 1.4 ([26, 4, 6]). Let Mn+1 be an asymptotically flat mani-
fold with nonnegative scalar curvature, with boundary ∂M , where n < 7.
Suppose ∂M is an outer minimizing, minimal hypersurface (with one or
more component), then

(1.8) m(M) ≥ 1

2

(
|∂M |
ωn

)n−1
n

,

where m(M) is the ADM mass of M and |∂M | is the area of ∂M .
Moreover, equality holds if and only if M is isometric to a spatial
Schwarzschild manifold outside its horizon.

When n = 2, Theorem 1.4 was first proved by Huisken and Ilmanen
[25, 26] for the case that ∂M is connected, and later proved by Bray [4]
for the general case in which ∂M can have multiple components. For
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higher dimensions, Bray and Lee [6] proved inequality (1.8) for n < 7
and established the rigidity case assuming that M is spin. (Without the
spin assumption, the rigidity case follows by combining results of Bray
and Lee [6] and McFeron and Székelyhidi [31].)

To compare Theorem 1.1 and Theorem 1.4, we can write (1.1) equiv-
alently as

(1.9) m+
1

nωn

∫
Σ
O

N(Hm −H) dσ ≥ 1

2

(
|ΣH |
ωn

)n−1
n

by identifying ΣO and Σ. The quantity on the left side of (1.9) depends
only on the assumption on the (outer) boundary component ΣO of Ω,
while the mass m(M) in (1.8) is determined solely by the asymptotically
flat end of M . In this sense, Theorem 1.1 can be viewed as a localiza-
tion of Theorem 1.4 to a compact manifold with boundary satisfying
conditions (i) and (ii). Indeed, by (1.3) in Theorem 1.2 and the fact
that our proof of Theorem 1.1 uses (1.8), Theorem 1.1 is equivalent to
the Riemannian Penrose inequality (1.8) when n = 2. In this case, the
right side of (1.9) is the Hawking quasi-local mass [24] of ΣH , and (1.9)
describes how ΣH , which models the apparent horizon of black hole,
contributes to the quasi-local mass of a body surrounding it.

Remark 1.5. In [14], Chen, Wang, Wang and Yau introduced a no-
tion of quasi-local energy in reference to a general static spacetime. Set-
ting τ = 0 in equation (2.10) in [14], one sees that the quasi-local energy
of a 2-surface Σ defined in [14] with respect to an isometric embedding
of Σ into a time-symmetric slice of Schwarzschild the Schwarzschild
spacetime with mass m is given by 1

8π

∫
ΣN(Hm −H) dσ, which agrees

with the surface integral on the left side of (1.9) with Σ = ΣO .

To illustrate that Theorem 1.1 provides a supplement to Shi-Tam’s
result, we want to make a connection between (1.9) and an inequality
that can be obtained by directly combining (1.8) and Shi-Tam’s proof
of Theorem 1.3. Only for the convenience of making a comparison, we
list the following inequality in a theorem format:

Theorem 1.3’. Let (Ωn+1, ğ) be a compact Riemannian manifold
with nonnegative scalar curvature, with boundary ∂Ω, satisfying condi-
tions (i) and (ii) in Theorem 1.1. Suppose ΣH 6= ∅ and ΣO is isometric
to a strictly convex hypersurface Σn ⊂ Rn+1. If n < 7, then

(1.10)
1

nωn

∫
Σ
O

(H0 −H) dσ >
1

2

(
|ΣH |
ωn

)n−1
n

,

where H0 is the mean curvature of Σ in Rn+1.

The proof of (1.10) is identical to Shi-Tam’s proof of Theorem 1.3
outlined earlier, except that in the final inequality of (1.7), one replaces
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the Riemannian positive mass theorem by the Riemannian Penrose in-
equality to yield

1

nωn

∫
Σ
O

(H0 −H) dσ ≥ lim
t→∞

1

nωn

∫
Σt

(H0 −H) dσ

= m(gu) ≥ 1

2

(
|ΣH |
ωn

)n−1
n

.

(1.11)

The fact that (1.8) is applicable to the manifold obtained by gluing
(Ω, ğ) and (E, gu) was demonstrated in [35] for n = 2 and in [32] for
n < 7.

Remark 1.6. By the argument in [17], (1.10) holds with the assump-
tion that Σ ⊂ Rn+1 is strictly convex replaced by that Σ is star-shaped
with positive scalar curvature. Such a statement is precisely the m = 0
analogue of Theorem 1.1 for the case ΣH 6= ∅.

Inequality (1.10) takes a simpler form than (1.9), however it is al-
ways a strict inequality. This is because, if the first inequality in (1.11)
were equality, the function u would be identically 1 (implied by the
monotonicity calculation of (1.6) in [41, 17]), consequently H0 = H
identically, which would show 0 ≥ |ΣH |, contradicting the assumption
ΣH 6= ∅. A more intuitive reason for (1.10) to be strict is that, though
ΣH is a nonempty minimal hypersurface in Ωn+1, (1.10) is obtained by
comparing ΣO to a hypersurface in Rn+1 which is free of closed minimal
hypersurfaces.

For the above reason, we consider an assumption ΣO is isometric to
an Σ ⊂ Mn+1

m in Theorem 1.1. In particular, (1.9) does become an
equality when Ω itself is the domain in Mn+1

m bounded by Σ and the
Schwarzschild horizon ΣS

H
.

The fact that (1.9) gives a refined estimate on |ΣH |, sharper than
(1.10), can be illustrated by the case in which ΣO is isometric to a
round sphere. In the following example, for simplicity, we take n = 2.

Example 1. Suppose Ω is a compact 3-manifold with nonnegative
scalar curvature, with boundary ∂Ω, satisfying conditions (i) and (ii) in
Theorem 1.1. Suppose ΣH 6= ∅ and ΣO is isometric to a round sphere
with area 4πR2. Then (1.10) shows

(1.12) R− 1

8π

∫
Σ
O

H dσ >

√
|ΣH |
16π

.

On the other hand, Theorem 1.1 applies to any M3
m with m ∈

(
0, 1

2R
)

since ΣO is isometric to a rotationally symmetric sphere in such an M3
m.

Thus, by (1.9),

(1.13) m+
1

8π

∫
Σ
O

N

(
N

2

R
−H

)
dσ ≥

√
|ΣH |
16π
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with N =
√

1− 2m
R . Let Φ(m) denote the quantity on the left side of

(1.13). (The left side of (1.12) equals limm→0+ Φ(m).) By (1.13),

(1.14) min
0<m<R

2

Φ(m) ≥
√
|ΣH |
16π

.

Note that either (1.12) or (1.13) implies 0 < 1
8πR

∫
Σ
O
H dσ < 1. There-

fore, via direct calculation, one has

R− 1

8π

∫
Σ
O

H dσ > min
0<m<R

2

Φ(m) =
R

2

1−

(
1

8πR

∫
Σ
O

H dσ

)2


≥
√
|ΣH |
16π

.

(1.15)

(It is clear that, if Ω is the region bounded by a rotationally symmetric
sphere and the horizon boundary in some M3

m, then min0<m<R
2

Φ(m) =√
|Σ
H
|

16π .) In (1.15), it is also intriguing to note that min0<m<R
2

Φ(m)

is achieved at m = m∗ where m∗, determined by N = 1
8πR

∫
Σ
O
H dσ,

agrees with min0<m<R
2

Φ(m), i.e.

(1.16) m∗ = min
0<m<R

2

Φ(m).

This means that an optimal background M3
m∗ that is used to be com-

pared with Ω is indeed determined by the minimal value of Φ(m).

Remark 1.7. Calculation in relation to the example above was first
carried out in [35] where the special case of Theorem 1.1 in which ΣO

is isometric to a round sphere was proved. The implication of (1.16) on
the quasi-local mass of such round surfaces was also discussed in [35].

Next, we comment on the implication of Theorem 1.1 on isometric
embeddings of a 2-sphere into a Schwarzschild manifold M3

m with m >
0. It was proved by Li and Wang [28] that, if σ is a metric on the
2-sphere S2, an isometric embedding of (S2, σ) into M3 may not be
unique. Indeed, it was shown in [28] that, if σr is the standard round
metric of area 4πr2 with r > 2m, then (S2, σr) admits an isometric
embedding into M3

m that is close to but different from the standard
embedding whose image is a rotationally symmetric sphere. For this
reason, one knows that inequality (1.1) does depend on the choice of
the isometry between ΣO and Σ. (This contrasts with inequality (1.5)
which only depends on the intrinsic metric on Σi.) However, in the
following example, we demonstrate that (1.1) can be applied to reveal
information on such different isometric embeddings into M3

m.
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Example 2. Let Σ ⊂ M3
m be a closed, star-shaped, convex surface

with Ric(ν, ν) ≤ 0. Let Hm denote its mean curvature. Suppose ι :

Σ → Σ̃ is an isometry between Σ and another surface Σ̃ ⊂ M3
m with

properties

(a) Σ̃ bounds a domain D with the Schwarzschild horizon ΣS
H

= ∂M3
m,

and
(b) Σ̃ has positive mean curvature H̃m with respect to the outward

unit normal.

Then Theorem 1.1 is applicable to the domain D to give

(1.17) m+
1

8π

∫
Σ
NHm dσ ≥

√
|ΣS

H
|

16π
+

1

8π

∫
Σ̃
ÑH̃m dσ

with Ñ = N ◦ ι−1. (Note that, if (a) is replaced by an assumption

Σ̃ = ∂D for some D, then the term involving |ΣS
H
| will be absent in

(1.17) and the inequality is strict.) Since m =

√
|ΣS
H
|

16π , (1.17) shows

(1.18)

∫
Σ
NHm dσ ≥

∫
Σ̃
ÑH̃m dσ

with equality holds only if Hm ◦ ι−1 = H̃m. Now suppose we consider
the special case in which Σ is a rotationally symmetric sphere, then N
is a constant on Σ, hence Ñ is also a constant that equals N . In this
case, (1.18) becomes

(1.19)

∫
Σ
Hm dσ ≥

∫
Σ̃
H̃m dσ.

(In the case of Σ̃ = ∂D, one has 8πmN−1 +
∫

ΣHm dσ >
∫

Σ̃ H̃m dσ.)

Since Hm is a constant, equality in (1.19) holds only if H̃m is a constant.

By the result of Brendle [7], we conclude that Σ̃ must be Σ when equality
holds in (1.19).

We now outline the proof of Theorem 1.1. The first step in our
proof is to generalize the monotonicity of the Brown-York mass type
integral (1.6) in Shi-Tam’s proof of Theorem 1.3 to the monotonicity of
a weighted Brown-York mass type integral

(1.20)

∫
Σt

N(H̄ −Hη) dσ

in a general static background on which N is a positive static potential
function. The idea of imposing a suitable weight function in (1.20)
to obtain monotonicity goes back to the work of Wang and Yau [45]
in which isometric embeddings of surfaces into hyperbolic spaces are
considered. Given a static Riemannian manifold (N, ḡ) (see Definition
2.1), let {Σt} be a family of closed hypersurfaces evolving in (N, ḡ) with
speed f > 0, we show that, as long as Σt is 2-convex and ∂N

∂ν > 0,
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(1.20) is monotone nonincreasing along the flow. Here 2-convexity of
Σt means that σ1 > 0 and σ2 > 0, where σ1 and σ2 are the first and
second elementary symmetric functions of the principal curvatures of Σt

in (N, ḡ); ν denotes the unit normal giving the direction of the flow; and
H̄, Hη denote the mean curvature of Σt with respect to ḡ = f2dt2 +
gt, gη = η2dt2 + gt, respectively, where gη is taken to have the same
scalar curvature as ḡ. (The idea of considering such a metric gη goes
back to Bartnik [3].) To apply this monotonicity formula, in the next
step we study a family of closed, star-shaped, hypersurfaces {Σt} in a
spatial Schwarzschild manifold Mn+1

m , given by Σt = X(t,Sn), where
X : [0,∞)× Sn →Mn+1

m is a smooth map evolving according to

(1.21)
∂X

∂t
=
n− 1

2n

σ1

σ2
ν.

We show that, if the initial hypersurface Σ0 is 2-convex with Ric(ν, ν) ≤
0, then (1.21) admits a long time solution {Σt}0≤t<∞ so that each Σt is
2-convex and has positive scalar curvature. Writing the Schwarzschild
background metric ḡ on the exterior region E of Σ0 as ḡ = f2dt2 + gt,
we then demonstrate that there exists a positive function η on E such
that gη = η2dt2 + gt has zero scalar curvature, the mean curvature of
Σ0 in (E, gη) equals H which is the mean curvature of ΣO in (Ω, ğ); and
(E, gη) is asymptotically flat with mass

(1.22) m(gη) = m+ lim
t→∞

1

nωn

∫
Σt

N(H̄ −Hη) dσ.

Finally, by gluing (Ω, ğ) and (E, gη) along ΣO (which is identified with

Σ = Σ0) to get an asymptotically flat manifold (M̂, ĥ), we conclude

m+
1

nωn

∫
Σ
O

N(Hm −H) dσ ≥ m+ lim
t→∞

1

nωn

∫
Σt

N(H̄ −Hη) dσ

= m(gη) ≥
1

2

(
|ΣH |
ωn

)n−1
n

,

(1.23)

where in the last step we used the fact that the Riemannian Penrose
inequality holds on such an (M̂, ĥ) (see [35, 32]).

It is worth of mentioning that, similar to the fact that Shi-Tam’s
proof of Theorem 1.3 gives an upper bound of the Bartnik mass mB (Σ)
[2] for a 2-surface Σ that is isometric to a convex surface in R3 in terms
of its Brown-York mass, our proof of Theorem 1.1 yields

(1.24) mB (Σ) ≤ m+
1

8π

∫
Σ
N(Hm −H) dσ

for a surface Σ that is isometric to a convex surface with Ric(ν, ν) ≤ 0
in an M3

m (see Theorem 5.1). Such an estimate on the Bartnik mass
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verifies a special case of Conjecture 4.1 in [34], which is formulated
for a surface that admits an isometric embedding into a general static
manifold.

This paper is organized as follows. In Section 2, we derive the mono-
tonicity formula of the weighted Brown-York mass type integral (1.20)
in a general static background. In Section 3, we study a family of in-
verse curvature flows in a spatial Schwarzschild manifold Mn+1

m , which
includes (1.21) as a special case. In Section 4, we prove that a warped
metric of the form gη = η2dt2 + gt, with zero scalar curvature, exists on
the Schwarzschild exterior region E swept out by the solution {Σt}0≤t≤∞
to (1.21), and show that gη is asymptotically flat and its mass is given
by (1.22). In Section 5, we attach (E, gη) to (Ω, ğ) along ΣO and ap-
ply the Riemannian Penrose inequality to prove Theorem 1.1. We also
discuss the implication of our work to the Bartnik mass. We end the
paper by proving Theorem 1.2 in Section 6.

Acknowledgments. The authors want to thank the anonymous referee
whose valuable comments and suggestions helped improve and clarify
this manuscript.

2. Monotonicity formula in a static background

The Euclidean space Rn+1 and the spatial Schwarzschild manifolds
Mn+1
m both are examples of a static Riemannian manifold according to

the following definition.

Definition 2.1 ([15]). A Riemannian manifold (N, ḡ) is called static
if there exists a nontrivial function N such that

(∆̄N)ḡ − D̄2N +NR̄ic = 0,(2.1)

where R̄ic is the Ricci curvature of (N, ḡ), D̄2N is the Hessian of N and
∆̄ is the Laplacian of N . The function N is called a static potential.

Throughout this section, we let (N, ḡ) denote a static Riemannian
manifold with a static potential N . The scalar curvature R̄ of such an
(N, ḡ) is necessarily a constant (see [15, Proposition 2.3]). Consider a
smooth family of embedded hypersurfaces {Σt} evolving in (N, ḡ) ac-
cording to

∂X

∂t
= fν,(2.2)

where X denotes points in Σt, f > 0 denotes the speed of the flow,
and ν is a unit normal to Σt. Let σ1 and σ2 be the first and second
elementary symmetric functions of the principal curvatures of Σt in
(N, ḡ), respectively. In particular, σ1 equals the mean curvature of Σt.

The metric ḡ over the region U swept by {Σt} can be written as

ḡ = f2dt2 + gt,(2.3)
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where gt is the induced metric of Σt. Now consider another metric

gη = η2dt2 + gt,(2.4)

where η > 0 is a function on U . We impose the condition that the scalar
curvature R(gη) of gη equals the scalar curvature of ḡ, i.e.

(2.5) R(gη) = R̄.

Proposition 2.2. Under the above notations and assumptions,

d

dt

(∫
Σt

N(H̄ −Hη)dσ

)
= −

∫
Σt

η−1(η − f)2H̄
∂N

∂ν
dσ −

∫
Σt

Nσ2η
−1(η − f)2dσ,

where H̄ and Hη are the mean curvature of Σt with respect to ḡ and gη,
respectively.

Proof. Denote Ā and Aη the second fundamental form of Σt with
respect to ḡ and gη, respectively. By (2.3) and (2.4),

Hη = η−1fH̄, Aη = η−1fĀ.(2.6)

By the second variation formula,

∂

∂t
H̄ = −∆f − f(|Ā|2 + R̄ic(ν, ν))(2.7)

and

∂

∂t
Hη = −∆η − η(|Aη|2 +Ricgη(ν, ν)),(2.8)

where ∆ is the Laplacian operator on (Σt, gt) and Ricgη is the Ricci
curvature of gη.

Let R denote the scalar curvature of (Σt, gt). Let σ2η be the second
elementary symmetric functions of the principal curvatures of Σt in
(N, gη). By Gauss equation,

σ2 =
R− R̄

2
+ R̄ic(ν, ν), σ2η =

R− R̄
2

+Ricgη(ν, ν).(2.9)

Together with (2.6), we have

Ricgη(ν, ν) =R̄ic(ν, ν) + σ2η − σ2

=R̄ic(ν, ν) + σ2(η−2f2 − 1).
(2.10)

Putting (2.7), (2.8) and (2.10) together, we have

∂

∂t
(H̄ −Hη)

= ∆(η − f)− f(|Ā|2 + R̄ic(ν, ν)) + η(|Aη|2 +Ricgη(ν, ν))

= ∆(η − f) + R̄ic(ν, ν)(η − f) + |Ā|2(η−1f2 − f) + σ2(η−1f2 − η).
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Using the formula ∂
∂tdσ = fHdσ, (2.6) and integrating by part, we thus

have

d

dt

(∫
Σt

N(H̄ −Hη)dσ

)
=

∫
Σt

f
∂N

∂ν
H̄(1− η−1f)dσ +

∫
Σt

NH̄(1− η−1f)fH̄dσ

+

∫
Σt

(
∆N(η − f) +NR̄ic(ν, ν)(η − f)

)
dσ

+

∫
Σt

(
N |Ā|2(η−1f2 − f) +Nσ2(η−1f2 − η)

)
dσ

=

∫
Σt

(η − f)

(
∆N +NR̄ic(ν, ν) + η−1fH̄

∂N

∂ν

)
dσ

+

∫
Σt

Nσ2

(
2(f − η−1f2) + η−1f2 − η

)
dσ

=

∫
Σt

(η − f)

(
∆N +NR̄ic(ν, ν) + η−1fH̄

∂N

∂ν

)
dσ

−
∫

Σt

Nσ2η
−1(η − f)2dσ.

The static equation (2.1) implies

∆N +NR̄ic(ν, ν)

= ∆̄N − D̄2N(ν, ν)− H̄ ∂N

∂ν
+NR̄ic(ν, ν) = −H̄ ∂N

∂ν
.

Therefore, we conclude

d

dt

(∫
Σt

N(H̄ −Hη)dσ

)
=

∫
Σt

(η − f)(−1 + η−1f)H̄
∂N

∂ν
dσ −

∫
Σt

Nσ2η
−1(η − f)2dσ

=−
∫

Σt

η−1(η − f)2H̄
∂N

∂ν
dσ −

∫
Σt

Nσ2η
−1(η − f)2dσ.

q.e.d.

Corollary 2.3. Suppose (N, ḡ) has a positive static potential N .
Along {Σt}, suppose

(2.11)
∂N

∂ν
> 0 and σi > 0, i = 1, 2.

Then

∫
Σt

N(H̄ −Hη)dσ is monotone nonincreasing and it is a constant

if and only if η = f .
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3. Inverse curvature flows in Schwarzschild manifolds

Corollary 2.3 suggests one consider foliations {Σt} satisfying condi-
tion (2.11) in a static manifold with a positive static potential. In this
section, we use an inverse curvature flow to construct such foliations in
the Schwarzschild manifold Mn+1

m .
We begin by fixing some notations. Henceforth, we will always use ḡ

to denote the metric on Mn+1
m . We write

(Mn+1
m , ḡ) = ([0,∞)× Sn, dr2 + φ2(r)σ),(3.1)

where σ is the standard metric on the unit n-sphere Sn and φ = φ(r) > 0

satisfies φ(0) = (2m)
1

n−1 and

φ′ =
√

1− 2mφ1−n.(3.2)

In terms of this coordinate r, the static potential function N in Theorem
1.1 equals φ′. We use R̄(·, ·, ·, ·), Ric(·, ·) to denote the curvature tensor,
the Ricci curvature of ḡ, respectively. The scalar curvature R̄ of ḡ is
identically zero.

Given any integer 1 ≤ k ≤ n, the Garding’s cone Γk ⊂ Rn is defined
by

Γk = {(κ1, . . . , κn) ∈ Rn | σj > 0, 1 ≤ j ≤ k},
where σj is the j-th elementary symmetric function of (κ1, . . . , κn). We
also define σ0 = 1. A hypersurface Σ ⊂ Mn+1

m is called k-convex if its
principal curvature (κ1, . . . , κn) ∈ Γk.

Theorem 3.1. Let Σn
0 be a star-shaped, k-convex, closed hypersurface

in Mn+1
m . Consider a smooth family of hypersurfaces {Σt}t≥0 evolving

according to

∂X

∂t
=
ν

F
,(3.3)

where ν is the outward unit normal and F = nC
k−1
n

Ckn

σk
σk−1

> 0 which is

evaluated at the principal curvatures of Σt. Then (3.3) has a smooth
solution that exists for all time, each Σt remains star-shaped, and the
second fundamental form h of Σt satisfies

|hijφ− δij | ≤ Ce−αt,
where φ is evaluated at Σt and C,α depends only on Σ0, n, k.

We remark that inverse curvature flows in Euclidean spaces were first
studied by Gerhardt [19] and Urbas [44]. They considered the flow
equation (3.3) where F is a concave function of homogeneous degree
one, evaluated at the principal curvature, and proved that the solution
exists for all time and the normalized flow converges to a round sphere
if the initial hypersurface is suitably star-shaped. For flows in other
space forms, Gerhardt [20, 21] proved the solution exists for all time
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and the second fundamental form converges (see also earlier work by
Ding [16]). Recently, Brendle-Hung-Wang [8] and Scheuer [40] proved
that the same results hold in anti-de Sitter-Schwarzschild manifold and
a class of warped product manifolds for the inverse mean curvature flow,
i.e. F = σ1. However, as pointed out by Neves [37] and Hung-Wang
[27], for the inverse mean curvature flow, the rescaled limiting hypersur-
face is not necessarily a round sphere in an anti-de Sitter-Schwarzschild

manifold. The case of F = nC
k−1
n

Ckn

σk
σk−1

in anti-de Sitter-Schwarzschild

manifolds was analyzed by Lu [29] and Chen-Mao [13] independently.
They proved that the flow exists for all time and the second fundamen-
tal converges exponentially fast if the initial hypersurface is star-shaped
and k-convex.

In what follows, we prove Theorem 3.1 following the steps in [29].
We divide the proof into a few subsections.

3.1. Basic formulae. We first collect some well-known formulae in
Schwarzschild manifold. Given a hypersurface Σn ⊂ Mn+1

m , we always
use g to denote the induced metric on Σ. Define

Φ(r) =

∫ r

0
φ(ρ)dρ, u =

〈
φ
∂

∂r
, ν

〉
,

where ν is the outer unit normal of Σ and 〈·, ·〉 also denotes the metric
product on Mn+1

m . Let i, j.. ∈ {1, . . . , n} denote indices of local coordi-
nates on Σ. Let h be the second fundamental form on Σ.

The following formula is well-known (see [22] for instance),

(3.4) Φ;ij = φ′gij − hiju,
where “; ” denotes the covariant differentiation on Σ.

Let R(·, ·, ·, ·) be the curvature tensor of g on Σ. The Gauss equation
and Codazzi equation are

Rijkl = R̄ijkl + (hikhjl − hilhjk)(3.5)

∇khij −∇jhik = R̄νijk,(3.6)

and the interchanging formula is

∇i∇jhkl =∇k∇lhij − hpl (hiphkj − hijhpk)− h
p
j (hpihkl − hilhpk)(3.7)

+ hpl R̄ikjp + hpj R̄iklp +∇kR̄ijlν +∇iR̄jklν .
Here ∇ is another notation for the covariant differentiation on Σ.

The function u is known as the support function of Σ. We have (see
in [29])

Lemma 3.2.

∇iu = gklhik∇lΦ,

∇i∇ju = gkl∇khij∇lΦ + φ′hij − (h2)iju+ gkl∇lΦR̄νjki,
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where (h2)ij = gklhikhjl, R̄νjki is the curvature of ambient space.

As for the curvature, we have the following curvature estimates, for
proof, we refer readers to [8].

Lemma 3.3. The sectional curvature satisfies

R̄(∂i, ∂j , ∂k, ∂l) = φ2
(

1− φ′2
)

(σikσjl − σilσjk)

R̄(∂i, ∂r, ∂j , ∂r) = −φφ′′σij .

Together with (3.2), this gives

R̄(∂i, ∂j , ∂k, ∂l) = 2mφ3−n(σikσjl − σilσjk)
R̄(∂i, ∂r, ∂j , ∂r) = −m(n− 1)φ1−nσij ,

thus

R̄αβγµ = O(r−n−1), ∇̄ρR̄αβγµ = O(r−n−1).

Here {∂i} is the coordinate frame on Sn, σij is the standard metric of
Sn, and {eα} denotes an orthonormal frame on Mn+1

m .

We also need the following two lemmas regarding to σk, see in [29]
for detailed proof.

Lemma 3.4. let F = nC
k−1
n

Ckn

σk
σk−1

, thus F is of homogeneous degree

1, and F (I) = n, then we have∑
i

F iiλ2
i ≥

F 2

n

Lemma 3.5. Let F = nC
k−1
n

Ckn

σk
σk−1

and (λi) ∈ Γk, then

n ≤
∑
i

F ii ≤ nk

3.2. Parametrization on graph and C0 estimate. Since the initial
hypersurface Σ0 is star-shaped, we can consider it as a graph on Sn, i.e.
X = (x, r) where x is the coordinate on Sn and r is the radial function.
By taking derivatives, we have

Xi = ∂i + ri∂r, gij = rirj + φ2σij(3.8)

and

ν =
1

v

(
− r

i

φ2
∂i + ∂r

)
,(3.9)

where ν is the unit normal vector, v = (1 + |∇r|2
φ2

)
1
2 . Note that all the

derivatives are on Sn.
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Thus

dr

dt
=

1

Fv
, ẋi = − ri

φ2Fv

we have

∂r

∂t
=
dr

dt
− rj ẋj =

v

F
.(3.10)

By a direct computation, cf. (2.6) in [16] we have

hij =
1

v
(−rij + φφ′σij +

2φ′rirj
φ

).(3.11)

Now we consider a function

ϕ =

∫ r

r0

1

φ
(3.12)

thus

ϕi =
ri
φ
, ϕij =

rij
φ
− φ′rirj

φ2
.(3.13)

If we write everything in terms of ϕ, we have

∂ϕ

∂t
=

v

φF
(3.14)

and

v = (1 + |Dϕ|2)
1
2 , gij = φ2(ϕiϕj + σij), g

ij = φ−2

(
σij − ϕiϕj

v2

)
.

(3.15)

Moreover,

hij =
φ

v

(
φ′(σij + ϕiϕj)− ϕij

)
,(3.16)

hij = gikhkj =
φ′

φv
δij −

1

φv
σ̃ikϕkj ,

where σ̃ij = σij − ϕiϕj

v2
.

Lemma 3.6. Let r̄(t) = supSn r(·, t) and r(t) = infSn r(·, t), then we
have

φ(r̄(t)) ≤ et/nφ(r̄(0))(3.17)

φ(r(t)) ≥ et/nφ(r(0)).

Proof. Recall that ∂r
∂t = v

F , where F is a normalized operator on

(hij). At the point where the function r(·, t) attains its maximum, we

have ∇r = 0, (rij) ≤ 0, from (3.13), we deduce that ∇ϕ = 0, (ϕij) ≤ 0

at the maximum point. From (3.16), we have (hij) ≥
(
φ′

φ δ
i
j

)
, where
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we may assume (gij) and (hij) is diagonalized if necessary. Since F is
homogeneous of degree 1, and F (1, · · · , 1) = n, we have

v2 = 1 + |∇ϕ|2 = 1, F (hij) ≥
φ′

φ
F (δij) =

nφ′

φ
,

thus

d

dt
r̄(t) ≤ φ(r̄(t))

nφ′(r̄(t))

i.e.

d

dt
log φ(r̄(t)) ≤ 1

n

which yields to the first inequality. Similarly, we can prove the second
inequality, thus we have the lemma. q.e.d.

3.3. Evolution equations and C1 estimate. Before we go on with
the estimate, let’s derive some evolution equations first. We have

ġij =
2hij
F

, ν̇ =
gijFiej
F 2

,(3.18)

and

ḣij = − 1

F
hikh

k
j −∇i∇j

(
1

F

)
− 1

F
R̄iνjν .(3.19)

Together with the interchanging formula (3.7), we have

ḣij =− 1

F
hikh

k
j +

F pq,rshpq
ihrsj

F 2
− 2F pqhpq

iF rshrsj
F 3

− 1

F
R̄iνjν

(3.20)

+
gkiF pq

F 2

(
hkj,pq − hlq(hklhpj − hkjhlp)− hlj(hlkhpq − hkqhlp)

+ hlqR̄kpjl + hljR̄kpql +∇pR̄kjqν +∇kR̄jpqν
)
,

where F ij = ∂F
∂hpq

and F pq,rs = ∂2F
∂hpq∂hrs

.

We also need the evolution equation for the support function

u =

〈
φ
∂

∂r
, ν

〉
,

which is given by

u̇ =
φ′

F
+
φgijFirj
F 2

.(3.21)

Now, we need to consider the curvature term. By Lemma 3.3, (3.8)
and (3.9), we have

R̄νjnk =
rnδjk
v

(
−φφ′′ − (1− (φ′)2)

)
+
rkδjn
v

(
φφ′′ + (1− φ′2)

)
.



BOUNDARY BEHAVIOR OF COMPACT MANIFOLDS 537

Note that gpn = φ−2
(
σpn − rprn

v2φ2

)
, where rp = gpqrq. Thus

gpn∇pΦR̄νjnk =

(
|∇r|2δjk − rjrk

φv3

)(
−φφ′′ − (1− φ′2)

)
≤ 0.(3.22)

Lemma 3.7. Along the flow, |∇ϕ| ≤ C, where C depends on Σ0, n, k.

Proof. By (3.14) and (3.16), we have

∂ϕ

∂t
=

v

φF
=

v2

F̃ (φ′δij − σ̃ikϕkj)
=

1

G
,

where F̃ = φvF .
Let Gij = ∂G

∂ϕij
, Gk = ∂G

∂ϕk
, Gϕ = ∂G

∂ϕ then

Gij = − 1

v2
F̃ il σ̃

lj , Gϕ =
1

v2
F̃ ii φφ

′′.

Let ω = 1
2 |∇ϕ|

2, we have

∂ω

∂t
= ∇kϕ∇kϕ̇ = −ϕ

k

G2
∇kG = −ϕ

k

G2

(
Gijϕijk +Glϕlk +Gϕϕk

)
=

1

v2G2

(
F̃ il σ̃

ljϕkϕijk − v2Glωl − 2F̃ ii φφ
′′ω
)
.

We want to write the term σ̃ljϕijk in terms of second derivative of ω.
Note that

ωij = ϕkijϕ
k + ϕkiϕ

k
j

= ϕijkϕ
k + (σijσkp − σikσjp)ϕpϕk + ϕkiϕ

k
j

= ϕijkϕ
k + σij |∇ϕ|2 − ϕiϕj + ϕkiϕ

k
j

and

σ̃lj
(
σij |∇ϕ|2 − ϕiϕj

)
= δli|∇ϕ|2 − ϕiϕl.

Thus we have

∂w

∂t
=

1

v2G2

(
F̃ il σ̃

ljωij − F̃ ii |∇ϕ|2 + F̃ il ϕiϕ
l − v2Glωl − 2F̃ ii φφ

′′ω
)

− 1

v2G2
F̃ il σ̃

ljϕkiϕ
k
j .

(3.23)

Note that −F̃ ii |∇ϕ|2 + F̃ il ϕiϕ
l ≤ 0 and −F̃ il σ̃ljϕkiϕkj ≤ 0, thus by the

maximum principle, we have

ω(·, t) ≤ supω0. q.e.d.

Lemma 3.8. Along the flow, u ≥ ce
t
n , where u is the support func-

tion and c depends on Σ0, n, k.

Proof. Recall that u = 〈φ∂r, ν〉. By Lemma 3.6, φ ≥ Ce
t
n ; by Lemma

3.7, 〈∂r, ν〉 ≥ C. It follows that u ≥ ce
t
n . q.e.d.
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Lemma 3.9. Suppose Ric(ν, ν) ≤ 0 for Σ0, then Ric(ν, ν) ≤ 0 for all
Σt. If k ≥ 2, this implies R > 0 for all Σt.

Proof. By Lemma 3.3, we have

Ric =
(

(n− 1)(1− φ′2)− φφ′′
)
gSn − n

φ′′

φ
dr2.

Together with (3.9), i.e. ν = 1
v

(
∂r − rj∂j

φ2

)
, we have

Ric(ν, ν) = −n φ
′′

φv2
+

(n− 1)(1− φ′2)− φφ′′

φ4v2
|∇r|2

= −n φ
′′

φv2
+

(n− 1)(1− φ′2)− φφ′′

φ2v2
(v2 − 1)

=
(n− 1)(1− φ′2)− φφ′′

φ2
− (n− 1)

1− φ′2 + φφ′′

φ2v2
.

Since φ′ =
√

1− 2mφ1−n, thus

1− φ′2 = 2mφ1−n, φφ′′ = m(n− 1)φ1−n.

Thus

Ric(ν, ν) = m(n− 1)φ−1−n −m(n− 1)(n+ 1)φ−1−nv−2.

On the other hand, v2 = 1 + |∇ϕ|2 and, by Lemma 3.7, |∇ϕ| is
bounded above by the initial data. Thus it follows that, if initially
Ric(ν, ν) ≤ 0, i.e. |∇ϕ|2 ≤ n, then it remains true along the flow.

To prove the second assertion, it suffices to note that

σ2 =
R

2
+ Ric(ν, ν) > 0

along the flow. Thus R > 0 along the flow. q.e.d.

3.4. Bound for principal curvature.

Lemma 3.10. Along the flow, Fφ ≤ C, where C depends only on
Σ0, n, k.

Proof. Consider Fφ, at the maximum point, we have

φ̇

φ
+
Ḟ

F
≥ 0

and

φi
φ

+
Fi
F

= 0,
φij
φ

+
Fij
F
− 2

FiFj
F 2
≤ 0.
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By (3.10) and (3.19), we have

0 ≤ φ′v

Fφ
+
F ji
F

(
− 1

F
hikh

k
j −∇i∇j

(
1

F

)
− 1

F
R̄iνjν

)
=
φ′v

Fφ
+
F ji
F

(
− 1

F
hikh

k
j +
∇i∇jF
F 2

− 2
∇iF∇jF

F 3
− 1

F
R̄iνjν

)
.

By the critical equation above and (3.11), we have

0 ≤ φ′v

Fφ
+
F ji
F

(
− 1

F
hikh

k
j −
∇i∇jφ
Fφ

− 1

F
R̄iνjν

)
=
φ′v

Fφ
+
F ji
F 2

(
−hikhkj − R̄iνjν

)
− F ij

F 2φ

(
φ′′rirj + φ′rij

)
=
φ′v

Fφ
+
F ji
F 2

(
−hikhkj − R̄iνjν

)
− F ij

F 2φ

(
φ′′rirj + φ′

(
φφ′σij +

2φ′rirj
φ

− hijv
))

= 2
φ′v

Fφ
−
F ji
F 2

(
hikh

k
j + R̄iνjν

)
− F ij

F 2φ

(
φ′′rirj + φ′

(
φφ′σij +

2φ′rirj
φ

))
.

By Lemma 3.3 and property of φ, we have

0 ≤ 2
φ′v

Fφ
−
F ji
F 2

hikh
k
j + C

F ii
F 2φn+1

− F ij

F 2φ

(
φ′′rirj +

2(φ′)2rirj
φ

)
− F ijσij(φ

′)2

F 2
.

By Lemma 3.4, we have

0 ≤ 2
φ′v

Fφ
− 1

n
+ C

F ii
F 2φn+1

− F ij

F 2φ

(
φ′′rirj +

2(φ′)2rirj
φ

)
− F ijσij(φ

′)2

F 2
.

Using the fact that F ijrirj ≥ 0, we have

0 ≤ 2
φ′v

Fφ
− 1

n
+ C

F ii
F 2φn+1

− F ijσij(φ
′)2

F 2
.

Note that σij =
gij−rirj

φ2
, we have

0 ≤ 2
φ′v

Fφ
− 1

n
+ C

F ii
F 2φn+1

− F ii (φ
′)2

F 2φ2
+
F ijrirj(φ

′)2

F 2φ2
.(3.24)
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By Lemma 3.7, we have gij ≤ Cφ−2, it follows that

F ijrirj(φ
′)2

F 2φ2
≤ CF

i
i (φ
′)2

F 2φ2
.

Together with Lemma 3.5 and property of φ, we have

0 ≤ C

Fφ
− 1

n
+

C

F 2φn+1
+

C

F 2φ2
,

thus Fφ is bounded above. q.e.d.

Lemma 3.11. Along the flow, |ϕ̇| ≤ C, where C depends on Σ0, n, k.

Proof. By (3.14) and (3.16), we have

∂ϕ

∂t
=

v

φF
=

v2

F̃ (φ′δij − σ̃ikϕkj)
=

1

G
,

where F̃ = φvF .
Let Gij = ∂G

∂ϕij
, Gk = ∂G

∂ϕk
, Gϕ = ∂G

∂ϕ then

Gij = − 1

v2
F̃ il σ̃

lj , Gϕ =
1

v2
F̃ ii φφ

′′,

thus

∂ϕ̇

∂t
= − Ġ

G2
= − 1

G2

(
Gijϕ̇ij +Gkϕ̇k +Gϕϕ̇

)
=

1

v2G2

(
F̃ il σ̃

ljϕ̇ij − v2Gkϕ̇k − F̃ ii φφ′′ϕ̇
)
.

By maximum principle, we conclude that |ϕ̇| is bounded above. q.e.d.

Lemma 3.12. Along the flow, Fφ ≥ c, where c depends on Σ0, n, k.

Proof. Since ϕ̇ = v
φF , by Lemma 3.11, we have

v

φF
≤ C,

thus Fφ ≥ c. q.e.d.

Lemma 3.13. Along the flow, |κiφ| ≤ C, where κi is the principal
curvature of Σt, C depends on Σ0, n, k.

Proof. Consider log η − log u+ 2t
n , where

η = sup{hijξiξj : gijξ
iξj = 1}.

WLOG, we suppose that the maximum point occurs at η = h1
1, and we

have

ḣ1
1

h1
1

− u̇

u
+

2

n
≥ 0(3.25)
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and

h1
1i

h1
1

− ui
u

= 0,
h1

1ij

h1
1

≤ uij
u
.(3.26)

By (3.20), (3.21) and the critical equation, we have

0 ≤ 1

h1
1

(
− 1

F
h1
kh

k
1 +

F pq,rshpq
1hrs1

F 2
− 2F pqhpq

1F rshrs1
F 3

− 1

F
R̄1
ν1ν

(3.27)

+
gk1F pq

F 2

(
hk1,pq − hmq (hkmhp1 − hk1hmp)− hm1 (hmkhpq − hkqhmp)

+ hmq R̄kp1m + hm1 R̄kpqm +∇pR̄k1qν +∇kR̄1pqν

))
− φ′

Fu
− φgijFirj

F 2u
+

2

n
.

Consider the term F pq

F 2

h11,pq
h11

, by (3.26) and Lemma 3.2, we have

F pq

F 2

h1
1,pq

h1
1

≤ F pq

F 2

upq
u

=
F pq

F 2u

(
gklhpqkΦl + φ′hpq − (h2)pqu+ gkl∇lΦR̄νpkq

)
.

(3.28)

Inserting (3.28) into (3.27), together with the concavity of F , yields

0 ≤ gk1F pq

h1
1F

2

(
hmq R̄kp1m + hm1 R̄kpqm +∇pR̄k1qν +∇kR̄1pqν − hm1 hmkhpq

)
+

1

h1
1

(
− 1

F
h1
kh

k
1 −

1

F
R̄1
ν1ν

)
+
gklF pq

F 2u
∇lΦR̄νpkq +

2

n
.

(3.29)

By (3.22), we have

0 ≤ gk1F pq

h1
1F

2

(
hmq R̄kp1m + hm1 R̄kpqm +∇pR̄k1qν +∇kR̄1pqν − hm1 hmkhpq

)
+

1

h1
1

(
− 1

F
h1
kh

k
1 −

1

F
R̄1
ν1ν

)
+

2

n
.

(3.30)

By Lemma 3.3, all terms involving curvature terms of the ambient
space are uniformly bounded by Cφ−1−n, i.e.

gk1F pq

F 2

(
hmq R̄kp1m + hm1 R̄kpqm +∇pR̄k1qν +∇kR̄1pqν

)
≤ CF ii
F 2φn+1

h1
1 ≤ Ch1

1,
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where we have used Lemma 3.5 and Lemma 3.12 in the last inequality.
Plug it into (3.30), we have

0 ≤ 1

h1
1

(
− 2

F
h1
kh

k
1 −

1

F
R̄1
ν1ν

)
+ C ≤ 1

h1
1

(
− 2

Fφ
h1
kh

k
1φ+

C

Fφn+1

)
+ C

≤ −Ch1
1φ+

C

h1
1φ

+ C,

i.e. h1
1φ ≤ C.

By Lemma 3.6 and Lemma 3.8, ce
t
n ≤ u ≤ φ ≤ Ce

t
n , the lemma now

follows by the definition of the test function. q.e.d.

Lemma 3.14. Along the flow, F is uniformly elliptic.

Proof. It follows directly from Lemma 3.10, Lemma 3.12 and Lemma
3.13. q.e.d.

3.5. Asymptotic behaviors.

Lemma 3.15. Along the flow, |∇ϕ| ≤ Ce−αt, where C,α depends on
Σ0, n, k.

Proof. We proceed as in Lemma 3.7, by (3.23), we have

∂w

∂t
=

1

v2G2

(
F̃ il σ̃

ljωij − F̃ ii |∇ϕ|2 + F̃ il ϕiϕ
l − v2Glωl − 2F̃ ii φφ

′′ω
)

− 1

v2G2
F̃ il σ̃

ljϕkiϕ
k
j .

By Lemma 3.14, F is uniformly elliptic, i.e. F̃ ij is uniformly elliptic,
by Lemma 3.10, φF is bounded above, then consider ω̃ = ωeλt, at the
maximum point, we have

∂ω̃

∂t
≤ 1

v2G2

(
−F̃ ii |∇ϕ|2 + F̃ il ϕiϕ

l
)
eλt + λω̃ ≤ (− c

φ2F 2
+ λ)ω̃,

thus ω̃ is uniformly bounded, we have |∇ϕ| decays exponentially. q.e.d.

Lemma 3.16. Along the flow, Fφ ≤ n+Ce−αt, where C,α depends
only on Σ0, n, k.

Proof. We proceed as in Lemma 3.10, by (3.24), we have

0 ≤ 2
φ′v

Fφ
− 1

n
+ C

F ii
F 2φn+1

− F ii (φ
′)2

F 2φ2
+
F ijrirj(φ

′)2

F 2φ2
.

By Lemma 3.14, F is uniformly elliptic, by Lemma 3.15, |∇ϕ| decays
exponentially, then

0 ≤ 2

Fφ
− 1

n
− n

F 2φ2
+ Ce−αt,

i.e.

Fφ ≤ n+ Ce−αt. q.e.d.
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Lemma 3.17. We have

|hijφ− δij | ≤ Ce−αt,

where C,α depends only on Σ0, n, k. Moreover, for any p, q ≥ 0, we
have ∣∣∣∣( ∂

∂t

)p
(φ∇)q φ2∇hij

∣∣∣∣ ≤ Ce−αt,
where ∇ is the unit gradient on Σt and C depends in addition on p, q.

Proof. To prove the lemma, we first notice that by (3.16) and (3.14),
we have

hij =
φ′

φv
δij −

1

φv
σ̃ikϕkj

and

∂ϕ

∂t
=

v

φF
=
v

F̃
,

where

F̃ = φF = F (
φ′

v
δij −

1

v
σ̃ikϕkj).

By the Lemma 3.7 and Lemma 3.13, we know that ∇ϕ and ∇2ϕ is
uniformly bounded. By Evans-Krylov, we have |ϕ|2,α ≤ C. By stan-
dard interpolation inequality, we have ∇2ϕ decays exponentially as ∇ϕ
decays exponentially by Lemma 3.15. Thus from the definition of hij
above, we have the first inequality.

By Schauder estimate, we have |ϕ|l ≤ Ce−αt for all l ≥ 1.
By the definition of hij , we have

∇hij =

(
φ′′

φv
− φ′2

φ2v

)
δij∇r −

φ′

φv3
δijϕk∇ϕk

+
φ′

φ2v
σ̃ikϕkj∇r +

1

φv3
σ̃ikϕkjϕl∇ϕl

+
1

φv
∇ϕiϕkϕkj +

1

φv
∇ϕkϕiϕkj −

1

φv
σ̃ik∇ϕkj .

Since |ϕ|l ≤ Ce−αt for all l ≥ 1, this implies

|φ2∇hij | ≤ Ce−αt.

By induction, we have

|
(
∂

∂t

)p
(φ∇)q φ2∇hij | ≤ Ce−αt

for all p, q ≥ 0. q.e.d.
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Lemma 3.18. Let g̃ij = φ−2gij be a normalized metric, then

|g̃ij − σij | ≤ Ce−αt,

where σij is the standard metric on Sn and C,α depends only on Σ0, n, k.
Moreover, for any p, q ≥ 0, we have∣∣∣∣( ∂

∂t

)p
(φ∇)q φ∇g̃ij

∣∣∣∣ ≤ Ce−αt,
where ∇ is the unit gradient on Σt and C depends in addition on p, q.

Proof. Following the step in [19], we consider the rescaled hypersur-

face as X̂ = Xe−
t
n . Then we have r̂ = re−

t
n , thus

ĝij = φ2(r̂)σij + r̂ir̂j .

By Lemma 3.6 and Lemma 3.15, we have c0 ≤ r̂ ≤ C0 uniformly, and
|r̂i| ≤ Ce−αt, thus

c0σ ≤ ĝ ≤ C0σ

for t large enough, i.e. ĝ is well defined.
Now let’s prove that ĝ converges to ĝ∞. By Lemma 3.15, we have

∂ĝij
∂t

= 2φ(r̂)φ′(r̂)

(
v

F
e−

t
n − 1

n
re−

t
n

)
σij +

∂

∂t
(r̂ir̂j) ≤ Ce−αt.

Thus ĝ converges exponentially fact to ĝ∞. To prove that ĝ∞ is a
round metric, we only need to prove that r̂ is constant. Since r̂ is
defined on Sn, we take derivative of Sn on r̂ to obtain

|∇Sn r̂| = |∇Snre
− t
n | ≤ Ce−αt.

Thus r̂ is constant for t =∞, i.e. we have

r = r0e
t
n +O(e( 1

n
−α)t)

and

φ(r) = r0e
t
n +O(e( 1

n
−α)t).

Hence, at time t, we have

gij = φ2(r) (σij + ϕiϕj) = r2
0e

2t
n σij +O(e( 2

n
−2α)t),

and the normalized metric g̃ij satisfies

g̃ij = φ−2gij = σij +O(e−αt).

Similar to the previous lemma, high regularity decay estimates follows
by Lemma 3.15 and the definition of g̃ij . q.e.d.
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Remark 3.1. Let k ≥ 2. Let g be a metric on Sn so that (Sn, g)
isometrically embeds into Mn+1

m as a star-shaped, k-convex, closed hy-
persurface in Mn+1

m with Ric(ν, ν) ≤ 0. Combining results in this section
and arguments in [12, Section 3], one knows that g can be connected to
a round metric within the space of positive scalar curvature metrics on
Sn. Therefore, repeating the proof in [12], we know that the conclusion
of [12, Theorem 1.2] holds for such a metric g.

4. Bartnik-Shi-Tam type asymptotically flat extensions

Let Σn ⊂ Mn+1
m be a closed, star-shaped, 2-convex hypersurface sat-

isfying

(4.1) Ric(ν, ν) ≤ 0.

Here Ric(·, ·) is the Ricci curvature of the Schwarzschild manifold Mn+1
m

and ν is the outward unit normal to Σ. By Theorem 3.1, there exists a
smooth solution {Σt}0≤t≤∞, consisting of star-shaped hypersurfaces, to

∂X

∂t
=
n− 1

2n

σ1

σ2
ν(4.2)

with initial condition Σ0 = Σ. By Lemma 3.9, condition (4.1) implies
that the scalar curvature R of each Σt is positive.

Let E denote the exterior of Σ in Mn+1
m , which is swept by {Σt}0≤t≤∞.

On E, the Schwarzschild metric ḡ can be written as

ḡ = f2dt2 + gt,

where gt is the induced metric on Σt and

f =
n− 1

2n

σ1

σ2
> 0.

Prompted by Proposition 2.2, we are interested in a new metric gη on
E, which takes the form of

gη = η2dt2 + gt,

and has zero scalar curvature. Here η > 0 is a function on E.
We first derive the equation for η. Adopting the notations in Section

2, by (2.6), (2.8) and Gauss equation (2.9), we have

∂

∂t
Hη =−∆η − η(|Aη|2 +Ricgη(ν, ν))

=−∆η − η
(
η−2f2|Ā|2 + η−2f2σ2 −

R

2

)
=−∆η − η−1f2|Ā|2 − η−1f2σ2 +

R

2
η.
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On the other hand,

∂

∂t
Hη =

∂

∂t
(
fH̄

η
) = −fH̄

η2

∂η

∂t
+

1

η

∂

∂t
(fH̄).

Thus

−fH̄
η2

∂η

∂t
+

1

η

∂

∂t
(fH̄) = −∆η − u−1f2|Ā|2 − η−1f2σ2 +

R

2
η

i.e.

−∂η
∂t

+
η2

fH̄
∆η =

η3R

2fH̄
− η

fH̄

(
f2|Ā|2 + f2σ2 +

∂

∂t
(fH̄)

)
.(4.3)

Equation (4.3) is as the same as (5) in [17]. The following assertion on
the long time existence of η on E follows directly from [17, Proposition 2]
and Lemma 3.9.

Lemma 4.1. Let Σ be a closed, star-shaped, 2-convex hypersurface
in Mn+1

m with Ric(ν, ν) ≤ 0. Given any positive function ψ > 0 on Σ,
the solution to (4.3) with initial condition η|t=0 = ψ exists for all time
and remains positive.

In what follows, we analyze the asymptotic behavior of gη.

4.1. C0 estimate of η. For the convenience of estimating η, we con-
sider

w = f−1η.

By (4.3), (2.7) and (2.9), it is easily seen that w satisfies the equation

−∂w
∂t

+
w2

H̄
(f∆w + 2∇w∇f) =

1

2H̄
(fR− 2∆f) (w3 − w).(4.4)

Lemma 4.2. w satisfies the estimate

|w − 1| ≤ Cφ1−n,

where C depends only on Σ0 and n.

Proof. It suffices to focus on w for t ≥ t0 where t0 is sufficiently large.
Following the steps in [41], we define

A(t) = min
Σt

fR− 2∆f

H̄
, B(t) = max

Σt

fR− 2∆f

H̄
.

By Lemma 3.17, Lemma 3.3 and Gauss equation (2.9), we have

fR− 2∆f

H̄
=
n− 1

n
+ Ce−αt,

thus both A(t) and B(t) are positive for t ≥ t0.
We first seek an upper bound for w. Define

P (t) =

(
1− C1 exp(−

∫ t

t0

A(s)ds)

)− 1
2
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with C1 = 1−(maxΣt0
w+1)−2. It is clear that P −w ≥ 0 at t0. Taking

derivative, we have

d

dt
P (t) = −1

2

(
1− C1 exp(−

∫ t

t0

A(s)ds)

)− 3
2

C1 exp(−
∫ t

t0

A(s)ds)A(t)

=
1

2
P 3(P−2 − 1)A =

1

2
(P − P 3)A.

At the minimum point of P − w, we have

d

dt
(P − w) ≤ 0, ∇w = 0, ∇2w ≤ 0,

thus

0 ≥ 1

2
(P − P 3)A+

1

2H̄
(fR− 2∆f) (w3 − w).

Since A ≤ fR−2∆f
H̄

, we have

0 ≥ P − P 3 + w3 − w,

i.e. P − w ≥ 0 as P ≥ 1. Therefore, w ≤ P for all time t ≥ t0.
Next, we seek a lower bound of w. We consider two cases.

Case 1: minΣt0
w ≥ 1. Define

Q(t) =

(
1 + C2 exp(−

∫ t

t0

B(s)ds)

)− 1
2

,

where C2 = (minΣt0
w)−2 − 1. It’s clear that w − Q ≥ 0 at t0. By a

similar computation as above, we have

d

dt
Q(t) =

1

2
(Q−Q3)B.

At the minimum point of w −Q,

d

dt
(w −Q) ≤ 0, ∇w = 0, ∇2w ≥ 0.

Thus

0 ≥ − 1

2H̄
(fR− 2∆f) (w3 − w)− 1

2
(Q−Q3)B.

Since B ≥ fR−2∆f
H̄

, we have

0 ≥ w − w3 +Q3 −Q,

which implies w ≥ Q as Q ≥ 1. Thus, w ≥ Q for all t ≥ t0.

Case 2: minΣt0
w < 1. Define

Q̃(t) =

(
1 + (C2 + ε) exp(−

∫ t

t0

(A(s)− ε)ds)
)− 1

2

.
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For ε small enough, we have

Q̃(t0) = (1 + C2 + ε)−
1
2 < min

Σt0

w.

Suppose now at some t1 > t0, we have minΣt1

(
w − Q̃

)
= 0 and, for

t0 ≤ t ≤ t1, we have w − Q̃ ≥ 0. Then at t1,

d

dt
(w − Q̃) ≤ 0, ∇w = 0, ∇2w ≥ 0.

Since

d

dt
Q̃(t) =

1

2
(Q̃− Q̃3)(A− ε),

we have

0 ≥ − 1

2H̄
(fR− 2∆f) (w3 − w)− 1

2
(Q̃− Q̃3)(A− ε).

Since A− ε < fR−2∆f
H̄

, the above implies

0 ≥ Q̃− Q̃3.

Contradict to the fact Q̃ < 1. Since ε is arbitrary, we thus have

w ≥
(

1 + C2 exp(−
∫ t

t0

A(s)ds)

)− 1
2

.

Finally, note that A(t) = n−1
n +O(e−αt), we have

exp(−
∫ t

t0

A(t)) ≤ Ce−
n−1
n
t ≤ Cφ1−n.

Therefore, w ≥ 1−Cφ1−n. Similarly, w ≤ 1+Cφ1−n. Thus, we conclude

|w − 1| ≤ Cφ1−n. q.e.d.

4.2. Asymptotic behavior of w. Following [41], we consider the
rescaled metric

g̃ij = φ−2gij

on each Σt. Here we omit writing t for the sake of convenience. Note
that by Lemma 3.18, g̃ij converges to σij exponentially fast.

For any function h and l,

< ∇̃h, ∇̃l >g̃= φ2 < ∇h,∇l >g .
Henceforth, for convenience, we simply write the above as

∇̃h∇̃l = φ2∇h∇l.
Direct calculation gives

∆ = φ−2∆̃ + (n− 2)φ−3∇̃φ∇̃.
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In terms of g̃ij , equation (4.4) becomes

− ∂w

∂t
+

w2

H̄φ2

(
f∆̃w + (n− 2)fφ−1∇̃φ∇̃w + 2∇̃w∇̃f

)
=

1

2H̄

(
fR− 2φ−2∆̃f − 2(n− 2)φ−3∇̃φ∇̃f

)
(w3 − w),

(4.5)

which can be re-written as

− ∂w

∂t
+ ∇̃

(
fw2

H̄φ2
∇̃w
)
− 2f

H̄φ2
|∇̃w|2

= w2∇̃
(

f

H̄φ2

)
∇̃w − w2

H̄φ2

(
(n− 2)fφ−1∇̃φ+ 2∇̃f

)
∇̃w

+
1

2H̄

(
fR− 2φ−2∆̃f − 2(n− 2)φ−3∇̃φ∇̃f

)
(w3 − w).

By Lemma 4.2, this is a uniformly parabolic PDE. In addition, the
term − 2f

H̄φ2
|∇̃w|2 has a good sign and the coefficient of ∇̃w is uniformly

bounded. Thus we may directly apply standard Moser iteration to con-
clude that w ∈ Cα.

By considering the equation for w−1 and applying Schauder estimate
and Lemma 4.2, for any k, l ≥ 0, we have

|
(
∂

∂t

)k
∇̃l(w − 1)| ≤ Cφ1−n,(4.6)

where C depends only on Σ0, n and k, l. As in [41], we define

(4.7) m =
1

2
φn−1(1− w−2).

Lemma 4.3. There exists a constant m0, such that

|m−m0|+ |∇0m|+ |
∂m

∂t
| ≤ Ce−αt,

where ∇0 is the standard gradient on Sn and C,α depends only on Σ0

and n.

Proof. By (4.6) and definition of m, for any k, l ≥ 0, we have

|
(
∂

∂t

)k
∇̃lm| ≤ C,
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where C depends only on Σ0, n and k, l. By (4.5), m satisfies

∂m

∂t
=
n− 1

2
φn−2φ′(1− w−2)

∂r

∂t
+ φn−1w−3∂w

∂t

=
n− 1

2
φn−2φ′vf(1− w−2)

+
φn−3

H̄w

(
f∆̃w + (n− 2)fφ−1∇̃φ∇̃w + 2∇̃w∇̃f

)
− φn−1

2H̄w3

(
fR− 2φ−2∆̃f − 2(n− 2)φ−3∇̃φ∇̃f

)
(w3 − w).

Denote by p any function that satisfies

|
(
∂

∂t

)k
∇̃lp| ≤ Ce−αt,

for any k, l ≥ 0, where C,α is uniform constants may depend on k, l.
By Lemma 3.7 and Lemma 3.17, we have

φ−1∇̃φ = p, φ−1∇̃f = p.

Thus

φn−3

H̄w
fφ−1∇̃φ∇̃w =

(
φn−1∇̃w

)(
φ−1∇̃φ

) f

H̄wφ2
= p.

Similarly,

φn−3

H̄w
∇̃w∇̃f =

(
φn−1∇̃w

)(
φ−1∇̃f

) 1

H̄wφ
= p,

φn−1

H̄w3
φ−2∆̃f(w3 − w) =

(
φn−1(1− w−2)

) (
φ−1∆̃f

) 1

H̄φ
= p,

and

φn−1

H̄w3
φ−3∇̃φ∇̃f(w3 − w)

=
(
φn−1(1− w−2)

) (
φ−1∇̃f

)(
φ−1∇̃φ

) 1

H̄φ
= p.

Hence,

∂m

∂t
=
n− 1

2
φn−2φ′vf(1− w−2) +

φn−3f

H̄w
∆̃w − φn−1fR

2H̄
(1− w−2) + p.

On the other hand,

n− 1

2
φn−2φ′vf(1− w−2)− φn−1fR

2H̄
(1− w−2)

=
φn−1(1− w−2)

2
f

(
(n− 1)φ−1φ′v − R

H̄

)
= p.
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Therefore,

∂m

∂t
=
φn−3f

H̄w
∆̃w + p.

Note that

∇̃m =
n− 1

2
φn−2∇̃φ(1− w−2) + φn−1w−3∇̃w,

and

∆̃m =
(n− 1)(n− 2)

2
φn−3|∇̃φ|2(1− w−2) +

n− 1

2
φn−2∆̃φ(1− w−2)

+ 2(n− 1)φn−2w−3∇̃φ∇̃w − 3φn−1w−4|∇̃w|2 + φn−1w−3∆̃w.

Thus,

∆̃m = −3φn−1w−4|∇̃w|2 + φn−1w−3∆̃w + p = φn−1w−3∆̃w + p.

Therefore,

∂m

∂t
=
φn−3f

H̄w

(
φ1−nw3∆̃m + φ1−nw3p

)
+ p

=
fw2

H̄φ2
∆̃m + p =

1

n2
∆̃m + p.

By Lemma 3.18, we have g̃ij = σij+p, where σij is the standard metric

on Sn. Thus ∆̃m = ∆0m+p, where ∆0 is the standard Laplacian on Sn.
Now, by Lemma 2.6 in [41], we conclude that there exists a constant
m0, such that

|m−m0|+ |∇0m|+ |
∂m

∂t
| ≤ Ce−αt. q.e.d.

Lemma 4.3 directly implies the following asymptotic expansion of w.

Lemma 4.4. As t→∞, w satisfies

w = 1 +m0φ
1−n + p,

where p = O(φ1−n−α) and |∇0p| = O(φ−n−α). Here ∇0 denotes the
standard gradient on (Sn, σ).

4.3. ADM mass of gη. We now verify that the metric gη is asymptot-
ically flat and we compute its ADM mass. Note that

gη = f2dt2 + gt + (η2 − f2)dt2 = ḡ + (w2 − 1)f2dt2,

where ḡ is the metric on the Schwarzschild manifold Mn+1
m with mass

m.
Let r be the radial coordinate in (3.1). Let z = (z1, . . . , zn+1) de-

note the standard rectangular coordinates on the background Euclidean
space

Rn+1 =
(
[0,∞)× Sn, dr2 + r2σ

)
.
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Writing ḡ = ḡijdzidzj and gη = gijdzidzj , we have

gij = ḡij + bij ,(4.8)

where

bij = (w2 − 1)f2 ∂t

∂zi

∂t

∂zj
.

We need to analyze the term ∂t
∂zi

. As r = |z|,

∂zi =
zi
r
∂r + (∂zi)

T ,

where (∂zα)T is tangential to Sn. By definition,

∂t

∂zi
= dt(∂zi) = 〈∇̄t, ∂zi〉ḡ = f−1〈ν, ∂zi〉ḡ.

Plugging in ν = 1
v (∂r − rj∂j

φ2
), we have

∂t

∂zi
=

1

fv

(
zi
r
− rj

φ2
〈∂j , (∂zi)T 〉ḡ

)
=

1

fv

(zi
r
− rj〈∂j , (∂zi)T 〉σ

)
.

(4.9)

Thus,

bij =
w2 − 1

v2

(zi
r
− rk〈∂k, (∂zi)T 〉σ

)(zj
r
− rl〈∂l, (∂zj )T 〉σ

)
.

By Lemma 4.4, Lemma 3.7 and the fact that |(∂zi)T | ≤ 1
r , we have

|bij | = O(|z|1−n).

Similarly computation gives

|z||∂zbij |+ |z|2|∂z∂zbij | = O(|z|1−n).

This shows that gη is asymptotically flat.

Lemma 4.5. The ADM mass of gη = η2dt2 + gt equals m+m0.

Proof. The ADM mass of gη is given by

1

2nωn
lim
r→∞

∫
Sn

(
∂gηij
∂zi

−
∂gηii
∂zj

)
rn−1zjdσ.

By (4.8) and the fact that the ADM mass of ḡ is m, the above limit is
equal to

m+
1

2nωn
lim
r→∞

∫
Sn

(
∂bij
∂zi
− ∂bii
∂zj

)
rn−1zjdσ.(4.10)
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Thus it suffices to calculate
∂bij
∂zi

and ∂bii
∂zj

. We have

∂bij
∂zi

= 2wf2 ∂w

∂zi

∂t

∂zi

∂t

∂zj
+ 2(w2 − 1)f

∂f

∂zi

∂t

∂zi

∂t

∂zj

+ (w2 − 1)f2

(
∂2t

∂z2
i

∂t

∂zj
+

∂t

∂zi

∂2t

∂zj∂zi

)
.

Similarly,

∂bii
∂zj

= 2wf2 ∂w

∂zj

(
∂t

∂zi

)2

+ 2(w2 − 1)f
∂f

∂zj

(
∂t

∂zi

)2

+ 2(w2 − 1)f2 ∂t

∂zi

∂2t

∂zj∂zi
.

Thus,

∂bij
∂zi
− ∂bii
∂zj

= 2wf2 ∂t

∂zi

(
∂w

∂zi

∂t

∂zj
− ∂w

∂zj

∂t

∂zi

)
+ 2(w2 − 1)f

∂t

∂zi

(
∂f

∂zi

∂t

∂zj
− ∂f

∂zj

∂t

∂zi

)
+ (w2 − 1)f2

(
∂2t

∂z2
i

∂t

∂zj
− ∂t

∂zi

∂2t

∂zj∂zi

)
.

By Lemma 4.4, we have

∂w

∂zi
= (1− n)m0φ

−n−1zi +O(φ−n−α).

By Lemma 3.7 and (4.9), we have

∂t

∂zi
=

1

f

zi
φ

+O(φ−1−α).

Therefore,

2wf2 ∂t

∂zi

(
∂w

∂zi

∂t

∂zj
− ∂w

∂zj

∂t

∂zi

)
= O(φ−n−α).

On other hand, by Lemma 3.17 and straightforward computation,

∂f

∂zi
=

zi
nφ

+O(φ−α).

Thus,

2(w2 − 1)f
∂t

∂zi

(
∂f

∂zi

∂t

∂zj
− ∂f

∂zj

∂t

∂zi

)
= O(φ−n−α).

Again by Lemma 3.17, Lemma 3.7 and (4.9), we have

∂2t

∂z2
i

=
n(n− 2)

φ2
+O(φ−2−α),

∂2t

∂zi∂zj
= −2n

φ4
zizj +O(φ−2−α).
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Thus,

(w2 − 1)f2

(
∂2t

∂z2
i

∂t

∂zj
− ∂t

∂zi

∂2t

∂zj∂zi

)
= 2m0φ

1−nf2n
2

φ2

zj
fφ

= 2nm0φ
−1−nzj +O(φ−n−α).

Therefore, we conclude

∂bij
∂zi
− ∂bii
∂zj

= 2nm0φ
−1−nzj +O(φ−n−α),

which implies that the ADM mass of gη is m+m0 by (4.10). q.e.d.

Remark 4.1. A more geometric way to compute the ADM mass of gη
is as follows. The foliation {Σt} is a family of nearly round hypersurfaces
according to Definition 2.1 in [36]. Thus, if m(gη) is the mass of gη, then
by Theorem 1.2 in [36],

2n(n− 1)ωnm(gη)

= lim
t→∞

(
|Σt|
ωn

) 1
n
∫

Σt

(
R− n− 1

n
H2
η

)
dσ

= lim
t→∞

(
|Σt|
ωn

) 1
n
∫

Σt

(
R− n− 1

n
H̄2 +

n− 1

n
(1− w−2)H̄2

)
dσ

= 2n(n− 1)ωn(m+m0),

(4.11)

where we have used the fact ḡ has mass m and

(4.12) lim
t→∞

∫
Σt

(1− w−2)H̄2dσ = 2n2ωnm0,

which follows from Lemma 4.4, Lemma 3.17 and Lemma 3.18.

Lemma 4.6.

lim
t→∞

∫
Σt

N(H̄ −Hη)dσ = lim
t→∞

∫
Σt

NH̄(1− w−1)dσ = nm0ωn.

Proof. Similar to (4.12), this is a direct consequence of Lemma 4.4,
Lemma 3.17 and Lemma 3.18. q.e.d.

We summarize the results in Lemmas 4.1, 4.4, 4.5 and 4.6 in the
following theorem.

Theorem 4.7. Let Σn ⊂ Mn+1
m be a closed, star-shaped, 2-convex

hypersurface with Ric(ν, ν) ≤ 0, where Ric(·, ·) is the Ricci curvature of
Mn+1
m and ν is the outward unit normal to Σ. Let E denote the exterior

of Σn in Mn+1
m , which is swept by a family of star-shaped hypersurfaces

{Σt}0≤t≤∞ that is a smooth solution to

∂X

∂t
=
n− 1

2n

σ1

σ2
ν
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with initial condition Σ0 = Σn. On E, writing the Schwarzschild metric
ḡ as

ḡ = f2dt2 + gt,

where gt is the induced metric on Σt and f = n−1
2n

σ1
σ2

. Then, given any
smooth function ψ > 0 on Σ, there exists a smooth function η > 0 on E
such that

(i) η|Σ = ψ, the metric gη = η2dt2 + gt has zero scalar curvature, and
η satisfies

f−1η = 1 +m0φ
1−n + p,

where m0 is a constant, p = O(φ1−n−α) and |∇0p| = O(φ−n−α);
(ii) the Riemannian manifold (E, gη) is asymptotically flat; and

(iii) the ADM mass m(gη) of gη is given by

m(gη) = m+m0 = m+ lim
t→∞

1

nωn

∫
Σt

N(H̄ −Hη)dσ.

Remark 4.2. Since (E, gη) is foliated by {Σt}0≤t≤∞, which has posi-
tive mean curvature for each t, the boundary ∂E = Σ is outer minimizing
in (E, gη), meaning that Σ minimizes area among all hypersurfaces in E
that enclose Σ.

5. Geometric applications

In this section, we give applications of results in Sections 2–4. First,
we prove Theorem 1.1.

Proof of Theorem 1.1. Let (Ωn+1, ğ) be a compact manifold given in
Theorem 1.1. By assumptions (i), (ii) and the standard geometric mea-
sure theory, ΣH minimizes area among all closed hypersurfaces in (Ω, ğ)
that encloses ΣH .

Let E denote the exterior of Σn in Mn+1
m . Let η > 0 be the smooth

function on E given by Theorem 4.7 with an initial condition

(5.1) η|Σ = f |ΣH−1Hm.

This condition implies that the mean curvature of Σ in (E, gη) agrees
with the mean curvature H of ΣO in (Ω, ğ). Since ΣO is isometric to
Σ = ∂E, we can attach (E, gη) to (Ω, ğ) along Σ = ΣO by matching the
Gaussian neighborhood of Σ in (E, gη) to that of ΣO in (Ω, ğ). Denote

the resulting manifold by M̂ and its metric by ĥ. By construction, ĥ is
Lipschitz across Σ and smooth everywhere else on M̂ ; ĥ has nonnegative
scalar curvature away from Σ; and the mean curvature of Σ from both
sides in (M̂, ĥ) agree. Moreover, ∂M̂ = ΣH is a minimal hypersurface

that is outer minimizing in (M̂, ĥ). This outer minimizing property of
ΣH is guaranteed by the fact that Σ is outer minimizing in (E, gη) and
ΣH minimizes area among closed hypersurfaces in (Ω, ğ) that encloses
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ΣH . On such an (M̂, ĥ), it is known that the Riemannian Penrose
inequality, i.e. Theorem 1.4, still holds. (For a proof of this claim, see
pages 279–280 in [35] for the case n = 2 and Proposition 3.1 in [32] for
2 ≤ n ≤ 6). Therefore, we have

(5.2) m(gη) ≥
1

2

(
|ΣH |
ωn

)n−1
n

.

By (iii) in Theorem 4.7, this gives

(5.3) m+ lim
t→∞

1

nωn

∫
Σt

N(H̄ −Hη)dσ ≥
1

2

(
|ΣH |
ωn

)n−1
n

.

On the other hand, since ∂N
∂ν > 0 as Σt is star-shaped and Σt has

positive σ1 and σ2 in Mn+1
m , Corollary 2.3 applies with (N, ḡ) given by

Mn+1
m to show that ∫

Σt

N(H̄ −Hη)dσ

is monotone nonincreasing. At Σ = Σ0, we have Hm = H̄ and H = Hη.
Therefore, ∫

Σ
N(Hm −H)dσ =

∫
Σ0

N(H̄ −Hη)dσ

≥ lim
t→∞

∫
Σt

N(H̄ −Hη)dσ.

(5.4)

Therefore, it follows from (5.3) and (5.4) that

(5.5) m+
1

nωn

∫
Σ
N(Hm −H)dσ ≥ 1

2

(
|ΣH |
ωn

)n−1
n

,

which proves (1.1). If equality in (5.5) holds, then
∫

Σt
N(H̄ − Hη)dσ

is a constant for all t. By Corollary 2.3, we have η = f on E, hence
H = Hm by (5.1). Consequently,

m =
1

2

(
|ΣH |
ωn

)n−1
n

.

This completes the proof of Theorem 1.1. q.e.d.

Remark 5.1. We conjecture that, when equality in (1.1) holds, (Ω, ğ)
is isometric to the domain enclosed by Σ and the horizon boundary
ΣS
H

in Mn+1
m . It is clear from the above proof that in this case (5.2)

becomes equality. Thus, if one can establish the rigidity statement
for the Riemannian Penrose inequality on manifolds with corners (cf.
[33, 41, 31]), then this conjecture will follow.

Next, we note an implication of Corollary 2.3 and Theorem 4.7 on the
concept of Bartnik mass [2]. Given a pair (g,H), where g is a metric
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and H is a function on S2, the Bartnik mass of (g,H), which we denote
by mB (g,H), can be defined by

mB (g,H)

= inf
{
m(h) | (M,h) is an admissible extension of (S2, g,H)

}
.

Here m(h) is the ADM mass of (M,h) which is an asymptotically flat
3-manifold with boundary ∂M . (M,h) is called an admissible extension
of (S2, g,H) provided (M,h) has nonnegative scalar curvature, ∂M is
isometric to (S2, g), and the mean curvature of ∂M in (M,h) equals H
under the identification of ∂M with (S2, g) via the isometry. Moreover,
it is assumed that either (M,h) contains no closed minimal surfaces or
∂M is outer minimizing in (M,h) (see [2, 4, 5, 26]).

Theorem 5.1. Given a pair (g,H) on S2, suppose H > 0 and (S2, g)
is isometric to a closed, star-shaped, convex surface Σ with Ric(ν, ν) ≤ 0
in a spatial Schwarzschild manifold Mn+1

m with m > 0. Then

mB (g,H) ≤ m+
1

8π

∫
Σ
N(Hm −H) dσ.

Moreover, equality holds if and only if H = Hm and mB (g,H) = m.

Proof. Taking n = 2 in Theorem 4.7, let η be the function given on
E with an initial condition η|Σ = f |ΣH−1Hm. The asymptotically flat
manifold (E, gη) is an admissible extension of (S2, g,H). Therefore, by
(iii) in Theorem 4.7,

mB (g,H) ≤ m(gη) = m+ lim
t→∞

1

8π

∫
Σt

N(H̄ −Hη) dσ.(5.6)

By Corollary 2.3,∫
Σ
N(Hm −H) dσ ≥ lim

t→∞

∫
Σt

N(H̄ −Hη) dσ.(5.7)

The inequality now follows from (5.6) and (5.7). If equality holds, then
(5.6) and (5.7) are equalities. In this case, by Corollary 2.3, η = f .
Therefore, H = Hm and mB (g,H) = m. q.e.d.

Remark 5.2. Indeed our method shows the following is true – given a
pair (g,H) on S2, suppose (S2, g) is isometric to the boundary of a static,
asymptotically flat manifold (N3, ḡ) with a positive static potential N .
Suppose (N, ḡ) satisfies:

(i) Σ = ∂N has positive σ1 and σ2;
(ii) the inverse curvature flow (1.21) in (N, ḡ), with initial condition

Σ0 = Σ, admits a long time, smooth solution {Σt}0≤t<∞ with
∂N
∂ν > 0; and
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(iii) the warped metric gη defined by (2.4), satisfying R(gη) = 0 on
N and Hη = H at Σ, can be constructed on N such that gη is
asymptotically flat with

m(gη) = m(ḡ) + lim
t→∞

1

8π

∫
Σt

N(H̄ −Hη) dσ.

Then, by Corollary 2.3, the Bartnik mass of (g,H) satisfies

(5.8) mB (g,H) ≤ m(ḡ) +
1

8π

∫
Σ
N(H̄ −H) dσ.

Here m(ḡ) is the ADM mass of (N, ḡ) and H̄ is the mean curvature of
Σ in (N, ḡ). Estimate (5.8) appeared as Conjecture 4.1 in [34].

6. Limits along isomeric embeddings of large spheres into
Schwarzschild manifolds

In this section, we prove Theorem 1.2 which was inspired by the
results of Fan, Shi and Tam [18]. We divide the proof into two parts,
the existence of the embedding and the calculation of the limits.

6.1. Isometric embedding of large spheres. In [38], Nirenberg
shows that a 2-sphere with positive Gauss curvature can be isomet-
rically embedded in R3 as a strictly convex surface. By adopting the
iteration scheme used in the proof of the openness part in [38], one can
verify that a perturbation of a standard round sphere can be isometri-
cally embedded in a 3-dimensional Schwarzschild manifold with small
mass. This assertion, which is the main tool we use in this section, is
indeed a special case of [28, Theorem 1] (see also [11]).

Proposition 6.1 ([11, 28]). Let σ be the standard metric on S2 with
area 4π. There exists ε > 0 and δ > 0, such that if σ̃ is a metric on S2

with ‖σ̃ − σ‖C2,α < ε and if m is a positive constant with m < δ, then

there exists an isometric embedding X̃ of (S2, σ̃) in

(6.1) M3
m =

(
[2m,∞)× S2,

1

1− 2m
ρ

dρ2 + ρ2σ

)
.

Moreover, X̃ can be chosen so that

(6.2) ‖X̃ −X‖C2,α ≤ C‖σ̃ − σ‖C2,α .

Here X is the isometric embedding of (S2, σ) in M3
m given by X(ω) =

(1, ω), ∀ ω ∈ S2.

Remark 6.1. Estimate (6.2) is not stated in the statement of theo-
rems in [11, 28], but it follows from both proofs therein.

We now consider an asymptotically flat 3-manifold (M, ğ) given in
Theorem 1.2. Precisely, this means that, outside a compact set, M
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is diffeomorphic to R3 minus a ball and with respect to the standard
coordinates on R3, ğ satisfies ğij = δij + pij with

(6.3) |pij |+ |x||∂pij |+ |x|2|∂∂pij |+ |x|3|∂∂∂pij | = O(|x|−τ )

for some constant τ > 1
2 , where ∂ denotes the partial derivative. More-

over, it is assumed that the scalar curvature of ğ is integrable on (M, ğ).
Under such assumptions, the ADM mass of (M, ğ) is well defined, which
we will denote by m.

Given a large constant r > 0, let Sr = {|x| = r} denote the coordinate
sphere in (M, ğ). Let gr be the induced metric on Sr and let g̃r = r−2gr.
Identifying Sr with S2 = { |y| = 1} via a map y = r−1x, one can deduce
from (6.3) that

‖g̃r − σ‖C3 ≤ Cr−τ(6.4)

(see (2.17) in [18] for instance). Here σ is the standard metric on S2

with area 4π and C > 0 is a constant independent on r.
Let m > 0 be any fixed constant. Define mr = r−1m. Applying

Proposition 6.1 and (6.4), we conclude, for sufficiently large r, there
exists an isometric embedding

X̃r : (S2, g̃r) −→M3
mr =

(
[2mr,∞)× S2,

1

1− 2mr
ρ

dρ2 + ρ2σ

)
satisfying

(6.5) ‖X̃r −Xσ‖C2,α = O(r−τ ),

where Xσ(ω) = (1, ω), ∀ ω ∈ S2. It follows from (6.5) that X̃r(S2) is
star-shaped and convex; moreover, if ν̃r is the outward unit normal to
X̃r(S2), then

(6.6) ν̃r =
(
1 +O(r−τ )

)
∂ρ +O(r−τ )∂ω1 +O(r−τ )∂ω2 ,

where ωi, i = 1, 2, are local coordinates on S2.
Let Ricr denote the Ricci curvature of M3

mr . In the rotationally sym-

metric form, it is given by Ricr = mrρ
−3Ψ, where

Ψ = − 2

1− 2mr
ρ

dρ2 + ρ2σ.

By (6.5) and (6.6),

Ricr(ν̃r, ν̃r) = mrρ
−3Ψ(ν̃r, ν̃r)

= − 2mr

(
1 +O(r−τ )

)
.

(6.7)

In particular, Ricr(ν̃r, ν̃r) < 0 for large r.

The map X̃r leads to an isometric embedding of (Sr, gr) in M3
m be-

cause M3
m and M3

mr only differer by a constant scaling. More precisely,
consider the map

Fr : M3
mr −→M3

m,



560 S. LU & P. MIAO

where Fr(ρ, ω) = (rρ, ω). Define Xr = Fr ◦ X̃r, then

Xr : (Sr, gr) −→M3
m

is an isometric embedding such that Xr(Sr) is a star-shaped, convex
surface with

Ric(νr, νr) = −2mr−3
(
1 +O(r−τ )

)
.(6.8)

Here νr is the outward unit normal to Xr(S2) in M3
m and (6.8) follows

from (6.7). Thus, we have proved the first part of Theorem 1.2 on the
existence of the desired isometric embedding of (Sr, gr) into M3

m.

6.2. Evaluation of the limits. To prove the remaining part of Theo-
rem 1.2, we write Xr = (ρr, θr). By (6.5), we have

(6.9) ‖ρr − r‖C2,α = O(r1−τ ).

Similarly, if Hm denotes the mean curvature of Xr(Sr) in M3
m, then

(6.5) gives

(6.10) Hm = 2r−1 +O(r−τ−1).

We first compute
∫
Sr
NHdσ, where N =

(
1− 2m

ρ

) 1
2

is the static

potential on M3
m and H is the mean curvature of Sr in (M, ğ). Let A(r)

be the area of (Sr, gr). By [18, Lemma 2.1],

H = 2r−1 +O(r−1−τ ) and A(r) = 4πr2 +O(r2−τ ).

By [18, Lemma 2.2],∫
Sr

Hdσ = r−1A(r) + 4πr − 8πm + o(1).

Therefore, by (6.9),∫
Sr

NHdσ =

∫
Sr

(
1−mr−1

)
Hdσ + o(1)

= r−1A(r) + 4πr − 8πm− 8πm+ o(1).

(6.11)

Next, we compute
∫
Sr
NHmdσ. Identifying Sr with its image Σr =

Xr(Sr), we carry out the computation in M3
m. Following notations in

Section 3, we rewrite the Schwarzschild metric gm = 1
N2dρ

2 + ρ2σ as

gm = ds2 + φ2(s)σ

by setting s =
∫ ρ

2m
1

N(t)dt. Then φ(s) = ρ and φ′(s) = N . Define

Φ(s) =

∫ s

0
φ(t)dt and u = 〈φ∂s, νr〉 .

On Σr, (3.4) becomes

Φ;ij = φ′grij − hiju,(6.12)
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where h is the second fundamental form of Σr. Taking trace of (6.12)
gives

(6.13) 0 = 2

∫
Σr

φ′dσ −
∫

Σr

Hmu dσ.

Now we apply [23, Lemma 2.5] to get another Minkowski type identity.

Precisely, let σij2 = ∂σ2
∂hij

= σ1gr
ij − hij . Contracting σij2 with Φij shows

(6.14)

∫
Σr

σij2 Φ;ijdσ =

∫
Sr

Hmφ
′dσ − 2

∫
Sr

σ2u dσ.

Integrating by parts and applying the Codazzi equation, we have∫
Sr

σij2 Φ;ijdσ = −
∫
Sr

(σij2 );jΦ;i dσ =

∫
Sr

Ric(νr,∇Φ) dσ,

where ∇Φ is the gradient of Φ on Σr. By (6.9),

(6.15) |∇Φ|2 = gr
ijΦ;iΦ;j = O(r2−2τ ).

This combined with the fact |Ric(νr, ·)| = O(r−3) shows∫
Sr

σij2 Φ;ijdσ = o(1).

Therefore, by (6.14),

(6.16)

∫
Sr

Hmφ
′ dσ = 2

∫
Sr

σ2u dσ + o(1).

Note that u2 = |∇̄Φ|2 − |∇Φ|2, where ∇̄ denotes the gradient on M3
m.

Thus, by (6.15),

(6.17) u = r +O(r1−τ ).

Now let K be the Gauss curvature of (Sr, gr). By [18, Lemma 2.1], if
we let K̄ = K− r−2, then K̄ = O(r−2−τ ). Thus, by the Gauss equation
and (6.8),

σ2 = K + Ric(νr, νr) = K̄ + r−2 − 2mr−3 + o(r−3).

Following the steps in [18], we have

∫
Σr

Hmφ
′dσ = 2

∫
Σr

(K̄ + r−2)u dσ − 4mr−3

∫
Σr

u dσ + o(1)

(6.18)

= 2r−2

∫
Σr

〈∇̄Φ, νr〉dvol + 2

∫
Sr

K̄u dσ − 16πm+ o(1)

= 6r−2

∫
Ωr

φ′dvol + 2r

∫
Sr

(K − r−2) dσ − 16πm+ o(1)

= 6r−2

∫
Ωr

φ′dvol + 8πr − 2r−1A(r)− 16πm+ o(1),
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where Ωr is the bounded domain enclosed by Σr and the horizon bound-
ary of M3

m and dvol is the volume element on M3
m.

Next, let H̄m = Hm − 2r−1. By (6.10), H̄ = O(r−1−τ ). By (6.13),

2

∫
Σr

φ′ dσ =

∫
Σr

Hmu dσ =

∫
Σr

(2r−1 + H̄m)u dσ

= 6r−1

∫
Ωr

φ′dvol +

∫
Σr

H̄mu dσ.

Since u = r + O(r1−τ ) and φ′ = N = 1 + O(r−1), we have u = rφ′ +
O(r1−τ ). Thus,

2

∫
Σr

φ′ dσ = 6r−1

∫
Ωr

φ′dvol +

∫
Σr

H̄m(rφ′ +O(r1−τ )) dσ

= 6r−1

∫
Ωr

φ′dvol + r

∫
Σr

Hmφ
′ dσ − 2

∫
Σr

φ′ dσ +O(r2−2τ ).

(6.19)

Since φ′ = N = 1−mr−1 +O(r−1−τ ), we also have

(6.20)

∫
Σr

φ′ dσ = A(r)− 4πmr +O(r1−τ ).

Thus, it follows from (6.19) and (6.20) that∫
Σr

Hmφ
′ dσ = −6r−2

∫
Ωr

φ′dvol + 4r−1A(r)− 16πm+ o(1).(6.21)

Combining (6.18) and (6.21), and replacing φ′ by N , we have∫
Sr

NHm dσ = 4πr +
A(r)

r
− 16πm+ o(1).(6.22)

By (6.11) and (6.22), we therefore conclude∫
Sr

N(Hm −H) dσ = −8πm+ 8πm + o(1),

or equivalently

lim
r→∞

(
m+

1

8π

∫
Sr

N(Hm −H) dσ

)
= m,

which proves (1.3).
To prove (1.4), by (6.18) and (6.21), we also have

(6.23)

∫
Ωr

N dvol =

∫
Ωr

φ′ dvol =
1

2
rA(r)− 2

3
πr3 + o(r2).

Let V (r) be the volume of the region enclosed by Sr in (M, ğ). By (2.28)
in [18],

(6.24) V (r) =
1

2
rA(r)− 2

3
πr3 + 2πmr2 + o(r2).
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Hence, it follows from (6.23) and (6.24) that

(6.25)

∫
Ωr

N dvol− V (r) = −2πmr2 + o(r2).

Next, let Vm(r) denote the volume of Ωr in M3
m. We claim

(6.26)

∫
Ωr

N dvol = Vm(r)− 2πmr2 + o(r2).

To see this, let Dρ denote the region in M3
m bounded by the rotationally

symmetric sphere with area 4πρ2 and the horizon boundary. Let ρ0 >
2m be a fixed constant such that, for any ρ > ρ0,

(6.27)

∣∣∣∣N − (1− m

ρ

)∣∣∣∣ ≤ C1ρ
−2,

where C1 > 0 is independent on ρ. By (6.9) and (6.27), for large r, we
have ∫

Ωr

Ndvol =

∫
Ωr\Dρ0

N dvol +O(1)

=

∫
Ωr\Dρ0

(
1− m

ρ

)
dvol +O(r)

= Vm(r)−
∫

Ωr\Dρ0

m

ρ
dvol +O(r).

(6.28)

By (6.9), we also have∫
(Dr−Cr1−τ )\Dρ0

ρ−1 dvol ≤
∫

Ωr\Dρ0
ρ−1 dvol ≤

∫
(Dr+Cr1−τ )\Dρ0

ρ−1 dvol,

which implies

(6.29)

∫
Ωr\Dρ0

ρ−1dvol = 2πr2 + o(r2).

Thus, (6.26) follows from (6.28) and (6.29). By (6.25) and (6.26), we
conclude that

V (r)− Vm(r) = 2π(m−m)r2 + o(r2),

which proves (1.4) of Theorem 1.2.
We end this paper with the following corollary.

Corollary 6.2. Let (M3, ğ) be an asymptotically flat 3-manifold with
nonnegative scalar curvature, with boundary ∂M being an outer mini-
mizing minimal surface (with one or more components). Let Sr denote
the large coordinate sphere in (M3, ğ) with the induced metric gr. Let

m =

√
|∂M |
16π . For large r, let Xr be the isometric embedding of (Sr, gr)

into M3
m given by Theorem 1.2. Let V (r) and Vm(r) be the volume of

the region enclosed by Sr in (M3, ğ) and the region enclosed by Xr(Sr)
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in M3
m, respectively. Then

lim
r→∞

V (r)− Vm(r)

2πr2
exists and is ≥ 0,

and “=” holds if and only if (M3, ğ) is isometric to M3
m.

Proof. This follows directly from (1.4) and the 3-dimensional Rie-
mannian Penrose inequality. q.e.d.
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